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Abstract. We use a simple model of the dynamics of a narrow-eccentric ring, to put some
constraints on some of the observable properties of the real systems. In this work we con-

centrate on the case of the ‘Titan ringlet of Saturn’.
Our approach is fluid-like, since our description is based on normal modes of oscillation

rather than in individual particle orbits. Thus, the rigid precession of the ring is described as a
global m ¼ 1 mode, which originates from a standing wave superposed on an axisymmetric

background. An integral balance condition for the maintenance of the m ¼ 1 standing-wave
can be set up, in which the differential precession induced by the oblateness of the central
planet must cancel the contributions of self-gravity, the resonant satellite forcing and colli-

sional effects. We expect that in nearly circular narrow rings dominated by self-gravity, the
eccentricity varies linearly across the ring. Thus, we take a first order expansion and we derive
two integral relationships from the rigid-precession condition. These relate the surface density

of the ring with the eccentricity at the centre, the eccentricity gradient and the location of the
secular resonance.
These relationships are applied to the Titan ringlet of Saturn, which has a secular resonance

with the satellite Titan in which the ring precession period is close to Titan’s orbital period. In

this case, we estimate the mean surface density and the location of the secular resonance.

Key words: eccentric ringlets, planetary rings

1. Introduction

The dynamical mechanism that maintains the apse alignment of the observed
narrow-eccentric planetary rings is basically governed by self-gravity
(Goldreich and Tremaine, 1979), which would provide the appropriate
contribution to counter-act the differential precession induced by the
oblateness of the central planet. However, predictions of the total mass of
the ring produced by this model are, in general, not in good agreement with
the inferred mass of observed eccentric rings (Tyler et al., 1986; Goldreich
and Porco, 1987; Graps et al., 1995). This led to the consideration of other
factors that might play an important role in the dynamics. In particular, at
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their narrowest point, the ring particles are ‘close-packed’. In such a situation
particle interaction or pressure effects may affect the precession of particle
orbits. A simple model where the pinch locks the differential precession, was
introduced by Dermott and Murray (1980). A more global picture, including
the effect of stresses due to particle interactions and neighbouring satellite
perturbations, which offered a better agreement with the observations, has
also been produced by Borderies et al. (1983). Their dynamical model is
described in terms of mutually interacting streamlines and the satellite
interactions (see Goldreich and Tremaine, 1981) are computed using a res-
onance-continuum approximation. The standard self-gravity model was later
revisited by Chiang and Goldreich (2000), who considered the effects of
collisions near the edges, proposing that a sharp increase of an order of
magnitude in the surface density should be observed within the last few
hundred metres of the ring edges. More recently, employing a pressure term
that describes close-packing, Mosqueira and Estrada (2002) obtained sur-
face-density solutions that agree well with the currently available mass esti-
mates.

The eccentric precessing-pattern of the ring can be described as being
generated by a normal mode of oscillation of wave-number m ¼ 1, which can
be viewed as a standing wave. The conditions for the maintenance of steady
global m ¼ 1 modes have been considered by Papaloizou and Melita (2005).
To describe the ring perturbations and the m ¼ 1 mode we used the La-
grangian-displacement of the particle orbits from their unperturbed circular
ones (see for example Shu et al., 1985). This model includes the dissipation
due to interparticle collisions, which would lead to damping of the mode.
However, this global m ¼ 1 mode can also be perturbed by neighbouring-
shepherd satellites, which can inject energy and angular momentum through
resonances. In this way, losses due to particle collisions can be balanced. Two
conditions for the maintenance of the rings can be derived. The first one is a
condition for the steady maintenance of the amplitude or eccentricity asso-
ciated with the m ¼ 1 mode, which requires the external satellite torque to
balance the dissipative effects due to collisions (see Papaloizou and Melita,
2005). The second one is the condition of uniform precession of the ring,
which, in the absence of satellite resonances with the m ¼ 1 mode, only
involves self-gravity and the effect of collisions. These conditions can be
regarded as continuum forms of the discrete relationships that can be ob-
tained from the ‘many streamlines’ model (Goldreich and Tremaine, 1979;
Longaretti and Rapapport, 1995).

In this work we produce an extension of Papaloizou and Melita (2005) to
the case where the pattern frequency of the narrow-eccentric ringlet is in a
secular resonance with an external satellite. In this case, there is a contri-
bution to the condition of uniform precession, arising from the resonant
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secular perturbation. Resonantly forced rings are of particular interest, be-
cause there is a real system that the model can be applied to. It is known that
the precession frequency of the eccentric Saturnian ringlet at 1.29 RS (pop-
ularly known as the ‘Titan ringlet’) is in a 1:0 resonance with the orbital
frequency of the Saturnian satellite Titan (Porco et al., 1984).

From the rigid precession condition two useful relations are derived. If the
eccentricity gradient is approximately constant across the ring, which is ex-
pected to be the case for a narrow ringlet dominated by self-gravity, then,
these relationships can constrain the mean surface density, the central
eccentricity, the eccentricity gradient and the location of the secular reso-
nance. We estimate the mean surface density as a function of the location of
the resonance and the form of the ring in the case where physical collisions
are neglected.

This article is organized as follows. In Section 2 we set up the equations
for the Lagrangian variations starting from the equations of motion in a 2D
flat disk approximation. In Section 3 we give adequate approximations for
the evolution of the m ¼ 1 mode when the precession time is much longer
than the orbital period. In Section 4 we derive the condition of rigid pre-
cession which incorporates secular satellite resonances and we also compute
the contribution from the self gravity of the ring. Two integral relationships
are obtained from the rigid-precession condition in Section 5. The relation
between the eccentricity gradient, the value of the central eccentricity, the
location of the resonance and the surface density is given in Section 6, where
we also discuss how to obtain the eccentricity gradient from the other
parameters in the linear and the non-linear regimes. In Section 7 we apply
these results to the Titan ringlet of Saturn to produce estimates of its mean
surface-density. Finally, a discussion of the results is given in Section 8.

2. Equations of Motion and Lagrangian Displacement

We start from the basic equations of motion for a particle in Lagrangian
form in 2D:

d2r

dt2
� r

dh
dt

� �2

¼ Fr �
@w
@r

, ð1Þ

r
d2h
dt2
þ 2

dr

dt

� �
dh
dt

� �
¼ Fh �

1

r

@w
@h

: ð2Þ

Here ðr; hÞ define the cylindrical coordinates of the particle referred to an
origin at the centre of mass of the planet. Here wðrÞ denotes the gravitational
potential due to both the central planet, the neighbouring satellites and the
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ring. In addition ðFr;FhÞ denote the radial and azimuthal components of any
additional force F per unit mass respectively. This may arise through internal
interactions between particles that might lead to an effective pressure and/or
viscosity.

We introduce a Lagrangian description in which the system is supposed to
be perturbed from an axisymmetric state in which particles are in circular
motion with coordinates such that r ¼ r0; h ¼ h0 ¼ Xðr0Þtþ b0 Here r0 is the
fixed radius of the particle concerned, Xðr0Þ is the angular velocity and b0 is a
phase factor labeling each particle. In keeping with a Lagrangian description
ðr0; b0Þ are conserved quantities for a particular particle and so may be used
to label it.

In order to describe the system when it is perturbed from the axisymmetric
state we introduce the components of the Lagrangian displacement
n ¼ ðnr; nhÞ. These are such that the coordinates of each particle satisfy:

r ¼ r0 þ nr; ð3Þ
and

r0ðh� h0Þ ¼ nh: ð4Þ
To obtain equations for nr and nh we take variations of Equations (1) and (2).
We do this by applying the Lagrangian difference operator, D, as defined by
Lebovitz (1967) to both sides of Equations (1) and (2). For a given quantity
Q, the variation DðQÞ is defined by:

DðQÞ ¼ Qðr0 þ nÞ �Q0ðr0Þ; ð5Þ
where Q and Q0 are the values of the given physical quantity in the perturbed
and unperturbed flow, respectively. In contrast, the Eulerian difference
operator is defined as:

dðQÞ ¼ Qðr0Þ �Q0ðr0Þ: ð6Þ
Thus, to first order, they are related through:

D ¼ dþ n � r; ð7Þ
which gives the linear form of the Lagrangian difference operator.

2.1. EQUATIONS FOR THE LAGRANGIAN DISPLACEMENT

Following Shu et al. (1985) we assume that the components of the dis-
placement are small enough that they can be treated as linear in the sense
that jn=r0j � 1. On the other hand the radial gradient of the radial dis-
placement may be large so that |@nr/@r0| may be of order unity. The sig-
nificance of these assumptions is that although the ring eccentricity is
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assumed to be everywhere small, the ring surface density perturbation in-
duced by it may be of order unity. Adopting them enables us to perform
the variation in the accelerations using the linear form of the difference
operator as described above, wherever radial gradients are not involved.
These then satisfy:

d2nr
dt2
� 2X

dnh

dt
þ 2nrr0X

dX
dr0
¼ fr �

@w0

@r
; ð8Þ

d2nh

dt2
þ 2X

dnr
dt
¼ fh �

1

r

@w0

@h
: ð9Þ

Here the potential due to the satellite, wS, and that due to the self-gravity
of the ring, wSG are included in w¢. Thus w¢ ¼ wSG + wS. The quantities
fr ¼ DðFrÞ, fh ¼ DðFhÞ denote the variational components of the force per
unit mass due to particle interactions. The full non-linear Lagrangian vari-
ation is retained for w¢ and F as these may involve the density variation.
Contributions coming from the variation of the central planet potential are
included on the left hand sides of Equations (8) and (9).

2.2. SURFACE DENSITY PERTURBATION AND LAGRANGIAN TIME DERIVATIVES

We suppose the ring particles to be in eccentric orbits and combine to form a
globally eccentric ring. This is described using a surface density distribution
Rðr; hÞ and eccentricity distribution e(r) We also consider there to be an
axisymmetric reference state for which e(r) ¼ nr/r0 and from which we can
regard the eccentric ring as being the result of a perturbation. The pertur-
bation of the surface density is of the form:

Rðr; h; tÞ ! Rðr; hÞ þ R0ðr; h; tÞ: ð10Þ
For linear perturbations

P0 / cos=sinðmhÞ, where the azimuthal mode
number, m ¼ 1. The eccentric ring can be thought of as being predominantly
in a mode with azimuthal mode number m ¼ 1. In practice we may assume
jej � 1.

We further remark that the convective derivative d/dt is taken following the
fluid motion. In the approximation scheme used here in which the displace-
ments and hence Lagrangian velocity perturbations are small, we may replace
the fluid motion by its unperturbed value. Then for any quantity Q

dQ

dt
¼ @Q
@t
þ X

@Q

@h0
: ð11Þ

Similarly

d2Q

dt2
¼ @

2Q

@t2
þ X2 @

2Q

@h20
þ 2X

@2Q

@h0@t
: ð12Þ
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3. Forcing of the m ¼ 1 (Eccentric) Mode

We here consider the forcing of the m ¼ 1 mode which causes the ring to
become eccentric. The forcing is assumed to be due to an external satellite
with massMS . With an aim of application to the Titan ringlet around Saturn
we consider that the perturbing potential acting on the ring is stationary in a
frame rotating with the mean orbital rotation rate when viewed from an
inertial frame. In terms of the ring dynamics this pattern rotates at a low
frequency, Wp, such that Xp � X. A free m ¼ 1 mode that is most easily
excited is one that has a global structure in the ring and has a pattern that
precesses at a rate comparable to Wp. When this precession rate is equal to
Wp, there is the possibility of resonance and a large response to forcing. The
quantity X�1p sets the natural time scale for variations associated with the
m ¼ 1 mode for the problem on hand.
Accordingly:

@

@t
� X

@

@h0

� �
: ð13Þ

Recalling that the left hand side of Equation (9) approximated by the line-
arized form, gives for the azimuthal component of the displacement:

dnh

dt
þ 2Xnr ¼ Qh0 ; ð14Þ

where the quantity Qh0 is defined by:

@Qh0

@t
þ X

@Qh0

@h0
¼ fh �

1

r

@w0

@h0
: ð15Þ

Using (13) gives the adequate approximation:

X
@Qh0

@h0
¼ fh �

1

r

@w0

@h0
: ð16Þ

We comment that the motion is dominated by the central mass and to the
lowest order Keplerian, This means that the m ¼ 1 component of the dis-
placement satisfies (Shu et al., 1985):

@2nr
@h20
¼ �nr: ð17Þ

Furthermore (14) tells us to lowest order in which Qh0 and @
@t may be ne-

glected that:

@nh

@h0
¼ �2nr; ð18Þ

which applies to Keplerian orbits with small eccentricity.
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Also using (14) and Equation (8) one finds that the m ¼ 1 component of
the displacement satisfies:

@2nr
@t2
þ 2X

@2nr
@t@h0

� nrðX2 � j2Þ ¼ fr �
@w0

@r
þ 2XQh0 ; ð19Þ

Here the square of the epicyclic frequency is given by:

j2 ¼ 2X
r0

dðr20XÞ
dr0

: ð20Þ

4. The Condition for a Steady State Response in the Rotating Frame

The m ¼ 1 mode responsible for the ring eccentricity has a constant and very
small pattern speed as viewed in the inertial frame. This means that indi-
vidual ring particles appear to be in elliptic orbits that precess at the same
rate. In order to achieve this the internal and external forces acting in the
mode have to satisfy a constraint that can be view as a non-linear dispersion
relation. Our treatment again follows that of Shu et al. (1985) who provided
such a relationship for density waves in Saturn’s rings. Except here we
consider a density wave comprising a global normal mode rather than a
forced propagating wave.

Equation (19) can also be written in the form:

d2nr
dt2
þ nrj

2 ¼ fr �
@w0

@r
þ 2XQh0 : ð21Þ

We now use an angle that is fixed with respect to a coordinate system rotating
at the pattern angular frequency WP namely /0 ¼ h0�WPt. The radial dis-
placement is taken to be of the form nr ¼ A(r0) cos (/0). Following Shu et al.
(1985) we note that as the time dependence is contained within /0, nr only
depends on r0 and /0.

Multiplying Equation (21) by cos(/0) and integrating over /0 , we obtain:

1

2

j2

ðX� XPÞ2
� 1

 !
Aðr0Þ ¼

1

ðX� XPÞ2
ðFcr þ gDðr0Þ þ gRðr0Þ

þ 1

2p

Z 2p

0

2XQh0 cosð/0Þd/0Þ; ð22Þ

where

Fcr ¼
1

2p

Z 2p

0

fr cosð/0Þd/0; ð23Þ
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gDðr0Þ ¼ �
1

2p

Z 2p

0

cosð/0Þ
@wSG

@r
d/0; ð24Þ

and

gRðr0Þ ¼ �
1

2p

Z 2p

0

cosð/0Þ
@wS

@r
d/0; ð25Þ

gives the forcing due to the satellite potential which is here considered to be
responsible for the excitation of the m ¼ 1 mode.

With the use of Equation (16), the last term in Equation (22) can be re-
written and after an integration it reads as:

1

2p

Z 2p

0

2XQh cosð/0Þd/0 ¼ �2 ðFch þ gTÞ; ð26Þ

where

Fch ¼
1

2p

Z 2p

0

fh sinð/0Þd/0; ð27Þ

and

gT ¼ �
1

2p

Z 2p

0

sin/0

1

r

@wS

@/0

d/0: ð28Þ

Equation (22) then becomes:

1

2

j2

ðX� XPÞ2
� 1

 !
Aðr0Þ ¼

gint þ gS

ðX� XPÞ2
, ð29Þ

where

gint ¼ ðFcr � 2FchÞ þ gD; ð30Þ
and

gS ¼ gR � 2gT: ð31Þ

Given that j ¼ W�xprec where xprec (r0) is the local radius dependent pre-
cession frequency and assuming that XP � X and xprec � X, Equation (29)
can be approximated to first order in WP and xprec as:

ðXP � xprecÞAðr0Þ ¼
gint þ gS

X
: ð32Þ

Equation (32) provides a condition to be satisfied by the excited m ¼ 1
mode amplitude. It balances the ring self gravity, internal collisional terms
and satellite forcing. For simplicity we shall neglect collisional effects below
and thus replace gint by gD. Note further that for a thin ring of the type
considered here, W may be taken as constant in (32) and evaluated at the ring
centre from now on.
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4.1. THE SELF-GRAVITY TERM

In order to calculate gD we follow Shu et al. (1985). As radial variations are
much more rapid than azimuthal ones, the local self-gravity at r0 is canoni-
cally and adequately approximated to be that due to an infinite plane sheet of
radial width Dr ¼ r2�r1, where r1 and r2 are the inner and outer bounding
radii of the unperturbed ring respectively. Thus:

@wSG

@r

� �
¼ 2G

Z r2

r1

Rðr0Þ
ðr� r0Þ dr

0 ð33Þ

where G is the gravitational constant, r ¼ r0 þ nr and r0 ¼ r00 þ n0r; where

nr ¼ nrðr0Þ ¼ Aðr0Þ cosð/0Þ, ð34Þ

and

n0r ¼ nrðr00Þ ¼ Aðr00Þ cosð/0Þ:

Possible singularities in the integrand are dealt with by evaluating the
integral in a principal value sense. In the planar limit, we identify the ring
eccentricity as e(r0) ¼ 2A(r0)/(r1+r2). Using the tight-winding approxima-
tion we have:

Rðr0Þdr0 ¼ Rðr00Þdr00; ð35Þ

which represents conservation of mass. Since r0=r � 1, we have:

@wSG

@r

� �
¼ 2G

Z r2

r1

Rðr00Þ
r0 þ nr � r00 � n0r

dr00: ð36Þ

We can re-write Equation (36) in terms of the eccentricity gradient, q:

q ¼ Aðr0Þ � Aðr00Þ
r0 � r00

: ð37Þ

Then after integrating over /, we obtain (see also Shu et al., 1985):

gD ¼ 2G

Z r2

r1

IðqÞ
q

Rðr00Þ
Aðr0Þ � Aðr00Þ
ðr0 � r00Þ

2
dr00, ð38Þ

where

IðqÞ ¼ 1

2p

Z 2p

0

cosð/Þ
1� q cos/

d/ ¼ 1

q
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p� �
: ð39Þ

Notice that the integrand in Equation (38) presents a singularity to be han-
dled in a principal value sense. This can lead to practical complications near
ring edges.
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5. Two Integral Relations

The practical problem is to solve Equation (32) for the response to the
forcing by the external satellite. This is equivalent to calculating the forced
eccentricity. To do this requires an accurate specification of the ring
surface density profile which may not be available. Instead one may derive
two integral relations which contain complete information about the re-
sponse when it is a linear function of radius. That is equivalent
to assuming the constancy of q defined above which is a frequently
adopted approximation in planetary ring dynamics (eg. Goldreich and
Tremaine, 1979; Borderies et al., 1983; Shu et al., 1985; Chiang and
Goldreich, 2000).

A justification for this is that normally (as here) one considers the case
when ring self-gravity is strong enough to balance differential precession. In
that case the ring precesses at a uniform rate similar to a rigid body. When
this process is effective, strong self-gravity precludes short wavelength dis-
placements so that approximating the induced displacement as a linear
function of the distance to the ring centre is reasonable as long as the
eccentricity response is not too large.

For example, a strict resonance between the pattern speed and the uniform
precession frequency of the ring might result in large eccentricities being
excited for which the dependence of the precession frequency on eccentricity
should not be neglected. We note that if e2 > jðDa=xprecÞ � ðdxprec=drÞj, Da
being the ring semi-major axis width, that effect becomes comparable to that
due to differential precession and should not be neglected – as we have done –
in comparison to that. However, this situation is not encountered for the
application considered here.

5.1. THE FIRST RELATION

To obtain this we take Equation (32) multiply by S(r0) and integrate over the
ring to obtainZ

Rðr0ÞXðXP � xprecÞAðr0Þdr0 �
Z

Rðr0ÞgDdr0 ¼
Z

Rðr0ÞgSdr0: ð40Þ

From Equation (38) the second integral on the left hand side of Equation (40)
is zero. The first relation thus simplifies to becomeZ

Rðr0ÞXðXP � xprecÞAðr0Þdr0 ¼
Z

Rðr0ÞgSdr0: ð41Þ
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5.2. THE SECOND RELATION

To obtain this we take Equation (32) multiply by S(r0)A(r0) and integrate
over the ring to obtainZ

Rðr0ÞXðXP�xprecÞA2ðr0Þdr0�
Z

Rðr0ÞAðr0ÞgDdr0

¼
Z

Rðr0ÞAðr0ÞgSdr0: ð42Þ

In this case we use Equation (38) to evaluate the second term of Equation
(42), which, after making use of the symmetry properties of the integral,
gives:Z

Rðr0ÞAðr0ÞgDdr0 ¼ G

Z r2

r1

Z r2

r1

IðqÞ
q

Rðr00ÞRðr0Þ
ðAðr0Þ � Aðr00ÞÞ

2

ðr0 � r00Þ
2

dr00dr0;

ð43Þ
which is positive definite. This may also be written entirely in terms of q asZ

Rðr0ÞAðr0ÞgDdr0 ¼ G

Z r2

r1

Z r2

r1

IðqÞqRðr00ÞRðr0Þdr00dr0: ð44Þ

If we now specialize to the case when q is constant we accordingly write
A(r0) ¼ Ac + qx as a linear function of radius. Here Ac is constant and
x ¼ r0�rc measures the radial coordinate relative to the centre of mass of the
unperturbed ring assumed slender. The eccentricity at the ring centre satisfies
e ¼ |Ac|/rc, while the sign of Ac determines whether pericentre is in the
direction /0 ¼ 0, or p if negative or positive respectively. This means that by
definitionZ r2

r1

xRdx ¼ 0; ð45Þ

where the domain of integration for the above and similar integrals below is
the extent of the ring. We further adopt a linear form for the precession
frequency, thus

xprec ¼ xprec;0 þ x0prec;0x; ð46Þ
where xprec,0 and x0prec;0 represent the precession frequency and its derivative
evaluated at x ¼ 0. Consistent with the approximations made here we may
also assume the forcing potential term gS as constant throughout the ring.

The first relation (41) then gives a first relation between Ac and q in the
form Z

RXðXP � xprec;0ÞAcdx�
Z

RXx0prec;0qx
2dx ¼

Z
RgS � dx ð47Þ

The second relation similarly leads to a second which takes the form
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Z
RXðXP � xprec;0ÞðA2

c þ q2x2Þdx� 2

Z
RXx0prec;0Acqx

2dx ¼
Z

RXx0prec;0q
2x3dxþ G

Z x2

x1

Z x2

x1

IðqÞqRðx0ÞRðxÞdx0dxþ
Z

RAcgSdx:

ð48Þ
We now have two relations which enable the forced response to be calculated
under the assumption of constant q. These are Ac, whose magnitude, when
divided by the radius at the ring centre gives the eccentricity at the ring center
and q itself which is the product of the central radius and the eccentricity
gradient. Note that implicit in the thin ring approximation is the requirement
that the magnitude of the eccentricity gradient significantly exceeds the ratio
of the eccentricity to radius.

6. The Relation Between q and Central Eccentricity

If we multiply the first relation (47) by Ac and subtract it from the second
relation (48), the terms involving satellite forcing cancel out and we get a
relation between Ac and q which (recalling that q is constant and W is eval-
uated in the centre of the ring) takes the form.

qXðXP � xprec;0Þ
Z

Rx2dx� Xx0prec;0Ac

Z
Rx2dx ¼

qXx0prec;0

Z
Rx3dxþ G

Z x2

x1

Z x2

x1

IðqÞRðx0ÞRðxÞdx0dx: ð49Þ

This may be cast in the very simple form

Ac ¼
qðXP � xprec;0Þ

x0prec;0
� q

R
Rx3dxR

Rx2dx
� GIðqÞð

R
RdxÞ2

Xx0prec;0
R

Rx2dx
: ð50Þ

6.1. DETERMINATION OF q

We may now use the relation between q and Ac specified above, to eliminate
Ac in the first relation (47) and so obtain q in terms of the satellite forcing.
This gives

q
ðXP � xprec;0Þ2

ðx0prec;0Þ
2
� ðXP � xprec;0Þ

x0prec;0

R
x3RdxR
x2Rdx

�
R

Rx2dxR
Rdx

 !

� ðXP � xprec;0ÞGIðqÞð
R

RdxÞ2

Xðx0prec;0Þ
2 R Rx2dx

¼ gS
Xx0prec;0

: ð51Þ
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Thus Equations (50) and (51) give the response parameters Ac and q
directly in terms of the external forcing.

6.2. THE LINEAR REGIME

When the response is in the linear regime q is small and I(q) ¼ q/2. In this
case the right hand side of (51) is proportional to q and we have

a1q ¼
gS

Xx0prec;0
; ð52Þ

where

a1 ¼
ðXP � xprec;0Þ2

ðx0prec;0Þ
2
�
R

Rx2dxR
Rdx

� ðXP � xprec;0Þ
x0prec;0

R
x3RdxR
x2Rdx

� ðXP � xprec;0ÞGð
R

RdxÞ2

2Xðx0prec;0Þ
2 R Rx2dx

: ð53Þ

The response is singular when a1 ¼ 0. Regarding this as an equation for
Wp�xprec,0, we have a quadratic with two real roots indicating a singular
response for certain pattern speeds. However, the relation (51) is in fact a
non-linear one (through the functional form of I(q)) to determine q and the
non-linearity present can remove such singularities. This becomes apparent
when we expand to the next highest order in q. Then one obtains a cubic
equation for q that can always be solved because the coefficients of q3 and q
never vanish simultaneously. This cubic takes the form

a1q� q3
3ðXP � xprec;0ÞGð

R
RdxÞ2

8Xðx0prec;0Þ
2 R Rx2dx

¼ gS
Xx0prec;0

: ð54Þ

However, as indicated above we must be cautious about using the above
determinations of Ac and q when the eccentricity response is large because
then the assumption of constant q and the neglect of the dependence of
externally induced orbital precession on the eccentricity may no longer be
valid.

7. Application to the Titan Ringlet

We here consider the Titan ringlet for which the ring precession rate is close
to the orbital frequency of the satellite Titan. This ringlet is therefore a
candidate for having its eccentricity forced by Titan. We now consider the
forcing potential.
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7.1. THE SATELLITE POTENTIAL

For the low frequency m ¼ 1 forcing considered here the perturbing effect of
the satellite arises through

gS ¼ �
1

2p

Z 2p

0

cosð/0Þ
@wS

@r
� 2 sinð/0Þ

1

r

@wS

@/0

� �
d/0: ð55Þ

For the satellite we neglect the orbital eccentricity and expand ws to leading
order in r/aS, aS being the semi-major axis of the satellite orbit. For the
forcing considered here, recalling that in the frame rotating with the orbital
frequency Wp, only secular terms � cos(/0) are significant, we obtain,
including the indirect potential, to leading order

wS ¼ �
3GMSr

3

8a4S
cosð/0Þ: ð56Þ

Then evaluating at the ring centre r ¼ rc, rc � a, we obtain

gS ¼
15GMSr

2
c

16a4S
: ð57Þ

We are now ready to apply Equations (50) and (51) to the Titan ringlet.

7.2. PARAMETERIZING THE DYNAMICAL MODEL

We define the dimensionless parameter g through

XP � xprec;0 ¼ g x0prec;0 Da: ð58Þ
This defines the resonance where the precession rate induced by the planet
and Titan match in the approximation that the former can be represented by
a first order Taylor expansion about the ring centre. It gives the resonance
location at a distance gDa from the ring centre.

We also find it convenient to define the dimensionless quantities cn related
to the ring surface density profile through

cn ¼
R
xnRdx

ðDaÞn
R

Rdx
: ð59Þ

The location of the centre of mass of the ring, rc, is the origin of the coor-
dinate x (Equation (45)). Then, inside the ring we have jxj < Da – the extreme
case is when the mass is concentrated at a ring edge. Thus, it is verified that
|cn|<1. We also notice that cn>0 when n is even and, when n is odd, cn ¼ 0 if
the surface density is symmetric.

Further we introduce the parameter F which measures the importance of
self-gravity with respect to differential precession:
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U ¼ GR

2Xx0prec;0 ðDaÞ
2
; ð60Þ

where the mean surface density is defined as:

R ¼
R

Rdx
Da

; ð61Þ

notice that since the precession frequency decreases with distance (i.e.
x0prec;0 < 0), then F is defined as a negative quantity.

In terms of these dimensionless parameterizations, Equations (50) and
(51) can be reduced to

Ac ¼ qDa a2; ð62Þ
where

a2 ¼ g� c3
c2
� U

c2
; ð63Þ

and

qDa ¼ gS
Xx0prec;0Da

ðga2 � c2Þ�1: ð64Þ

7.3. ESTIMATION OF THE SURFACE DENSITY AND THE LOCATION OF THE SECULAR

RESONANCE

The presently available observations of the Titan ringlet do not enable one to
determine all its dynamical and physical parameters. Optical depth profiles
give the most accurate description of the ring, thus the surface density can
only be inferred by making assumptions on the physical properties of the ring
particles or through dynamical models which, like the present one, rely on
various assumptions (see for example Goldreich and Tremaine, 1979).
Moreover, there are considerable uncertainties in the values of the multiple
moments of Saturn (for up-to-date values see the JPL-Solar System
Dynamics website: http://ssd.jpl.nasa.gov/sat_gravity.html). In fact, the
uncertainties in the precession frequency of the ring due to the uncertainties
in multiple moments of Saturn, imply an error in the location of the secular
resonance that is of the order of the width of the ring.

Using our model we shall attempt to put some constraints on the value of
F and so, on the mean surface density, �R, as well as on the resonance location
parameter, g, for the Titan ringlet.

We shall adopt the following values: a ¼ 77871 km, Da ¼ 25 km,
e ¼ 2.6 · 10�4, de ¼ (1.4 ± 0.4) · 10�4, (Porco et al., 1984). Thus q ¼ ade/
Da » 0.44 ± 0.18.
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The closest approach between the satellite and the ring occurs at apoapse
(Porco et al., 1984). Then, according to the definitions of the satellite po-
tential (Equation (56)) and of the radial displacement (Equation (34))
adopted here, when / ¼ 0, nr > 0. Thus, for the Titan ringlet we have
Ar(r0) > 0 as well as Ac > 0.

Now we shall rewrite Equations (62) and (64) as:

a3 ¼ g a2 � c2; ð65Þ
�U ¼ ða2 � gÞc2 þ c3; ð66Þ

where

a3 ¼
gS

Xx0prec;0qðDaÞ
2
: ð67Þ

Notice that a3<0 since x0prec;0 < 0 and gS > 0.
We can eliminate g from Equations (65) and (66), to obtain a quadratic

expression of F as a function of the form factor c2:

� U ¼ � 1

a2
c22 þ

�
a2 �

a3
a2

�
c2 þ c3: ð68Þ

Similarly, one can eliminate c2 and express F as a function of g:

� U ¼ �a2 g2 þ ða22 þ a3Þg� a3a2 þ c3: ð69Þ
One must recall that g and c2 are related by Equation (65), which acts as a
constraint for g since it must be verified that c2<1.

Note also that a2 can be expressed as a relative eccentricity,

a2 � ec=de;

through the use of Equation (62). The quadratic terms in Equations (68) and
(69) depend on a2. Then, if the relative eccentricity is large, is:
�F » a2c2 + c3. Whereas if a2 is small, �F » a3g2�a3a2 + c3.

One may expect to find observed values of c2 between those of two critical
cases. One extreme case for the shape of the surface-density distribution is
when it is constant throughout the ring,

Rð1Þ 6¼ Rð1ÞðxÞ;
the other when the whole mass is concentrated at both edges, as:

Rð2Þ / dðx� Da=2Þ þ dðxþ Da=2Þ;
where d is the Dirac-d function. In these cases the values of c2 are given by
cð1Þ2 ¼ 1=12 and cð2Þ2 ¼ 1=4, respectively.

We can estimate the values of a2 and a3 for the Titan ringlet as:

a2 �
e

de

� �
Obs
� 1:86; ð70Þ

a3 � �1:38; ð71Þ
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where these estimates are obtained from the observed parameters previously
quoted and, in Equation (71), the precession frequency gradient, x0prec;0, is
computed using the J2, J4 and J6 coefficients associated with the multipole
moments of Saturn given in the JPL-SSD website: J2 ¼ (16292 ± 7) · 10�6,
J4 ¼ (931 ± 32) · 10�6, J6 ¼ (91 ± 32) · 10�6 (R. A. Jacobson, sub-
mitted). We computed the precession rate of the ring due to the oblateness of
Saturn and the secular perturbation by Titan1 and we obtain a value of
aRes ¼ (77846. ± 11.) km, for the location of the 1:0 secular resonance,
where the errors only consider the uncertainties in the values of Saturn’s
J-coefficients.

For the symmetric case, we have plotted the relationships set by Equations
(65), (68) and (69) for the values of a2 and a3 corresponding to the Titan
ringlet.

We may recall that, if the surface density is symmetric with respect to the
centre of mass, then c3 ¼ 0 and that inside the ring jxjODa=2 and jgjO0:5.

Figure (1) shows �R versus c2 – where �R is related to F by Equation (60). It
can be seen that the scale of the mean surface density is tens of grams per
cubic centimetre, in particular when cð1Þ2 Oc2Ocð2Þ2 . In the symmetric case, the
agreement with the solution quoted in Porco et al. (1984) occurs at a value of
c2 � cð1Þ2 , however, in that case the numerical values of various parameters
are different.

Figure 1. The estimated mean surface density, �R, as a function of c2 for a symmetric profile
(c3 ¼ 0). Notice the value of �R when c2 is between the critical values cð1Þ2 ¼ 1=12 and cð2Þ2 ¼ 1=4
(indicated by the markers). The dotted lines correspond to the non-symmetric case where

|c3| ¼ c2.

1 We use an expansion up to (RSat/a)
6 in the oblateness term. For the secular term, we

used an approximation up to first order in e for the perturbing function (see for example
Murray and Dermott, 1999), where we have used a value of aTitan ¼ 1221900 km for the

semimajor axis of the satellite and of mTitan ¼ 1345.5 · 1023 gr, for its mass.
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In Figure (2) we plot g versus c2. This figure gives, for a symmetric profile,
the location of the secular resonance as a function of the form of the surface
density, such that the ring precesses rigidly when the effects of inter-particle
collisions are negligible. The allowed values of g, set by Equation (65) and
c2 < 1, imply that, given the condition of solid precession, the location of the
secular resonance lies outside the ring (|g|>0.5) for the symmetric case with
cð1Þ2 Oc2Ocð2Þ2 . We may recall that if g ~ 0, then the assumptions made to
obtain these relationships break down, because the eccentricities resonantly
excited may become very large. Thus, the rather large values of g obtained
assure us that the first order approximation adopted here is consistent with
the case. However, as mentioned earlier, the uncertainties involved are large.

Finally, in Figure (3) we plot �R as a function of g. This figure presents the
required values of the mean surface-density to produce the balance as a
function of the location of the secular resonance. Naturally, the result reflects
the particular choice of parameters adopted. All the solutions obtained re-
quire g < 0, hence the centre of mass of the ring must be located interior (i.e.
towards the satellite) with respect to the secular resonance (see Equation
(58)).

If the surface density profile were not to be symmetric then these estimates
can be somewhat altered. By definition, the magnitude of c3 is bounded by
that of c2 as:

jc3jO
jxmaxj
Da

c2Oc2:

In Figure (1) we also show �R as a function of c2, for the extreme cases in
which |c3| ¼ c2.

Figure 2. The location of the resonance g, as a function of c2 (c3 ¼ 0) that gives the correct

balance enabling the rigid precession of the ring, when the collisional terms are neglected.
Notice that solutions with cð1ÞO c O cð2Þ, correspond to resonance locations outside the ring
(|g| > 0.5).
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On the other hand, we do not expect the effect of the collisional terms to
be negligible, as assumed in these calculations. We will explore their exact
significance in a forthcoming paper. We will discuss in the next section how
physical particle interactions could affect the results obtained here.

8. Discussion

In this paper we have used a model of a thin slender self-gravitating ring in
orbit about a dominant central mass to produce relationships between its
physical parameters. These relationships can then be applied to real systems
to make predictions about their physical and/or dynamical properties.

We view the ring in uniform precession as sustaining a global non-axi-
symmetric m ¼ 1 mode of oscillation. We have considered particularly the
case in which the precession frequency is in a secular resonance with the
orbital frequency of an external satellite, which is the case of the Titan ringlet
of Saturn.

A condition for the ring to be able to maintain a m ¼ 1 mode with single
slow pattern speed is obtained. It can be expressed as an integral condition
for the pattern or normal mode to precess at a uniform rate (Equation (29))
that requires the correct balance between differential precession, self-gravity,
secular-resonant forcing and collisional effects. From this condition we have
obtained two relationships (Equations (41) and (42)) which combine different
observable parameters of the ringlets.

We argued that the scale of the perturbations is of the order of the width
of the ring, because we are interested in cases in which the differential pre-
cession is compensated mainly by self gravity and the eccentricity is small.

Figure 3. The estimated mean surface density, �R, as a function of g(c3 ¼ 0). A negative value
of g implies that WP>xprec,0 (Equation (58)), i.e. the center of mass of the ring is exterior –
from the planet – to the location of secular resonance.
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Hence, a first order expansion is a good approximation and so, we take the
eccentricity gradient as constant, which, indeed, is the case in real systems
(Graps et al., 1995).

In the linear case, the two expressions obtained give simple relationships
(Equations (47) and (48)) between the eccentricity at the centre, ec, the
eccentricity gradient, q, the location of the secular resonance, g and the mean
value of the surface density �R, and its form, expressed by the cn’s. The
relationships can be further simplified by assuming that the system is also
linear in q (Equations (50) and (52)).

Finally we have applied this model to the Titan ringlet. The scale of the
surface density obtained is consistent with previous estimations (Porco et al.,
1985), set at the order of ~10 g cm�2. Our symmetric solutions imply that the
secular resonance is outside the ring (see Figure (3)). However, the distance
between the ring and the location of the secular resonance obtained is smaller
than the total uncertainty in the location of the later, given the errors in the
determination of the multipole moments of Saturn.

Moreover, additional physics may need to be considered. The fact that all
the observed systems have shown a positive value of q is an indication that
the differential precession is mainly balanced by self-gravity (Borderies et al.,
1983; Papaloizou and Melita, 2005). However, it is also very likely that
physical collisions play an important role in setting up the rigid precession,
particularly at the edges, where the relative motion is larger (see for example
Chiang and Goldreich, 2001). It is also believed that the real systems are
close-packed at their narrowest point – as it seems to be indicated by the
observations of the Uranian rings (see for example French et al., 1984). The
narrowest points of the observed eccentric ringlets occur at periapse, since
q > 0. Thus, the collisional contribution can be estimated to be impulsive,
i.e. entirely concentrated at the pinch. At periapse, the geometry of the col-
lisions at the edges is such that the collisionally produced orbital phase-shift
produced reinforces the differential-precession induced by the oblateness of
the central planet (see for example Moulton, 1935). Thus, if a considerable
collisional contribution arises mainly at the pinch, self-gravity must coun-
teract a greater differential precession. If that is the case, the values of the
masses of the real eccentric ringlets will be larger than the estimates produced
here. In fact, the masses of eccentric ringlets estimated from observations
have always turned out to be greater than the theoretical estimates obtained
with models that consider only the self-gravity of the ringlet (see for example
Mosqueira and Estrada, 2001). It is straightforward to include collisional
effects when they are assumed to act impulsively at pericentre. – more terms
are to be retained when considering the two conditions for rigid precession
given by (Equations (40) and (42)). We can gain some knowledge of these
collisional effects if an observed profile is available – from which we can
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extract density estimates. We will present a more detailed analysis of some
known eccentric ringlets in a forthcoming article.
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