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WEAK TYPE (1,1) ESTIMATES FOR CAFFARELLI-CALDERÓN

GENERALIZED MAXIMAL OPERATORS FOR SEMIGROUPS

ASSOCIATED WITH BESSEL AND LAGUERRE OPERATORS
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AND L. RODRÍGUEZ-MESA

(Communicated by Alexander Iosevich)

Dedicated to the memory of our friend Professor Pablo González Vera

Abstract. In this paper we prove that the generalized (in the sense of Caf-
farelli and Calderón) maximal operators associated with heat semigroups for
Bessel and Laguerre operators are weak type (1, 1). Our results include other
known ones, and our proofs are simpler than the ones for the known special
cases.

1. Introduction

Stein investigated in [16] harmonic analysis associated to diffusion semigroups
of operators. If {Tt}t>0 is a diffusion semigroup in the measure space (Ω, μ), in
[16, p. 73] it was proved that the maximal operator T∗ defined by

T∗f = sup
t>0

|Ttf |

is bounded from Lp(Ω, μ) into itself, for every 1 < p < ∞. As far as we know there
is not a result showing the behavior of T∗ on L1(Ω, μ) for every diffusion semigroup
{Tt}t>0. The behavior of T∗ on L1(Ω, μ) must be established by taking into account
the intrinsic properties of {Tt}t>0. The usual result says that T∗ is bounded from
L1(Ω, μ) into L1,∞(Ω, μ), but not bounded from L1(Ω, μ) into L1(Ω, μ). In order
to analyze T∗ in L1(Ω, μ), in many cases this maximal operator is controlled by
a Hardy-Littlewood type maximal operator, and also, the vector valued Calderón-
Zygmund theory ([14]) can be used. These procedures have been employed to
study the maximal operators associated to the classical heat semigroup [17, p. 57],
to Hermite operators ([10], [15] and [20]), to Laguerre operators ([8], [9], [10], [13]
and [19]), to Bessel operators ([1], [2], [3], [11] and [18]) and to Jacobi operators
([11] and [12]), amongst others.
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Our objective in this paper is to study the Lp-boundedness properties, 1 ≤
p ≤ ∞, for the generalized (in the sense of Caffarelli and Calderón [5]) maximal
operators associated to the multidimensional Bessel and Laguerre operators.

Our results (see the theorems below) extend the others known for the Bessel
operators ([3, Theorem 2.1] and [1, Theorem 1.1]) and for the Laguerre operators
([13, Theorem 1.1]). Moreover, by exploiting ideas developed by Caffarelli and
Calderón ([5] and [6]), we are able to prove our result in a much simpler way than
the one followed in [1], [3] and [13].

We now recall some definitions and properties in the Bessel and Laguerre settings
which allow us to state our results.

We consider for λ > −1/2 the Bessel operator Δλ defined by

Δλ = −x−2λ d

dx
x2λ d

dx
= − d2

dx2
− 2λ

x

d

dx
, on (0,∞),

and, if Jν represents the Bessel function of the first kind and order ν, the Hankel
transformation hλ is given by

hλ(f)(x) =

∫ ∞

0

(xy)−λ+1/2Jλ−1/2(xy)f(y)y
2λdy, x ∈ (0,∞),

for every f ∈ L1((0,∞), x2λdx). hλ can be extended to L2((0,∞), x2λdx) as an
isometry in L2((0,∞), x2λdx) and h−1

λ = hλ. If f ∈ C∞
c (0,∞) we have that

hλ(Δλf)(x) = x2hλ(f)(x), x ∈ (0,∞).

This property suggests extending the definition of Δλ as follows:

Δλf = hλ(x
2hλ(f)), f ∈ D(Δλ),

where

D(Δλ) = {f ∈ L2((0,∞), x2λdx) : x2hλ(f) ∈ L2((0,∞), x2λdx)}.

Thus, Δλ is a positive and selfadjoint operator. Moreover, −Δλ generates a semi-
group of operators {Wλ

t }t>0 in L2((0,∞), x2λdx) where

(1) Wλ
t (f) = hλ

(
e−ty2

hλ(f)
)
, f ∈ L2((0,∞), x2λdx) and t > 0.

According to [21, p. 395 (1)] we can write, for f ∈ L2((0,∞), x2λdx),

(2) Wλ
t (f)(x) =

∫ ∞

0

Wλ
t (x, y)f(y)y

2λdy, x, t ∈ (0,∞),

where the Hankel heat kernel semigroup Wλ
t (x, y) is defined by

(3) Wλ
t (x, y) =

(xy)−λ+1/2

2t
Iλ−1/2

(xy
2t

)
e−(x2+y2)/(4t), x, y, t ∈ (0,∞),

and Iν denotes the modified Bessel function of the first kind and order ν.
Since

∫∞
0

Wλ
t (x, y)y

2λdy = 1, x, t ∈ (0,∞), {Wλ
t }t>0 defined by (2) is a diffusion

semigroup in Lp((0,∞), x2λdx), 1 ≤ p ≤ ∞.
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Suppose now that λ = (λ1, . . . , λn) ∈ (−1/2,∞)n. We define the n-dimensional
Bessel operator Δλ by

Δλ =

n∑
j=1

Δλj ,xj
.

The operator −Δλ generates the diffusion semigroup {Wλ
t }t>0 in Lp((0,∞)n, dμλ),

1 ≤ p ≤ ∞, where dμλ(x) =
n∏

j=1

x
2λj

j dxj , x = (x1, . . . , xn) ∈ (0,∞)n, and

W
λ
t (f)(x) =

∫
(0,∞)n

W
λ
t (x, y)f(y)dμλ(y), f ∈ Lp((0,∞)n, dμλ) and x, t ∈ (0,∞),

being

W
λ
t (x, y) =

n∏
j=1

W
λj

t (xj , yj), x, y ∈ (0,∞)n and t > 0.

The maximal operator Wλ
∗ associated with {Wλ

t }t>0 is defined by

W
λ
∗(f) = sup

t>0
|Wλ

t (f)|.

In [1, Theorem 1.1] (also in [2, Theorem 2.1] when λ ∈ (0,∞)n and in [3, Theo-
rem 2.1] for n = 1) it was proved that Wλ

∗ is a bounded operator from L1((0,∞)n,
dμλ) into L1,∞((0,∞)n, dμλ). Note that since {Wλ

t }t>0 is a diffusion semigroup,
W

λ
∗ is bounded from Lp((0,∞)n, dμλ) into itself, for every 1 < p ≤ ∞ (see

[16, p. 73]).
Motivated by [5] we consider a function r = (r1, . . . , rn) where, for every j =

1, . . . , n, rj : [0,∞) −→ [0,∞) is continuous and increasing, rj(0) = 0 and
limt→+∞ rj(t) = +∞, and we define the maximal operator

W
λ
r,∗(f) = sup

t>0
|Wλ

r(t)(f)|,

where

W
λ
r(t)(f)(x) =

∫
(0,∞)n

W
λ
r(t)(x, y)f(y)dμλ(y), f ∈ Lp((0,∞)n, dμλ), 1 ≤ p ≤ ∞,

and

W
λ
r(t)(x, y) =

n∏
j=1

W
λj

rj(t)
(xj , yj), x, y ∈ (0,∞)n and t > 0.

It is clear that if rj(t) = t, t ≥ 0, j = 1, . . . , n, then W
λ
r,∗ = W

λ
∗ .

Since {Wλ
t }t>0 is a diffusion semigroup, it can be seen that W

λ
r,∗ is a bounded

operator from Lp((0,∞)n, dμλ) into itself, for every 1 < p ≤ ∞. The weak type
(1,1) inequality is established in the following result.

Theorem 1.1. Suppose that λ ∈ (−1/2,∞)n and r is a function as above. Then,
the maximal operator W

λ
r,∗ is bounded from L1((0,∞)n, dμλ) into L1,∞((0,∞)n,

dμλ).

An immediate consequence of Theorem 1.1 is the next convergence result.
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Corollary 1.2. Let λ ∈ (−1/2,∞)n and r be a function as above. Then, for every
f ∈ Lp((0,∞)n, dμλ), 1 ≤ p < ∞,

lim
t→0+

W
λ
r(t)(f)(x) = f(x), a.e. x ∈ (0,∞)n.

We now consider the Laguerre operator Lλ, λ > −1/2, defined by

Lλ = Δλ +
x2

4
, on (0,∞).

Also, for every k ∈ N, we define the k-th Laguerre function ψλ
k by

ψλ
k (x) = 2−(2λ−1)/4

(
k!

Γ(k + λ+ 1/2)

)1/2

L
λ−1/2
k

(
x2

2

)
e−x2/4, x ∈ (0,∞),

where Lα
k denotes the k-th Laguerre polynomial with parameter α > −1. The

system {ψλ
k}k∈N is a complete orthonormal family in L2((0,∞), x2λdx). Moreover,

Lλ(ψ
λ
k ) = (2k + λ+ 1/2)ψλ

k , k ∈ N.

We extend the definition of the operator Lλ as follows:

Lλ(f) =
∞∑
k=0

(2k + λ+ 1/2)〈f, ψλ
k 〉ψλ

k , f ∈ D(Lλ),

where 〈·, ·〉 denotes the usual inner product in L2((0,∞), x2λdx), and

D(Lλ) = {f ∈ L2((0,∞), x2λdx) :
∞∑
k=0

(2k + λ+ 1/2)2|〈f, ψλ
k 〉|2 < ∞}.

Thus, Lλ is positive and selfadjoint in L2((0,∞), x2λdx). Moreover, −Lλ generates
a diffusion semigroup {Lλ

t }t>0 on L2((0,∞), x2λdx) where, for every t > 0,

(4) Lλ
t (f)(x) =

∫ ∞

0

Lλ
t (x, y)f(y)y

2λdy, f ∈ L2((0,∞), x2λdx), x, t ∈ (0,∞),

being

(5)

Lλ
t (x, y) =

e−t

1− e−2t
(xy)−λ+1/2Iλ−1/2

(
e−txy

1− e−2t

)
exp

(
−1

4

1 + e−2t

1− e−2t
(x2 + y2)

)
,

x, y, t ∈ (0,∞).

Moreover, (4) also defines a diffusion semigroup in Lp((0,∞), x2λdx), 1 ≤ p ≤ ∞.
Suppose now that λ ∈ (−1/2,∞)n. The n-dimensional heat Laguerre semigroup

{Lλ
t }t>0 is defined as follows. For every t > 0, f ∈ Lp((0,∞)n, dμλ), 1 ≤ p ≤ ∞,

we write

L
λ
t (f)(x) =

∫
(0,∞)n

L
λ
t (x, y)f(y)dμλ(y), x ∈ (0,∞)n,

being

L
λ
t (x, y) =

n∏
j=1

L
λj

t (xj , yj), x, y ∈ (0,∞)n, t > 0.
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In [13, Theorem 1.1] it was shown that the maximal operator Lλ
∗ , defined by

L
λ
∗(f) = sup

t>0
|Lλ

t (f)|,

is bounded from L1((0,∞)n, dμλ) into L1,∞((0,∞)n, dμλ) by employing an inge-
nious but long and not easy procedure.

Assume that the function r : [0,∞) −→ [0,∞)n is as in Theorem 1.1. We define
the maximal operator Lλ

r,∗ by

L
λ
r,∗(f) = sup

t>0
|Lλ

r(t)(f)|,

where

L
λ
r(t)(f)(x) =

∫
(0,∞)n

L
λ
r(t)(x, y)f(y)dμλ(y), x ∈ (0,∞)n, t > 0,

being

L
λ
r(t)(x, y) =

n∏
j=1

L
λj

rj(t)
(xj , yj), x, y ∈ (0,∞)n, t > 0.

We have that |Lλ
t (f)| ≤ Wλ

t (|f |), t > 0 ([7, (6.2)]). This inequality can be
deduced from (3) and (5) by using that

2te−t

1− e−2t
≤ 1 and

t(1 + e−2t)

1− e−2t
≥ 1, t ∈ (0,∞).

Then, from Theorem 1.1 and the comments just before it, we deduce the following
result, which includes, as a special case, [13, Theorem 1.1].

Theorem 1.3. Suppose that λ ∈ (−1/2,∞)n and r is as in Theorem 1.1. Then,
the maximal operator L

λ
r,∗ is bounded from Lp((0,∞)n, dμλ) into itself, for every

1 < p ≤ ∞, and from L1((0,∞)n, dμλ) into L1,∞((0,∞)n, dμλ).

If we denote, for every k = (k1, . . . , kn) ∈ N
n and λ ∈ (−1/2,∞)n, ψλ

k (x) =
n∏

j=1

ψ
λj

kj
(xj), x ∈ (0,∞)n, the subspace span{ψλ

k}k∈Nn is dense in Lp((0,∞)n, dμλ),

1 ≤ p < ∞. For every f ∈ span{ψλ
k}k∈Nn , we have that

L
λ
r(t)(f) =

∑
k∈Nn

e
−

n∑

j=1
rj(t)(2kj+λj+1/2)

〈f, ψλ
k 〉ψλ

k .

Since this last sum has at most a finite number of terms, it is clear that
limt→0+ L

λ
r(t)(f)(x) = f(x), x ∈ (0,∞)n, for every f ∈ span{ψλ

k}k∈Nn . Then,

standard arguments allow us to deduce the following convergence result.

Corollary 1.4. Let λ ∈ (−1/2,∞)n and r be as in Theorem 1.1. Then, for every
f ∈ Lp((0,∞)n, dμλ), 1 ≤ p < ∞,

lim
t→0+

L
λ
r(t)(f)(x) = f(x), a.e. x ∈ (0,∞)n.
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In the next section we present the proofs of Theorems 1.1 and Corollary 1.2.
Throughout the paper, by C and c we denote positive constants that can change

from one line to the other.

2. Proof of the results

In order to prove Theorem 1.1 we need some properties of the Bessel heat kernel
Wλ

r (x, y), r, x, y ∈ (0,∞), λ > −1/2.

By proceeding as in the proof of [3, Lemma 3.1] we can show the following result.

Lemma 2.1. Let λ > −1/2. Then, for every r, x, y ∈ (0,∞),

Wλ
r (x, y) ≤ C

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x−2λ−1e−cx2/r, 0 < y ≤ x/2;(6)

x−2λ−1e−cx2/r +
(xy)−λ

√
r

e−(x−y)2/(4r), x/2 < y < 2x;(7)

y−2λ−1e−cy2/r, 0 < 2x ≤ y.(8)

According to [21, Chapter VI, Section 6.15], if ν > −1/2, we can write

Iν(z) =
zν√

π2νΓ(ν + 1/2)

∫ 1

−1

e−zs(1− s2)ν−1/2ds, z ∈ (0,∞).

Moreover, Iν(z) = 2(ν + 1)Iν+1(z)/z + Iν+2(z), z ∈ (0,∞) and ν > −1 ([21,
Chapter III, Section 3.71]). Hence, if λ > −1/2 we obtain, for every z ∈ (0,∞),

Iλ−1/2(z) =
2λ+ 1

z
Iλ+1/2(z) + Iλ+3/2(z)

=
(2λ+ 1)zλ−1/2

√
π2λ+1/2Γ(λ+ 1)

∫ 1

−1

e−zs(1− s2)λds

+
zλ+3/2

√
π2λ+3/2Γ(λ+ 2)

∫ 1

−1

e−zs(1− s2)λ+1ds.

Then, the Bessel heat kernel can be written as

Wλ
r (x, y) =

1√
π22λ+1Γ(λ+ 1)

(2λ+ 1

rλ+1/2

∫ 1

−1

e−(x2+y2+2xys)/(4r)(1− s2)λds

+
(xy)2

23(λ+ 1)rλ+5/2

∫ 1

−1

e−(x2+y2+2xys)/(4r)(1− s2)λ+1ds
)
,(9)

r, x, y ∈ (0,∞),

where λ > −1/2.
The key result to show Theorem 1.1 is the following.

Proposition 2.2. Let λ > −1/2. Then, there exist C, c > 0 such that

Wλ
r (x, y) ≤ C

∞∑
k=0

e−c22k

μλ(Ik(x, r))
χIk(x,r)(y), r, x, y ∈ (0,∞),

where Ik(x, r) = [x− 2k
√
r, x+ 2k

√
r] ∩ (0,∞), r, x ∈ (0,∞) and k ∈ N.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



WEAK TYPE FOR BESSEL AND LAGUERRE MAXIMAL OPERATORS 257

Proof. Let r, x ∈ (0,∞). We consider different cases.
Suppose that x ≤ √

r. Then, I0(x, r) = [0, x+
√
r] and

μλ(I0(x, r)) =
(x+

√
r)2λ+1

2λ+ 1
≤ Crλ+1/2.

Since x2 + y2 + 2xys = (x− y)2 + 2xy(1 + s) ≥ 0, y ∈ (0,∞) and s ∈ (−1, 1), from
(9) we deduce that

Wλ
r (x, y) ≤

C

rλ+1/2

(
1 +

(xy
r

)2
)

≤ C

rλ+1/2

(
1 +

(
x(x+

√
r)

r

)2
)

≤ C

rλ+1/2

≤ C

μλ(I0(x, r))
, y ∈ I0(x, r).(10)

Assume now that x >
√
r. Then, I0(x, r) = [x−

√
r, x+

√
r] and

μλ(I0(x, r)) =
1

2λ+ 1

(
(x+

√
r)2λ+1 − (x−

√
r)2λ+1

)
.

The mean value theorem leads to μλ(I0(x, r)) = 2
√
ru2λ for a certain u ∈ (x −√

r, x+
√
r). If λ ≥ 0, it follows that μλ(I0(x, r)) ≤ 2

√
r(x+

√
r)2λ. On the other

hand, if −1/2 < λ < 0, we distinguish two cases.

• If x ∈ (
√
r, 3

√
r), then

μλ(I0(x, r)) ≤
∫ x+

√
r

0

y2λdy ≤ C(x+
√
r)2λ+1 ≤ C

√
r(x+

√
r)2λ.

• If x ≥ 3
√
r, then

μλ(I0(x, r)) ≤ C
√
r(x−

√
r)2λ ≤ C

√
r

(
x+

√
r

2

)2λ

.

Hence, we conclude that μλ(I0(x, r)) ≤ C
√
rx2λ ≤ Cx2λ+1 in either case. By

keeping in mind Lemma 2.1, in order to estimate Wλ
r (x, y) we distinguish three

regions. First, by (6) it follows that

Wλ
r (x, y) ≤ Cx−2λ−1 ≤ C

μλ(I0(x, r))
, 0 < y ≤ x/2,

and from (8) we deduce that

Wλ
r (x, y) ≤ Cy−2λ−1 ≤ Cx−2λ−1 ≤ C

μλ(I0(x, r))
, 2x ≤ y.

Moreover, (7) implies that

Wλ
r (x, y) ≤ C

(
x−2λ−1 +

x−2λ

√
r

)
≤ C

μλ(I0(x, r))
, x/2 < y < 2x.

We obtain that

(11) Wλ
r (x, y) ≤

C

μλ(I0(x, r))
, y ∈ (0,∞).
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Suppose now that k ∈ N \ {0}. We define Ck(x, r) = {y ∈ (0,∞) : 2k−1
√
r <

|x− y| ≤ 2k
√
r}. It is clear that Ck(x, r) ⊂ Ik(x, r).

Assume that x ≤ 2k
√
r. Then, Ik(x, r) = [0, x + 2k

√
r] and μλ(Ik(x, r)) ≤

C(2k
√
r)2λ+1. According to (9), since x2 + y2 + 2xys = (x − y)2 + 2xy(1 + s),

y ∈ (0,∞) and s ∈ (−1, 1), we have that

Wλ
r (x, y) ≤ C

e−c22k

rλ+1/2

(
1 +

(
x(x+ 2k

√
r)

r

)2
)

≤ C
24ke−c22k

rλ+1/2

≤ C
e−c22k

μλ(Ik(x, r))
, y ∈ Ck(x, r).

(12)

We now take x > 2k
√
r. Then Ik(x, r) = [x−2k

√
r, x+2k

√
r], and by proceeding

as above we get μλ(Ik(x, r)) ≤ C2k
√
rx2λ ≤ Cx2λ+1. We again distinguish three

cases. If 0 < y ≤ x/2 and y ∈ Ck(x, r) we have that 2k−1
√
r ≤ x ≤ 2k+1

√
r. Then

(6) implies that

Wλ
r (x, y) ≤ C

e−c22k

μλ(Ik(x, r))
, 0 < y ≤ x/2.

Also, from (8) we deduce

Wλ
r (x, y) ≤ C

e−c22k

μλ(Ik(x, r))
, 2x ≤ y.

Finally, by (7) if follows that

Wλ
r (x, y) ≤ Ce−c22k

(
x−2λ−1 +

x−2λ

√
r

)

≤ C
e−c22k

μλ(Ik(x, r))
, x/2 < y < 2x and y ∈ Ck(x, r).

Hence, we get

(13) Wλ
r (x, y) ≤ C

e−c22k

μλ(Ik(x, r))
, y ∈ Ck(x, r).

By combining (10), (11), (12) and (13) we obtain

Wλ
r (x, y) = Wλ

r (x, y)χI0(x,r)(y) +
∞∑
k=1

Wλ
r (x, y)χCk(x,r)(y)

≤ C

(
χI0(x,r)(y)

μλ(I0(x, r))
+

∞∑
k=1

e−c22kχCk(x,r)(y)

μλ(Ik(x, r))

)

≤ C

∞∑
k=0

e−c22k

μλ(Ik(x, r))
χIk(x,r)(y), y ∈ (0,∞). �
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2.1. Proof of Theorem 1.1. According to Proposition 2.2 we have that

|Wλ
r(t)(f)(x)| ≤

∫
(0,∞)n

n∏
j=1

W
λj

rj(t)
(xj , yj)|f(y)|dμλ(y)

≤ K
∑
k∈Nn

n∏
j=1

e−c22kj 1

μλ(Rk(x, r(t)))

∫
Rk(x,r(t))

|f(y)|dμλ(y),

x ∈ (0,∞)n and t > 0,

where Rk(x, r(t)) =
n∏

j=1

Ikj
(xj , rj(t)) and K > 0.

Then, it follows that

(14) |Wλ
r,∗(f)(x)| ≤ K

∑
k∈Nn

⎛
⎝ n∏

j=1

e−c22kj

⎞
⎠Mλ

r,k(f)(x), x ∈ (0,∞)n,

where Mλ
r,k represents the maximal function defined by

Mλ
r,k(f)(x) = sup

t>0

1

μλ(Rk(x, r(t)))

∫
Rk(x,r(t))

|f(y)|dμλ(y), x ∈ (0,∞)n.

By [5, Theorem 1], for every k ∈ N
n and γ > 0, we get

(15) μλ

(
{x ∈ (0,∞)n : Mλ

r,k(f)(x) > γ}
)
≤ 6nn!

γ
‖f‖L1((0,∞)n,dμλ),

f ∈ L1((0,∞)n, dμλ).

Since ∑
k∈Nn

n∏
j=1

e−α22kj
=

( ∞∑
m=0

e−α22m

)n

< ∞, when α > 0,

by defining

Qk =

⎛
⎝2K

∑
�∈Nn

n∏
j=1

e−c22�j−1

⎞
⎠

−1
n∏

j=1

ec2
2kj−1

, k ∈ N
n,

we have that{
x ∈ (0,∞)n : |Wλ

r,∗(f)(x)| > γ
}
⊂

⋃
k∈Nn

{
x ∈ (0,∞)n : Mλ

r,k(f)(x) > γQk

}
.

Hence, from (15) we deduce that

μλ

(
{x ∈ (0,∞)n : |Wλ

r,∗(f)(x)| > γ}
)
≤

∑
k∈Nn

μλ

({
x ∈ (0,∞)n : Mλ

r,k(f)(x) > γQk

})

≤ 2K
6nn!

γ

( ∑
k∈Nn

n∏
j=1

e−c2
2kj−1

)(∑
�∈Nn

n∏
j=1

e−c2
2�j−1

)
‖f‖L1((0,∞)n,dμλ), γ > 0.

Thus we prove thatWλ
r,∗ is bounded from L1((0,∞)n, dμλ) into L

1,∞((0,∞)n, dμλ).

�
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2.2. Proof of Corollary 1.2. In order to show this theorem it is sufficient to
see that for every f ∈C∞

c ((0,∞)n) (the space of smooth functions with compact
support on (0,∞)n) we have that

lim
t→0+

W
λ
r(t)(f)(x) = f(x), x ∈ (0,∞)n.

Let f ∈ C∞
c ((0,∞)n). The Hankel transform hλ(f) of f is defined by

hλ(f)(x) =

∫
(0,∞)n

n∏
j=1

(xjyj)
−λj+1/2Jλj−1/2(xjyj)f(y)dμλ(y), x ∈ (0,∞)n.

According to (1) we deduce that

W
λ
r(t)(f)(x) = hλ

⎛
⎝ n∏

j=1

e−y2
j rj(t)hλ(f)(y)

⎞
⎠ (x), x ∈ (0,∞)n.

By using the dominated convergence theorem we conclude that

lim
t→0+

W
λ
r(t)(f)(x) = hλ(hλ(f))(x), x ∈ (0,∞)n,

and the proof is completed because h−1
λ = hλ in L2((0,∞)n, dμλ) (see [4, p. 125]).

�
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