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Abstract
When inspecting the health of a civil structure, it is important to have efficient techniques to detect the possible presence of

structural damage. This work deals with the detection of damage in prestressed concrete structures, which are widely used

in road bridges and long span slabs, among others. Concrete structures can be affected by different pathologies, with the

transverse cracks beingone of the most dangerous damages, since they involve a localized reduction of the flexural rigidity

of the structure. Such cracks change both the static and dynamic behavior of the structure. In this paper, an inverse method

of damage detection is applied on two experimental beams built in the laboratory, from the measurement of the first three

natural frequencies of vibration. An algorithm for solving the system of equations has been developed by the authors.

Explicit equations were obtained to calculate both the crack position and its depth. The predicted damages by the algorithm

have been in good agreement with the real damages of the experimental models. An important aspect of this methodology

for crack detection is the simplicity of its experimental implementation.

Keywords Prestressed concrete � Crack detection � Natural frequencies � Inverse method � Dynamic tests

1 Introduction

Prestressed concrete structures often suffer various kinds of

damage throughout their service life; therefore, it is

extremely important to identify them, as soon as possible,

to take effective preventive actions for the health of the

structure. Several pathologies can affect the prestressed

concrete structures; many of them are manifested by the

appearance of cracks. As a consequence, numerous studies

about cracks in prestressed concrete have emerged in

recent times [1–3].

In many cases, depending on the extent of the damage

and its velocity of propagation, a cracked concrete struc-

ture can work correctly from the point of view of its

structural function. Nevertheless, such damage deserves

attention because it can mean a potential risk to the safety

of the structure. It must also be taken into account that the

presence of cracks in the concrete can promote the corro-

sion of steel. In addition, corrosion occurs more rapidly

under high tensile stress, which is why it is especially

important in prestressed concrete structures [4, 5].

Among the pathologies which can affect a prestressed

concrete structure, the present approach deals with damage

manifested through typical bending cracks. These cracks

are normal to the axis of the beam and deeper in corre-

spondence with the higher tensile stresses. The width of the

bending cracks is variable, being wider at the bottom and

closing toward the top. Several causes can promote bend-

ing cracks in prestressed concrete beams, namely the

decrease of the prestressing force that takes place with

time, excessive loads, constructive defects and differential

settlements in hyperstatic structures, among others [6].

Regarding the influence of the maximum crack width in

the corrosion process, several standards, especially those

based on the CEB-FIP Model Code [7], determine a

‘‘Cracking Limit State’’ by which the mechanical strength

and durability of the structure should not be affected. As an
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example, the standard EHE-08 [8] determines the maxi-

mum crack width for structural concrete elements in the

absence of special requirements (e.g., sealing) and for

different exposure environments, regardless of the causes

of the cracks. In the case of prestressed concrete, the

standard determines a maximum crack width of 0.20 mm

for non-aggressive or normal environments, while it does

not admit cracks for marine or chemically aggressive

environments. On the other hand, CIRSOC 201 [9],

inspired by ACI 318 [10], establishes limitations for the

separation of reinforcements to control the cracking caused

by the bending stresses; however, this standard does not

impose a maximum allowable crack width.

A particularity in prestressed concrete structures, with

respect to reinforced concrete, is that the prestressing

action tends to keep the cracks closed after the causes of

cracking have disappeared. This can make the detection of

damages difficult in prestressed concrete structures for

early damage states [11]. For this reason, it is necessary to

validate and adjust a method specified as inverse method

(IM), frequently used to control the health of reinforced

concrete structures. This crack detection method is based

on the dynamic response of the structure and, in this work,

has been applied to experimental models of prestressed

concrete beams.

The presence of a crack in a beam affects in different

ways its natural frequencies of vibration according to the

magnitude and the location of the crack. This is the basis of

the IM for the detection of damage in the structure. The

most simple and accepted way to represent the decrease of

stiffness, at the crack location, is by using a rotational

spring. In addition, the stiffness of the rotational spring can

be related to the depth of the crack, by means of the

fracture mechanics theory [12, 13].

Rizos et al. [14] demonstrated the use of the model of

rotational spring along with the modal analysis technique

for identification of crack location and magnitude in a

cantilever beam. Liang et al. [15] demonstrated the validity

of the inverse method in a uniform beam under simply

supported or cantilever boundary conditions. Nandwana

and Maiti [16] have applied this method to models of

beams in the presence of an inclined edge, or internal

normal cracks. Rosales et al. [17] present two approaches:

the solution of the inverse problem with a power series

technique (PST) and the use of artificial neural networks

(ANNs) in a cantilever beam. Orbanich et al. [18] use this

method for the detection of cracks, in numerical and

experimental models of reinforced concrete. Mazanoglu

and Sabuncu [19] deal with numerical and experimental

models of cantilever beams of steel, with one single crack

and double cracks. Barad et al. [20] also obtain good results

in experimental models of cantilever beams with a crack.

However, no applications of the inverse method have been

found in prestressed concrete structures.

2 Fundamentals of the inverse method

In this work, the IM is applied to find the location and

magnitude of a discrete crack present in a beam from the

measurement of its first three natural frequencies of

vibration. To understand the fundamentals of the IM, the

direct problem for homogeneous linear elastic material and

constant cross section is first presented. This means that the

first three natural frequencies are obtained for a model with

damage previously defined and it is analyzed how they are

modified depending on the location and depth of the crack.

In the model shown in Fig. 1, the crack is represented by

a rotational spring with a stiffness kr, located at the position

aL measured from the left end of the beam, where L is the

total length of the beam. The rotational spring introduces a

singularity that divides the beam into two parts. Then the

mode shape for each part is obtained [21]:

v1 xð Þ ¼ A1cos bxð Þ þ A2sen bxð Þ þ A3cosh bxð Þ
þ A4senh bxð Þ; ð1Þ

v2 xð Þ ¼ B1cos bxð Þ þ B2sen bxð Þ þ B3cosh bxð Þ
þ B4senh bxð Þ; ð2Þ

where v1 and v2 are the displacements in the y-direction, to

the left and right of the crack, respectively; Ai and Bi, with

i = 1, 2, 3, 4, are constants to be determined from the

boundary and continuity conditions; b is the eigenvalue

corresponding to the natural frequencies of vibration:

b ¼
ffiffiffiffi

-
c

r

; ð3Þ

in which x is the natural frequency in rad/s and c is a

parameter associated with the geometrical and mechanical

properties of the beam:

c ¼
ffiffiffiffiffiffiffiffiffiffiffi

EI

qAL4

s

; ð4Þ

where E is the elastic modulus of the material; A and I are

the area and the moment of inertia for the cross section of

the beam, respectively; q is the material density; and L is

the total length of the beam.

It is noteworthy that for a simply supported beam

without damage, the eigenvalues corresponding to the first

three natural frequencies are b1 = p, b2 = 2p, b3 = 3p [22].

In case of a damaged beam, these eigenvalues will be lower

due to the loss of structural rigidity.Furthermore, the spring

stiffness can also be expressed in a dimensionless way as:
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k ¼ kr

EI=L
: ð5Þ

Then the boundary conditions of the beam and the

continuity conditions must be applied at the position of the

spring. In the case of the simply supported beam repre-

sented in Fig. 1, the boundary conditions are associated

with zero vertical displacement and zero bending moment

in both supports. Taking into account the dimensionless

mode, this is:

v1ð0Þ¼ 0 v001ð0Þ¼ 0 v2ð1Þ¼ 0 v002ð1Þ¼ 0; ð6Þ

where the conditions of continuity, at the position of the

rotational spring, are expressed as follows:

v1ðaÞ¼v2ðaÞ v001ðaÞ¼ v002ðaÞ v0001 ðaÞ¼ v0002 ðaÞ
v001ðaÞ¼ kðv02ðaÞ - v01ðaÞÞ:

ð7Þ

Combining Eqs. (6) and (7) with Eq. (1) and (2), the

following matrix is obtained:

In matrix (8), the first four columns correspond to each

of the four boundary conditions, while the last four col-

umns correspond to each of the four continuity conditions

at the position of the spring. Thus, to obtain a non-trivial

solution of the system, the determinant of its coefficients

must be zero. This gives a relationship between k, a and the
eigenvalues b.

Moreover, for a beam of rectangular cross section, of

width b and height h, the spring stiffness can be related to

the depth parameter r of the crack (Fig. 2), using the

following equation obtained from the fracture mechanics

theory [12, 13]:

kr ¼
Ebh2

72pf ðrÞ ; ð9Þ

in which:

f ðrÞ ¼ 0:6384 r2 � 1:035 r3 þ 3:7201 r4 þ 7:553 r6

þ 7:3324 r7 þ 2:4909 r8: ð10Þ

Then, Eq. (9) can be expressed in the dimensionless

mode as follows:

k ¼ k
6pf ðrÞ ; ð11Þ

where k is the slenderness of the beam:

k ¼ L

h
: ð12Þ

Combining Eq. (11) with the previous development, a

direct relationship between r, a and b is obtained. In

Figs. 3, 4 and 5, the parametric plots b vs. a have been

made for the non-dimensional parameter r in the range

between r = 0 (without damage) and r = 0.5 (when the

crack achieves half of the beam height). These plots have

been obtained for the slenderness k = 20. As expected, it

can be noted that when the depth of the crack increases, the

beam rigidity decreases and, therefore, the frequency

coefficients are reduced. This effect is stronger when the

Fig. 1 Simply supported beam with a discrete crack modeled as a rotational spring

1 �1 0 0 cosðabÞ � cosðabÞ sinðabÞ �b cosðabÞ � k sinðabÞ
0 0 0 0 sinðabÞ �sinðabÞ � cosðabÞ k cosðabÞ � b sinðabÞ
1 1 0 0 coshðabÞ coshðabÞ sinhðabÞ b coshðabÞ þ k sinhðabÞ
0 0 0 0 sinhðabÞ sinhðabÞ coshðabÞ k coshðabÞ þ b sinhðabÞ
0 0 cosðbÞ � cosðbÞ � cosðabÞ cosðabÞ � sinðabÞ k sinðabÞ
0 0 sinðbÞ � sinðbÞ � sinðabÞ sinðabÞ cosðabÞ �k cosðabÞ
0 0 coshðbÞ coshðbÞ � coshðabÞ � coshðabÞ � sinhðabÞ �k sinhðabÞ
0 0 sinhðbÞ sinhðbÞ � sinhðabÞ � sinhðabÞ � coshðabÞ �k coshðabÞ
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crack is closer to one of the anti-nodes of the modal shape.

Instead, when the crack is in the position of one of the

nodes, no change is perceived for the natural frequency of

vibration.

In the direct problem, k (or r) and a are known and the

eigenvalues b are obtained. Instead, in the inverse problem,

the eigenvalues b are known and for each of them the

stiffness k can be plotted as a function of a. If these curves
are plotted for the first three natural frequencies, they will

all cross through the point corresponding to k and a of the

crack, forming an intersection point. Then this intersection

point of the curves k vs. a determines the solution of the

inverse problem, giving the position of the crack (a) and
the stiffness of the spring (k).

It is worth mentioning that the vibration modes are

related to bending modes and it is enough and necessary to

use the first three natural frequencies for the purpose of

identifying this damage [15]. This is because the first two

curves k vs. a intersect each other even when there is no

damage in the structure, while a third curve k vs. a inter-

sects with the previous ones at the same point, only if there

is damage. A fourth curve k vs. a would continue inter-

secting with the previous ones in the same point, which is

why it is dispensable.

In this approach, an algorithm has been developed to

solve the inverse method by means of the software

‘‘Mathematica’’ [23]. The algorithm has been performed to

obtain, for each eigenvalue b, the curves k(a) and also the

curves r(a). It is pointed out that the curves r(a) allow a

direct reading of both position and depth of the crack,

which is a novel contribution for obtaining the results.

(a) (b)

Fig. 2 a Longitudinal view of the beam. b Cross section of the beam

Fig. 3 Plot of b1 vs. a, for different values of r, in a simply supported

beam with k = 20

Fig. 4 Plot of b2 vs. a, for different values of r, in a simply supported

beam with k = 20

Fig. 5 Plot of b3 vs. a, for different values of r, in a simply supported

beam with k = 20
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3 Experimental methodology

Laboratory tests were performed for two similar beams,

with different positions of the damage. Beam 01 was

cracked in its central area and Beam 02 in a position near

one of its ends.

3.1 Characteristics of beams

The beams were built with a precast beam of prestressed

concrete to which a compression head of in situ concrete

was added. In Fig. 6, the cross section of the beams is

shown. To achieve a good adhesion between the in situ

concrete and the precast beam, an epoxy adhesive has been

used. The total length of the beams was 2.20 m. Precast

concrete and in situ concrete were class C30/37 according

to the specifications of the precast beams’ manufacturer

and compression tests of the in situ concrete. The tensile

strength of prestressing steel was 1950 MPa.

To verify the mechanical behavior of the precast beams,

a bending test was carried out. The simply supported pre-

cast beams were subject to controlled loads and the vertical

displacements in the center of the span were measured. The

distance between the supports was 2.00 m and the load was

applied in the central area of the span, equally distributed

in two points separated from each other by 0.50 m. This

test allowed to adjust the properties of the material in a

model performed with the finite element method, by

imposing in the model the displacements measured in the

test. As result, an approximation for the elastic modulus of

the concrete of EH = 30GPa was achieved. The results of

the bending tests compared to the FEM can be seen in

Fig. 7.

3.2 Description of tests

The simply supported beams, 2.00 m span, were subjected

to a point load. The point load in Beam 01 was applied in

the midspan, while the point load in Beam 02 was applied

closer to one of its ends. In both cases, the point load was

increased until a discrete crack in the beam was caused. At

this time, the depth of the crack and its position were

measured. Then, the point load was suppressed and the

crack was closed due to the prestressing action.

Figure 8 shows Beam 01 while the point load is applied.

In this figure, the loading press, the load cell and the

fleximeters installed on the beam that provide data

regarding the vertical displacements can be seen. In Fig. 9,

a load–displacement diagram obtained for this beam can be

seen. Figure 10 shows the crack caused to Beam 01, for the

maximum load applied of 19.06 KN and Fig. 11 shows the

depth and maximum width of the crack. These values were:

0.062 m for the crack depth (r = 0.31) and 0.35 mm for its

maximum width. The position of the crack was a = 0.485.

Figure 12 shows the zone of the crack once Beam 01 was

unloaded; the crack is not visible because the prestressing

closes it.

On the other hand, for Beam 02, the crack depth was

r = 0.535 (Fig. 13) and the position a = 0.80. Table 1

summarizes the position and magnitude of the cracks for

both beams.

Fig. 6 Cross section of the beams tested in the laboratory
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Fig. 7 Load vs. central displacement for the precast beams Fig. 8 View of Beam 01 when the crack was caused
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Next, the first three natural frequencies of the damaged

beams were obtained. It is noteworthy that previously, this

was also performed for the beams without damage for

comparative purposes. To obtain the natural frequencies,

an accelerometer (5 g) connected to a data acquisition

system [24] was used. The accelerometer was placed in a

quarter of the beam span. Then a dynamic excitation by a

stroke in the opposite quarter of the beam span was caused.

In this way, the excitation and measurement of the first

three natural frequencies are achieved, since the positions

0
2
4
6
8

10
12
14
16
18
20

0.00 1.00 2.00 3.00 4.00

Lo
ad

 [K
N

]

Ver�cal displacement [mm]

Fig. 9 Load vs. displacement in the point x/L = 0.44 for Beam 01

Fig. 10 Crack of Beam 01. a General view. b Detailed view

Fig. 11 Measurement of the crack in Beam 01. a Depth. b Maximum

width

Fig. 12 Zone of the crack in Beam 01 after unloading. The crack is

closed and not visible

Fig. 13 Crack of Beam 02

Table 1 Position and depth of the crack for both beams

Position (a) Depth (r)

Beam 01 0.485 0.310

Beam 02 0.800 0.535
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of the hit and the accelerometer do not coincide with the

nodes of the vibration modes. For comparative purposes,

the frequency measurements were repeated and the same

results were verified. The possibility of using a single

accelerometer demonstrates the easy application of this

method of damage detection.

After measuring the acceleration in the time domain,

this signal was processed by the software ‘‘Logger Pro’’

[25], in which the amplitudes in the frequency domain

were obtained through Fourier transform. Thus, the first

three natural frequencies of vibration were observed. The

frequency spectrums are shown in Figs. 14 and 15 for

Beam 01 without damage and that with crack, respectively.

It is highlighted that to obtain frequencies up to 500 Hz, it

was necessary to use a data acquisition speed of 1000

samples/s, according to the Nyquist [26]–Shannon [27]

sampling theorem. The values of the natural frequencies

obtained for Beam 01 are shown in Table 2. It can be noted

that the second natural frequency was the least changed by

the cracking because the crack is close to a node of this

mode shape.

On the other hand, Figs. 16 and 17 show the frequency

spectrums for Beam 02, while Table 3 shows the values of

its first three natural frequencies. In this case, it can be

noted that the second natural frequency was the most

changed by the cracking, because the crack is close to an

anti-node of this mode shape.

4 Application of the inverse method

From the first three natural frequencies of the damaged

beams, the IM was applied through the algorithm devel-

oped by the authors. Since the algorithm has been devel-

oped for a theoretical model, it is necessary to consider a

correction factor over the frequencies measured in the

experimental models. For this reason, first, the frequencies

of the theoretical model of the beam without damage were

compared with the frequencies of a model made with the

finite element method (FEM). Then, a correction factor v1,
which takes into account the real site of the end supports,

was calculated. In other words, the theoretical model

considers the supports placed on the neutral axis, while in

the laboratory model the supports were placed on the lower

surface of the beam. Another difference that includes this
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Fig. 15 Frequency spectrum of the cracked Beam 01

Table 2 Natural frequencies of Beam 01 in both conditions: without

damage and cracked

Modal shape 1 2 3

B01 without damage 66.4 Hz 167.0 Hz 411.1 Hz

B01 cracked 63.3 Hz 166.4 Hz 402.1 Hz

Variation - 4.7% - 0.4% - 2.2%
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Fig. 16 Frequency spectrum of Beam 02 without damage
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Fig. 17 Frequency spectrum of the cracked Beam 02

Table 3 Natural frequencies of Beam 02 in both conditions: without

damage and cracked

Modal shape 1 2 3

B02 without damage 72.3 Hz 169.9 Hz 406.2 Hz

B02 cracked 66.4 Hz 148.4 Hz 367.2 Hz

Variation - 8.2% - 12.7% - 9.6%
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correction factor is that in the theoretical model the beam

ends exactly on the supports, while in the laboratory model

the beams end 0.10 m beyond each support.

Also for the beam without damage, the frequencies

measured in the laboratory were compared with those

obtained by the FEM. In this case, a second correction

factor v2 was calculated This factor considers the differ-

ences between experimental measurements and results

obtained for the numerical models, which may be due to

variations in concrete properties, possible geometric

imperfections, etc. In addition, this factor takes into

account the structural damping, which is always present in

the real model and has not been considered in the numer-

ical models; however, for structural low damping ratios

(\ 20%, according to Clough and Penzien [28]) there is no

significant difference between the undamped and damped

natural frequencies.

The FEM model was obtained with the software

‘‘Comsol Multiphysics’’ [29]. It has been used as a 3D

model with a mesh of tetrahedral elements for both mate-

rials: concrete and steel [30, 31]. The prestressing forces

were introduced by an initial deformation of steel. The

materials of the model were considered to be homoge-

neous, continuous and isotropic with linear behavior. The

properties of the materials are—elastic modulus of con-

crete: EH = 30 GPa, Poisson’s ratio of concrete: mH = 0.20,

elastic modulus of steel: EA = 200GPa and Poisson’s ratio

of steel: mA = 0.30. These properties, adopted in the

numerical models, were verified by comparing the results

of experimental bending tests for both precast and com-

posite beams.

Table 4 shows the values of the first three natural fre-

quencies for Beam 01 without damage. The frequencies of

the different models can be seen: theoretical, numerical and

experimental. This table also includes the two corre-

sponding correction factors. The values of theoretical fre-

quencies were obtained from the following equation:

fi½Hz� ¼ b2i
c

2p
; ð13Þ

where i corresponds to the i vibration mode, and for a

simply supported beam:

bi ¼ ip; ð14Þ

while c, defined in Eq. (4), in this case is calculated for the

homogenized cross section from the following values:

E = 30.0 GPa, I = 7.7731 9 10-5 m4, q = 2385.52 kg/

m3, A = 0.023194 m2, L = 2.00 m.

Although in some cases the correction factors are very

distant from 1, it should be considered that when a real

structure of a certain age is inspected, its behavior will

probably also be very different from the theoretical model.

Finally, the first three natural frequencies measured in

the laboratory for the cracked beam were corrected with

Eq. (15) and introduced into the algorithm developed for

the application of the inverse method.

f ccb ¼ f ecbv1: v2; ð15Þ

where fccb is the corrected frequency of the cracked beam

and fecb is the experimental frequency of the cracked beam.

Table 5 shows the corrected natural frequencies of the

cracked Beam 01. These values have been introduced into

the IM algorithm, and the curves k(a) shown in Fig. 18

have been obtained. In Fig. 18, the curves k(a) intersect

each other at two points because of the symmetry, with one

of them being the position of the crack. It is important to

mention that the intersection is not exactly at one point, but

occurs in a triangular approach zone.

Moreover, for a beam of rectangular cross section, the

spring stiffness can be related to the depth of the crack

through Eq. (9) [12, 13] and the curves r(a) can be directly

obtained. However, this equation is applicable to homo-

geneous materials and does not consider the effect of

prestressing, which tries to keep the crack closed. There-

fore, in this case, it is expected that the results underesti-

mate the magnitude of the real crack. In Fig. 19, plots r(a)
are shown for Beam 01. Since the intersection of the three

curves is not exactly a point, a zoom of the intersection

zone is represented in Fig. 20, in which the barycenter is

found and is considered to be the point of intersec-

tion. Figure 20 shows the inverse method of detecting the

crack at the position a = 0.438, with a depth parameter

r = 0.205. The absolute error in the detection of the dam-

age position, given by the difference between the real

position of the crack (a = 0.485) and the position obtained

with the IM, resulted in - 4.7%. On the other hand,

because the real depth of the crack is r = 0.31, the IM gives

an absolute error of - 10.5% in its prediction.

To compare the results for both conditions, damaged

and non-damaged beam, the curves k(a) for the beam

without damage have been plotted in Fig. 21. In this figure,

it can be noted that there is no intersection point of the

three curves. In addition, these curves reach rigidity values

much higher than in the case of the damaged beams.

Table 4 Natural frequencies of Beam 01 without damage and the

correction factors

Modal shape 1 2 3

Theoretical frequencies 80.401 Hz 321.602 Hz 723.605 Hz

FEM frequencies 73.925 Hz 242.288 Hz 622.346 Hz

Experimental frequencies 66.4 Hz 167.0 Hz 411.1 Hz

Correction factors v1 1.088 1.327 1.163

Correction factors v2 1.113 1.451 1.514
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Similar to Beam 01, the inverse method was applied to

Beam 02. Table 6 shows the first three natural frequencies

of vibration for Beam 02 without damage, using the three

different models previously mentioned: theoretical, FEM

and experimental. This table also includes the two corre-

sponding correction factors. Then, Table 7 shows the first

three natural frequencies of the cracked Beam 02 modified

by the correction factors. These values have been intro-

duced into the IM algorithm and the results have been

represented in Figs. 22, 23 and 24.

Figure 24 shows the detection of the crack at the posi-

tion a = 0.780, with a depth parameter r = 0.410. The

absolute error in the detection of the damage position,

given by the difference between the real position of the

crack (a = 0.800) and the position obtained with the IM

was - 2.0%. In the prediction of the crack depth, the IM

gave an absolute error of - 12.5%, since the real depth of

the crack was r = 0.535.

Table 5 Corrected natural

frequencies of the cracked

Beam 01

Modal shape 1 2 3

Corrected frequencies of cracked B01 76.647 Hz 320.447 Hz 707.764 Hz

Fig. 18 Plots of k vs. a for the first three natural frequencies of the

cracked Beam 01

Fig. 19 Plots of r vs. a for the first three natural frequencies of the

cracked Beam 01

Fig. 20 Idem Fig. 19; zoom in the intersection zone of the three

curves

Fig. 21 Plots of k vs. a for the first three natural frequencies of the

beam without damage

Table 6 Natural frequencies of Beam 02 without damage and the

correction factors

Modal shape 1 2 3

Theoretical frequencies 80.401 Hz 321.602 Hz 723.605 Hz

FEM frequencies 73.925 Hz 242.288 Hz 622.346 Hz

Experimental frequencies 72.3 Hz 169.9 Hz 406.2 Hz

Correction factors v1 1.088 1.327 1.163

Correction factors v2 1.022 1.426 1.532
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5 Conclusions

In this work, the inverse method has been applied to detect

damage in two prestressed concrete beams built in the

laboratory. This method is based on the analysis of the

dynamic behavior of the structure and allows to obtain the

position and depth of a discrete crack present in the beam.

To solve the system of equations, an algorithm has been

developed. From the experimental results, the following

conclusions are highlighted:

– The application of the IM allowed the detection of

damage for two different experimental models: one of

the models with the crack in the central area and the

other with the crack near one of the end supports.

– Although the IM gives two possible locations of

damage, because of the symmetry of the beam only

one of them corresponds to the real crack position.

– The absolute errors for the prediction of the crack

position, obtained with the IM, are - 4.7 and - 2.0%

for Beam 01 and Beam 02, respectively. The authors

consider these errors acceptable for an experimental

work.

– For the crack depth, the absolute errors obtained by the

IM algorithm are - 10.5 and - 12.5%, for Beam 01

and Beam 02, respectively. It is important to note that

both the uncertainties in the concrete properties and the

effects of the prestressing force have not been taken

into account in the present work. Therefore, future

studies that consider the influence of the prestressing

force to determine the crack depth may also be

necessary.

– The application of the IM has been of simple practical

implementation.

– Despite that the inverse method is well known for its

application to materials such as reinforced concrete and

steel, this work presents a way to apply the same

method considering the health monitoring of pre-

stressed concrete beams.
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Table 7 Corrected natural

frequencies of the cracked

Beam 02

Modal shape 1 2 3

Corrected frequencies of cracked B02 73.840 Hz 280.905 Hz 654.131 Hz

Fig. 22 Plots of k vs. a for the first three natural frequencies of the

cracked Beam 02

Fig. 23 Plots of r vs. a for the first three natural frequencies of the

cracked Beam 02

Fig. 24 Idem Fig. 23; zoom in the intersection zone of the three

curves
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