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We present the exact theory of quantum engines whose working medium is a network of driven
oscillators performing an arbitrary cyclic process while coupled to thermal and nonthermal reservoirs.
We show that when coupled to a single reservoir work cannot be extracted unless there is population
inversion, and prove that the ratio between the heat flowing out and into the working medium cannot
be arbitrarily small, satisfying a form of Clausius inequality. We use such identity to prove that
the efficiency of linear quantum engines satisfies a generalized bound, which coincides with the
Carnot limit for thermal reservoirs. The previous results enable us to estimate the cost of preparing
nonthermal reservoirs, which, if available, could be used to violate the Carnot limit.

I. INTRODUCTION

The development of thermodynamics has been cen-
tered around heat engines: machines that run cycli-
cally between thermal reservoirs and convert heat into
work. The advent of quantum thermodynamics [1–3] has
opened the door to a new class of engines, where the
working medium and the reservoirs behave quantum me-
chanically [4–13]. Although many examples have been
analyzed, no exact general theory for quantum engines
has been developed (there are, however, general theories
developed under various assumptions [14–18]). In this
work we present such a theory for engines performing
an arbitrary cyclic process with a working medium com-
posed of driven oscillators, and coupled to thermal and
nonthermal reservoirs. We show, from first principles,
that these engines satisfy a form of Clausius inequality
and also that their efficiency is bounded by a generalized
bound, which coincides with the Carnot limit when the
engine is coupled to thermal reservoirs. Finally, we es-
timate the energetic cost of preparing nonthermal reser-
voirs (which enable the engine to reach efficiencies greater
than the Carnot one) from thermal ones, and relate it to
the energy needed to run the engine and the work pro-
duced by it. For the sake of reading clarity we will post-
pone the detailed description of our model until the very
end.

The paper is organized as follows. In Sec. II we de-
scribe the basic nature of quantum linear engines, includ-
ing how to perform any thermodynamic cycle. In Sec. III
we show how to compute the work produced by the en-
gine and the heat exchanged with the reservoirs. In Sec.
IV we explicitly compute the average work produced in
a cycle using the heat exchanged by the reservoirs. In
Sec. V we use our previous results to derive a general-
ized version of the second law of thermodynamics. In
Sec. VI we find a simple bound for the ratio between
the heat flowing out and into the working medium in the

∗ mil@df.uba.ar
† paz@df.uba.ar

form of Clausius inequality. In Sec. VII we use the pre-
vious inequality to prove the efficiency of these engines
satisfy a generalized bound. In Sec. VIII we show how
to estimate the cost of preparing nonthermal reservoirs
that could be used to achieve efficiencies greater than the
classical Carnot limit. In Sec. IX we present the descrip-
tion of our model. Finally, we summarize our results in
Sec. X.

II. THE ENGINE

All engines are composed of two basic parts: a work-
ing medium that transforms heat into work, and a col-
lection of reservoirs that act as sources or sinks for that
heat. The working medium of a linear quantum engine is
a network of oscillators S with variable frequencies and
couplings (see Ref. [19] for the static case). Coupled to
S there is an environment E , which is composed of differ-
ent pieces Eα that will play the role of reservoirs. Each
Eα is formed by a collection of noninteracting harmonic
oscillators, and it is initially prepared in an arbitrary un-
correlated state. The evolution of the engine is governed
by the Hamiltonian H = HS(t) + HE + HS,E . The en-
gine begins its operation with its working medium and
reservoirs uncorrelated but this rapidly changes due to
the presence of the interaction Hamiltonian HS,E , which
is assumed to be bilinear in the position coordinates of
all the components of S and E .
Any thermodynamic cycle performed by a linear quan-

tum engine can be described by our model. A cycle is
composed by a sequence of processes, each of which either
changes some property of the working medium S, or cou-
ples or decouples it with a reservoir Eα. The first kind of
processes can be realized by changing HS , which has the
form HS(t) = [PTM−1P + XTV (t)X]/2 (X and P are
vectors that contain the coordinates and momenta of the
components of S, respectively, and M and V (t) are real
matrices). By varying V (t), which is assumed to be τd
periodic, one changes the frequencies of the oscillators of
S as well as the interactions between them. In contrast,
the coupling and decoupling with the reservoirs is done
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in two steps. First, for each Eα a portion Sα of the oscil-
lators of S are selected to be permanently coupled to Eα.
These oscillators are highly overdamped so as to closely
follow the state of Eα, and will act as bridges between Eα
and the rest of S, which we denote Sᾱ (i.e., Sᾱ = S \Sα).
And second, the couplings between Sα and Sᾱ, which are
contained in V (t), are modified in such a way that they
are either zero or nonzero for some required time. In this
way the interaction between Sᾱ and Eα can be turned
on and off and, thus, the working medium can be effec-
tively uncoupled from Eα. By changing the strength of
the interaction between Sα and Sᾱ, both equilibrium and
nonequilibrium processes can be performed. See Fig. 1
for an illustration of this scheme.

a)

b)

c)

FIG. 1. An engine using two reservoirs E1 and E2. S is com-
posed of 12 oscillators, four of which belong to S1 and another
four to S2. S1 and S2 are always coupled to E1 and E2 (solid
lines), respectively, and temporarily coupled to the rest of S
(dashed lines). In this setup, S1̄ are the four center oscilla-
tors plus the ones in S2. Analogously, S2̄ are the four center
oscillators plus the ones in S1. (a) S is only coupled to E1.
(b) S is decoupled from E1 and E2. (c) S is only coupled to
E2.

III. WORK AND HEAT

The power produced and the heat exchanged by S are
defined through Heisenberg’s equation for HS :

d⟨HS⟩/dt = −i⟨[HS , HS,E ]⟩/ℏ+ ⟨∂HS/∂t⟩. (1)

The first term in Eq. (1) represents the change of the en-
ergy of S due to the interaction with E , and is associated
with the heat current Q̇S . The second term in Eq. (1)
accounts for the variation of the energy of S due to the
explicit time dependence of HS , and is associated with
the power ẆS injected into S by the driving field. Using
these definitions Eq. (1) reads as: d⟨HS⟩/dt = Q̇S+ẆS .
In Ref. [20] it was shown that the coupling with the
reservoirs can induce a stationary regime where the state
of S is τd periodic. This has two consequences: (i) the
average of d⟨HS⟩/dt over τd vanishes; and (ii) the average

heat current ˙̄QS is determined by the average variation

of the energy of the reservoirs (i.e., ˙̄QS = − ˙̄QE , where
˙̄QE is the average of d⟨HE⟩/dt. See Appendix C for the
proof). Thus, the time average of Eq. (1) implies that

0 = ˙̄QE − ˙̄WS . Since, as shown in Appendix B, ˙̄QE is

constant in the stationary regime, then ˙̄QE = ∆Q/τd,
where ∆Q is the average heat exchanged by the reser-
voirs in one period of the driving. Therefore, from Eq.
(1) we find that the average work performed on S during
a cycle is such that W̄S = ∆Q.

IV. AVERAGE WORK IN A CYCLE

Our results are a consequence of three key properties
that generalize the ones analyzed for thermal reservoirs
in Refs. [20–23]. First, in the stationary regime ∆Q
depends only on one property of the initial state of the
reservoirs: the expectation value of the number opera-
tor nα(ω) = ⟨a†α,ωaα,ω⟩ (a†α,ω and aα,ω are the creation
and annihilation operators of the mode with frequency
ω in Eα). In fact, as shown in Appendix B, all other
moments of a†α,ω and aα,ω do not contribute to time-
extensive terms in ⟨HE⟩. Second, S and E only exchange
packets of energy with values kℏωd (k denotes a posi-
tive integer and ωd = 2π/τd is the driving frequency).
Third, only two processes are relevant for this energy ex-
change and, as a consequence, ∆Q can be written as the
sum of two terms: ∆Q = ∆QNR + ∆QR. The explicit
form of ∆QNR and ∆QR is derived from first principles
in Appendix B. ∆QNR, which is always positive, carries
the effect of the nonresonant processes that transform a
packet of energy kℏωd of the driving field into excitations
of two environmental modes with frequencies ωi and ωj

such that ωi + ωj = kωd. It can be written as

∆QNR = τd
∑
k,α,β

kℏωd

∫ kωd

0

dω p̃
(k)
αβ (ω)[nβ(ω) + 1/2],

(2)
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where p̃
(k)
αβ is a positive dimensionless quantity that can

be interpreted as an emission rate per unit frequency
from the driving field into environmental excitations, one
in the mode with frequency kωd−ω in Eα and another one
in the one with frequency ω in Eβ . ∆QR carries the effect
of the resonant processes, which are responsible for the
transport of excitations between different environmental
modes due to the absorption (or emission) of a packet of
energy kℏωd from (or into) the driving field. It reads

∆QR = τd
∑
k,α,β

kℏωd

∫ ∞
0

dω p
(k)
αβ (ω)[nβ(ω)−nα(ω+kωd)].

(3)

Here, p
(k)
αβ is a positive dimensionless quantity that can

be interpreted as a transition rate per unit frequency be-
tween the mode with frequency ω in Eβ and the one with
frequency ω + kωd in Eα (which, as shown in Appendix
B, is identical to the transition rate of the reverse pro-
cess). Notably, the integrands in ∆QNR and ∆QR are a
product of a term that depends on the cycle the engine is
performing and the spectral properties of the reservoirs

(p̃
(k)
αβ or p

(k)
αβ ), and a term depending only on the initial

occupation number nα of the reservoirs.

V. PLANCK’S PROPOSITION

The second law of thermodynamics can be simply ob-
tained from our previous equations: if all the reservoirs
are initially prepared in states with the same occupation
number nα(ω), and nα(ω) is a decreasing function of ω,
then ∆QR > 0 and, thus, W̄S is positive too. This is
a generalization of Planck’s proposition that affirms it is
impossible to extract work from an engine working cycli-
cally while coupled single thermal reservoir [24]. Instead,
if there is some population inversion (i.e., if nα(ω) is not
a decreasing function of ω), then the reservoir is thermo-
dynamically unstable and tends to release energy that
can be turned into work.

VI. HEAT FLOW IN AND OUT OF S:
CLAUSIUS INEQUALITY

∆QR contains the total heat exchanged between S
and E due to resonant processes but, for our purposes,
it is important to distinguish between the heat flowing
from E to S and the one flowing from S to E , which
we respectively denote as ∆QR

E→S and ∆QR
E←S , and sat-

isfy ∆QR = ∆QR
E→S + ∆QR

E←S . To find ∆QR
E⇄S we

should notice that, as the reservoirs do not interact di-
rectly but rather through S, for an excitation to be trans-
ported from Eα to Eβ first it must go through the work-
ing medium. For example, in the process in which an
excitation from a mode of frequency ω + kωd in Eα is
transported to a mode of frequency ω in Eβ , a packet of
energy ℏ(ω+ kωd) flows from Eα to S and then ℏω flows

from S to Eβ , while emitting kℏωd into the driving field.
The reverse process, in which a packet of energy kℏωd is
absorbed from the driving field, can be described anal-
ogously. Therefore, to identify ∆QR

E⇄S we can add and

subtract ω to the integrand in Eq. (3) to write it as

∆QR/τd =

−
∑
k,α,β

∫ ∞
0

dω ℏωp(k)αβ (ω)[nβ(ω)− nα(ω + kωd)]

+
∑
k,α,β

∫ ∞
0

dωℏ(ω + kωd)p
(k)
αβ (ω)[nβ(ω)− nα(ω + kωd)].

(4)
If the integrand in Eq. (3) is negative, which happens
when nα(ω+kωd) > nβ(ω), then a packet of energy kℏωd

is being emitted into the driving field (a condition that
is satisfied if and only if ω belongs to the interval I− =
{ω ∈ R>0|nα(ω + kωd) > nβ(ω)}). Thus, in this case,
the first term in the right-hand side of Eq. (4) represents
the heat flowing from S to E and the second one, the
heat flowing from E to S. Conversely, if the integrand in
Eq. (3) is positive, then a packet of energy kℏωd will be
absorbed from the driving field (this happens if and only
if ω belongs to I+, which is the complement of I−). In
this case, the first term in the right-hand side of Eq. (4)
represents the heat flowing from E to S and the second
one, the heat flowing from S to E . Hence, we find that
∆QR

E⇄S is given by

∆QR
E⇄S/τd =

−
∑
k,α,β

∫
I±

dω ℏωp(k)αβ (ω)[nβ(ω)− nα(ω + kωd)]

+
∑
k,α,β

∫
I∓

dωℏ(ω + kωd)p
(k)
αβ (ω)[nβ(ω)− nα(ω + kωd)].

(5)
The above expressions can be used to obtain a lower
bound for the ratio between the energy flowing out and
into S: ∆QR

E←S/|∆QR
E→S |. For this we will use the

fact that, without loss of generality, nα can be writ-
ten as a strictly decreasing function of the dimension-
less variable ω/Ωα(ω), where Ωα is an appropriately cho-
sen positive function (for example, for thermal reservoirs
Ωα is a constant: Ωα(ω) = kbTα/ℏ). Using this we
can bound the ratio by noticing that if ω ∈ I− then
ω > [Ωβ(ω)/Ωα(ω + kωd)](ω + kωd), and that the oppo-
site inequality holds when ω ∈ I+:

∆QR
E←S/|∆QR

E→S | > min{m, 1/M}, (6)

where m = min{Ωα(ω)/Ωβ(ω + kωd)} and M =
max{Ωα(ω)/Ωβ(ω + kωd)} (see the derivation in Ap-
pendix D). Equation (6) is a form of Clausius inequality
that can be applied to nonthermal reservoirs and shows
that the amount of energy that it is lost, ∆QR

E←S , can-
not be arbitrarily small. We can cast this inequality in
more familiar terms in the case of thermal reservoirs:
∆QR

E→S/Th +∆QR
E←S/Tc > 0, where Tc and Th are the
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temperatures of the coldest and hottest reservoirs, re-
spectively. This is nothing but the usual Clausius theo-
rem applied to a nonequilibrium Carnot engine working
between two reservoirs with temperatures Tc and Th.

VII. EFFICIENCY

The efficiency η of the machine is defined as the ra-
tio between the work extracted from S and the energy
injected by E into S. The numerator in η (i.e., the ex-
tracted work) is |W̄S | = |∆QNR +∆QR

E←S − |∆QR
E→S ||

(notice that work is extracted when if W̄S < 0, which
is satisfied if and only if the energy flowing from E to
S is greater than the one that flows from S to E). On
the other hand, the denominator in η (i.e., the energy
injected by E into S) is |∆QR

E→S |. Thus, we can write
the following exact expression for η:

η =
|∆QR

E→S | −∆QR
E←S −∆QNR

|∆QR
E→S |

. (7)

It is immediate that η can be bounded by dropping the
negative contribution of the nonresonant processes from
the numerator. Doing this, and using Eq. (6) we find
that

η < 1− ∆QR
E←S

|∆QR
E→S |

< 1−min{m, 1/M}, (8)

which is a generalized bound for the efficiency of quantum
linear engines. If the reservoirs are thermal m = 1/M =
Tc/Th, and we recover the Carnot limit: η < 1 − Tc/Th.
For other type of reservoirs, this bound can be violated
(see below). The fact that the Carnot efficiency is recov-
ered when the initial state of the reservoirs is a product
of thermal states is a general result that goes beyond the
limits of this model, and can be obtained, for example, by
using fluctuation relations [25, 26]. It is worth noticing
that the nonresonant processes, which prevent the engine
from reaching efficiencies arbitrarily close to the bound
in Eq. (8), are the same ones enforcing the third law of
thermodynamics in the form of Nernst’s unattainability
principle [20, 21].

VIII. THE COST OF PREPARING
NONTHERMAL RESERVOIRS

As shown above, linear quantum engines coupled to
thermal reservoirs always satisfy the Carnot bound as
their efficiency η is less than ηc = 1−Tc/Th. Considering
this holds independently of the evolution of the machine,
one could argue that it should also be valid for a situation
where: (i) thermal reservoirs are initially prepared, (ii)
these reservoirs become nonthermal by driving them with
an appropriately chosen quadratic Hamiltonian, and (iii)
these nonthermal reservoirs are coupled to the working
medium and used to run the engine. If the efficiency is

computed only for stage (iii) of the above process one
could observe an apparent violation of the Carnot bound
as η < ηg = 1 − min{m, 1/M}. Clearly, the difference
between ηg and ηc comes from the energy invested in
stage (ii), which is necessary to prepare the nonthermal
reservoirs. Using our previous results, we can obtain this
energetic cost C relative to the energy required to run the
engine as

C/|∆QR
E→S | ≃ (ηg − ηc)/ηc (9)

(see the derivation in Appendix E). Equation (9) has two
important consequences. First, it allows us to know a
priori the minimum cost to pay for a target work out-
put and efficiency given some initial thermal resources.
Indeed, using that |W̄S |/|∆QR

E→S | < ηg we obtain C >
|W̄S |(ηg − ηc)/ηgηc. Second, the energetic cost to im-
prove the efficiency through the use of nonthermal re-
sources relative to the energy needed to run the engine
has a maximum possible value determined only by the
temperatures of the coldest and hottest reservoirs: since
ηg ≤ 1, we find that C/|∆QR

E→S | ≤ Tc/(Th − Tc). This
means that, as ηg approaches unity, C grows as fast as
|∆QR

E→S |. Thus, improving the efficiency by using non-
thermal resources is not much more expensive than run-
ning the engine. In fact, if we start with thermal reser-
voirs such that Th > 2Tc, as this implies that C is smaller
than |∆QR

E→S |, we enter a low-cost regime where im-
proving the efficiency is actually cheaper than running
the engine (see Fig. 2 for a phase diagram of the dif-
ferent operating regimes). For example, let us consider
an engine working between a squeezed thermal reser-
voir at temperature Th and squeezing r and a colder
thermal reservoir at temperature Tc. We find that its
efficiency is bounded by ηg = 1 − Tc/cosh(2r)Th (in
the limit of high Th), and the cost to squeeze the hot
reservoir is C/|∆QR

E→S | ≃ Tc[1 − 1/cosh(2r)]/(Th − Tc)
(Ωα for squeezed thermal reservoirs is computed as
coth(ω/Ωα) = cosh(2rα)coth(ℏω/2kbTα)). For this cost
to be less than the energy needed to run the energy, the
squeezing must be such that 2 − Th/Tc < 1/cosh(2r).
Thus, if Th < 2Tc, only small values of r fulfill this
inequality and high efficiencies cannot be reached in
the low cost regime. Conversely, if Th > 2Tc, then
ηg can be arbitrarily close to one and C would still be
smaller than |∆QR

E→S |. Finally, it is interesting to notice
that, contrary to the case of large squeezing in which C
and |∆QR

E→S | scale similarly, for small values of r, as
C ≃ 2Tcr

2|∆QR
E→S |r=0/(Th − Tc), C grows as r2 while

|∆QR
E→S | remains approximately constant.

IX. THE MODEL

Here we present a brief overview of the model, which is
described in detail in Appendix A. As mentioned above,
the dynamics of S is governed by M and V (t), and
each Eα is a collection of noninteracting harmonic os-
cillators whose masses and frequencies are mα and ωα,
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FIG. 2. Normalized plot of C/|∆QR
E→S | as a function of ηc

and the target efficiency ηg, showing the different operating
regimes. Anything in between the lower bound (ηg = ηc) and
the dashed line (ηg = 2ηc) belongs to the low-cost regime
where improving the efficiency is cheaper than running the
engine (C < |∆QR

E→S |), while any improvement above the
dashed line requires more energy to achieve (C > |∆QR

E→S |).

respectively. The interaction Hamiltonian is HS,E =∑
α XTCαqα, where Cα contains the coupling constants

between S and Eα. In Ref. [20] it was shown that the
solution of the Heisenberg equations for X and qα can
be expressed as linear combinations of the corresponding
Schrödinger operators, where the coefficients are deter-
mined by the dressed Green’s functionG(t, t′) of S, which
is the retarded solution of

M∂2
tG+ VR(t)G+

∫ t

0

dτγ(t− τ)∂τG(τ, t′) = δ(t− t′).

(10)
Above, γ(t) =

∑
α

∫
dωIα(ω) cos(ωt)/ω is the dissipa-

tion kernel with Iα(ω) = Cαδ(ω − ωα)C
T
α /mω the spec-

tral density of each Eα, and VR(t) = V (t) − γ(0) is the
renormalized potential. For periodic V we use Floquet
theory to write G(t, t′) =

∑+∞
n=−∞An(t − t′)einωdt, and

use Eq. (10) to obtain a set of linear differential equa-
tions for An(t) and a corresponding set of linear alge-

braic equations for their Laplace transform Ãn(s) (see
Appendix A). From the solution of the Heisenberg equa-
tions we can compute the long-time average of d⟨HEα⟩/dt
and show that it only depends on the spectral densities
and the coefficients Ãn. ∆Q is obtained by adding the
contributions from all Eα’s. After a few manipulations
(see Appendix B), the expressions for ∆QNR and ∆QR

shown in Eqs. (2) and (3) respectively are obtained with

p̃
(k)
αβ (ω) = (π/2)tr[Iα(kωd−ω)Ã−k(iω)Iβ(ω)Ã

†
−k(iω)] and

p
(k)
αβ (ω) = (π/2)tr[Iα(ω + kωd)Ãk(iω)Iβ(ω)Ã

†
k(iω)]. The

existence of a high frequency cutoff in the spectral den-
sities implies that both rates decrease with increasing k,
guaranteeing the convergence of the series shown above.

X. CONCLUSIONS

We presented the general theory of linear quantum en-
gines, proving that these machines satisfy a form of Clau-
sius inequality that prevents the amount of energy that
it is lost and not converted into work from being arbi-
trarily small. As a consequence, their efficiency satisfy a
generalized bound, which coincides with the well-known
Carnot limit when coupled to thermal reservoirs and can
be greater when coupled to nonthermal ones. We were
able to estimate the energetic cost of transforming ther-
mal reservoirs into nonthermal ones, which allows the
engine to reach higher efficiencies by exploiting those
nonthermal resources. We showed that this cost can be
smaller than the energy needed to run the engine, even
if the efficiency is arbitrarily close to one, and provided a
lower bound to it in terms of a desired work output and
efficiency.

This work was supported by CONICET, UBACyT,
and Agencia I+D+i.

Appendix A: Formalism

1. Equations of motion and their solution

In this section we will arrive at explicit formulas for the time evolution of the Heisenberg operators X(t) and qα(t)
(we will use vector notation for the collection of position and momentum operators). From now on we will use units
such that kb = ℏ = 1. Our model includes a system S consisting of a network of coupled driven oscillators, which is
coupled to an environment E composed of different pieces Eα. The total Hamiltonian is H = HS +HE +HS,E where

HS = PTM−1P/2 +XTV (t)V/2

HE =
∑
α

pTαm
−1
α pα/2 + qTαmαω

2
αqα/2

HS,E =
∑
α

XTCαqα

(A1)
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Above, M , V (t), mα, and ωα are real symmetric matrices, with mα and ωα diagonal matrices and V (t) is τd periodic
with driving frequency ωd = 2π/τd. Also, Cα is a real matrix containing the coupling constants between S and
Eα. The Heisenberg equations of motion for the position and momentum operators can be written as a system of
second-order differential equations for the position operators only:

q̈α + ω2
αqα = −m−1α CT

αX

MẌ + V (t)X = −
∑
α

CαX
(A2)

The solution of the first equation in Eq. (A2), which corresponds to the position operators of Eα, is

qα(t) = qhα(t)− (mαωα)
−1

∫ t

0

dt′ sin[ωα(t− t′)]CT
αX(t′) (A3)

where qhα(t) = cos(ωαt)qα,0 + (mαωα)
−1sin(ωαt)pα,0 is the solution of the homogeneous equation with qα,0 and pα,0

being the corresponding Schrödinger operators. In order to obtain the solution for the position operators of S, X, we
replace Eq. (A3) in the second equation in Eq. (A2):

MẌ + V (t)X −
∫ t

0

dτ

[∑
α

Cα(mαωα)
−1sin[ωα(t− τ)]CT

α

]
X(τ) = −

∑
α

Cαq
h
α. (A4)

Equation (A4) is a linear second order inhomogeneous integro-differential equation and, thus, we will solve it using
the Green’s function method. In particular, we consider its retarded Green’s function G, which is the unique solution
of

M
∂2G

∂t2
(t, t′) + V (t)G(t, t′)−

∫ t

0

dτ

[∑
α

Cα(mαωα)
−1sin[ωα(t− τ)]CT

α

]
G(τ, t′) = δ(t− t′) (A5)

with initial conditions G(t′, t′) = 0 and ∂tG(t′, t′) = M−1. After performing a partial integration in Eq. (A5) we
arrive at Eq. (10) shown in the main text

M
∂2G

∂t2
(t, t′) + VR(t)G(t, t′)−

∫ t

0

dτ γ(t− τ)
∂G

∂τ
(τ, t′) = δ(t− t′), (A6)

where we defined the dissipation kernel γ(t) =
∑

α

∫
dωIα(ω) cos(ωt)/ω with Iα(ω) = Cαδ(ω−ωα)C

T
α /mω the spectral

density of each Eα, and VR(t) = V (t)− γ(0) is the renormalized potential. Finally, the solution for X is

X(t) = Xh(t)−
∫ t

0

dt′G(t, t′)
∑
α

Cαq
h
α(t
′), (A7)

with Xh = F (t, 0)X0 + G(t, 0)P0 the homogeneous solution of Eq. (A4) (F is the advanced Green function of Eq.
(A4), which is computed in a similar way, and X0 and P0 are the corresponding Schrödinger operators). With Eqs.
(A3) and (A7) we can write the time evolution of both qα and X as linear combinations of Schrödinger operators
with time-dependent coefficients, which are functions of G only. This proves the statement that was included in the
description of the model appearing in the main text.

2. Solution for the case of a periodic potential

For periodic V (t) such that VR(t) =
∑

n Vne
inωdt we can write G(t, t′) =

∑n=+∞
n=−∞An(t − t′)einωdt, were An(t <

0) = 0. Replacing this in Eq. (A6) we obtain a set of coupled linear integro-differential equations for the coefficients
An(t). This set of equations can be conveniently expressed as a linear set of coupled algebraic equations for their

Laplace transform Ãn(s), which reads:

g̃−1 (s+ inωd) Ãn (s) +
∑
m̸=0

VmÃn−m (s) = δn01. (A8)

Above, g̃−1 (s) = Ms2 + ω2
r + s γ̃ (s) is the static Green’s function with renormalized frequency ω2

r = V0 − γ(0).
Equation (A8) is particularly useful because, as we will see below, in the long-time limit all the relevant quantities

can be written in terms of the coefficients Ãn (instead of An). Thus, it is not necessary to use the inverse Laplace
transform to compute An(t).
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3. Properties of the Green’s function

Here we will discuss three important properties of the Green’s function G in terms of the Laplace coefficients Ãn.
These are: the complex conjugation of Ãn, a property that relates Ãn evaluated in two different arguments, and the
long-time behavior of An. The first and second properties will prove useful below when we derive the heat currents
shown in the main text, while the third one is related to the existence of a stable stationary regime for S.

� Complex conjugation: Since G is a real valued function, it follows that Ãn(s) = Ã∗−n(s
∗).

� Translation of the argument: Here we will prove the validity of

Ãn(s) = ÃT
−n(s+ inωd), (A9)

for any driving satisfying V (t) = V (−t). In what follows we will use two vectors and a matrix. The first vector is

Ã(s), whose n-th component coincides with Ãn. The second one is In, whose components are all zero except for
the n-th one, which coincides with the identity matrix. In other words, In is the n-th element of the canonical
basis of the vector space where Ã(s) lives. The matrix is Mm,n(s) = g̃−1(s + imωd)δm,n + (1 − δm,n)Vm−n.

Then, Eq. (A8) can be written as M(s)Ã(s) = I0. Assuming M is invertible, the solution of the previous
equation is

Ãn(s) = IT
nM−1(s)I0. (A10)

The first step to arrive at the desired result is writing Eq. (A8) but with the argument translated an amount
ilωd, i.e., s → s+ ilωd: ∑

n

Mm,n(s+ ilωd)Ãn(s+ ilωd) = δm,01 (A11)

Using the fact that Mm,n(s + ilωd) = Mm+l,n+l(s) and defining new indices n′ = n + l and m′ = m + l, the
previous equation reads ∑

n′

Mm′,n′(s)Ãn′−l(s+ ilωd) = δm′,l1. (A12)

Without loss of generality, we can assume that V (t) = V (−t). This is because we are solving an initial value
problem (where initial values are given at t = 0) and can extend the function V (t) to negative values in an
arbitrary way. If this is the case, then V ∗n = V−n = Vn and, thus, Mm,n(s) = Mn,m(s). Therefore, Eq. (A12)
can be written as ∑

n

Mn,m(s)Ãn−l(s+ ilωd) = δm−l,01, (A13)

where we dropped the tilde in the indices. In order to write Eq. (A13) in matrix form, we define the column

vector Ã↕(s) as the one that contains Ãn−l(s) in the n-th row. That is, it is displaced l rows compared to the

vector Ã(s). Then, Eq. (A13) reads

MT (s)Ã↕(s+ ilωd) = Il. (A14)

Its solution is obtained by inverting MT and multiplying by IT
0 from the left:

Ã−n(s+ inωd) = IT
0 MT−1(s)In (A15)

Comparing Eqs. (A10) and (A15), we conclude that

Ãn(s) = ÃT
−n(s+ inωd). (A16)

� Long-time behavior: Assuming the limit limt→∞An (t) ≡ An (∞) exists and it is finite (which is not the
case for environments with a discrete number of modes), then due to the Laplace final value theorem we have

An (∞) = lims→0 s Ãn (s). Plugging this in Eq. (A8) we arrive at∑
k

Mm,n(0)An(∞) = 0, (A17)
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where M is the matrix defined above. If M(0) is invertible, then the only solution is An(∞) = 0, meaning
that the Green function G decays for long times. One possible criteria to decide about the invertibility of M(0)
is to check if it is a strictly block diagonally dominant matrix (generalized Levy-Desplanques theorem). This
condition can be written as

minn{∥g̃(inωd)∥−1} >
∑
m̸=0

∥Vm∥, (A18)

where ∥ · ∥ is the usual operator norm. The above inequality compares the effect of the dissipation induced
by the environment (the dissipation kernel dominates the left-hand side) and the effect of the driving (which
determines the right-hand side). Therefore, the invertibility is satisfied if the dissipation is strong enough to
enforce the inequality.

4. Unitarity

In this section we write a property that will be useful for later computations and it is the consequence of the unitarity
of the temporal evolution. Unitarity implies that the commutations relations are preserved: [qα(t), p

T
α(t)] = i1∀t.

Imposing this to the solutions of the Heisenberg equations presented above, we arrive at the following condition for
the Green’s function G that must be satisfied at all times:

0 =
1

2
Im

[
eiωαt

∫ t

0

dt′ e−iωαt′CT
α

∫ t′

0

dt′′G(t′, t′′)Cαe
iωαt′′e−iωαt

]

+
1

2
Im

[
e−iωαt

∫ t

0

dt′
∫ t′

0

dt′′ eiωαt′′CT
α GT (t′, t′′)Cαe

−iωαt′eiωαt

]

−
∑
β

∫ t

0

dt′
∫ t

0

dt′′sin[ωα(t− t′)]

× CT
α Im

[∫ t′

0

dt1

∫ t′′

0

dt2 G(t′, t1)Cβe
iωβt1 (mβωβ)

−1
e−iωβt2CT

β G
T (t′′, t2)

]
Cαcos[ωα(t− t′′)]

−
∫ t

0

dt′
∫ t

0

dt′′ sin[ωα(t− t′)]CT
α ⟨i[Xh(t′), XhT (t′′)]⟩Cαcos[ωα(t− t′′)].

(A19)

As discussed in Ref. [22], in the long-time limit this equation can be interpreted as form of the fluctuation-dissipation
relation.

Appendix B: Energy and heat currents

1. Mean energy of a reservoir

Here we will compute the mean energy of one thermal reservoir, ⟨HEα⟩, using the solutions of the Heisenberg
equations presented in Appendix A. In the sections below, we will analyze its long-time limit and then obtain the
heat currents from it. The mean value of HEα reads:

⟨HEα⟩ = tr[m−1α ⟨{pα, pTα}⟩]/4 + tr[mαω
2
α⟨{qα, qTα}⟩]/4. (B1)

In order to compute this, we need to specify the initial state of the environments. We will consider arbitrary initial
states such that

⟨{qα, qTβ }⟩ = (mαωα)
−1Aα(ωα)δαβ

⟨{pα, pTβ }⟩ = mαωα Bα(ωα)δαβ

⟨{qα, pTβ }⟩ = Dα(ωα)δαβ ,

(B2)

where Aα and Bα are positive functions, and Dα is an arbitrary function. Aα, Bα and Dα not only depend on the
frequency of the mode, but also on various parameters of Eα (such as the temperature and squeezing, for example).
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In order to simplify expressions we define two functions fα and gα as

fα(ω) = [Aα(ω) +Bα(ω)]/2

gα(ω) = [Aα(ω)−Bα(ω)]/2.
(B3)

Before continuing, note that

⟨HEα(t = 0)⟩ = 1

2
tr[ωα fα(ωα)] (B4)

and, therefore, we can write fα(ω) = 2nα(ω)+1, where nα(ω) is the mean value of the number operator corresponding
to the mode of frequency ω in Eα at t = 0. Also, since fα is defined for positive frequencies only, we can assume,
without loss of generality, that fα(−ω) = −fα(ω). With the definitions above, we have

⟨{qhα(t1), qhTβ (t2)}⟩ = (mαωα)
−1

{
fα(ωα)Re[e

iωα(t1−t2)] + gα(ωα)Re[e
iωα(t1+t2)] +Dα(ωα) Im[eiωα(t1+t2)]

}
. (B5)

Using the previous equation and the fact that pα = mαq̇α, a straightforward computation leads to

⟨HEα⟩ =
1

2
tr[ωα fα(ωα)]

+
1

4

∫ t

0

dt′
∫ t

0

dt′′ tr
[
m−1α cos[ωα(t

′ − t′′)]CT
α ⟨{Xh(t′), XhT (t′′)}⟩Cα

]
+

1

2
tr

{
m−1α fα(ωα) Im

[∫ t

0

dt′ e−iωαt′CT
α

∫ t′

0

dt′′G(t′, t′′)Cα eiωαt′′

]}

− 1

2
tr

{
m−1α gα(ωα) Im

[∫ t

0

dt′ eiωαt′CT
α

∫ t′

0

dt′′G(t′, t′′)Cα eiωαt′′

]}

+
1

2
tr

{
m−1α Dα(ωα) Im

[∫ t

0

dt′ eiωαt′CT
α

∫ t′

0

dt′′G(t′, t′′)Cα eiωαt′′

]}

+
1

4

∑
β

∫ t

0

dt′
∫ t

0

dt′′ tr
{
m−1α cos[ωα(t

′ − t′′)]

×CT
αRe

[∫ t′

0

dt1

∫ t′′

0

dt2 G(t′, t1)Cβe
iωβt1(mβωβ)

−1 fβ(ωβ) e
−iωβt2CT

β G
T (t′′, t2)

]
Cα

}

+
1

4

∑
β

∫ t

0

dt′
∫ t

0

dt′′ tr
{
m−1α cos[ωα(t

′ − t′′)]

×CT
αRe

[∫ t′

0

dt1

∫ t′′

0

dt2 G(t′, t1)Cβe
iωβt1(mβωβ)

−1 gβ(ωβ) e
iωβt2CT

β G
T (t′′, t2)

]
Cα

}

+
1

4

∑
β

∫ t

0

dt′
∫ t

0

dt′′ tr
{
m−1α cos[ωα(t

′ − t′′)]

×CT
α Im

[∫ t′

0

dt1

∫ t′′

0

dt2 G(t′, t1)Cβe
iωβt1(mβωβ)

−1 Dβ(ωβ) e
iωβt2CT

β G
T (t′′, t2)

]
Cα

}

(B6)

We can rewrite the above expression using the unitarity of the evolution (Eq. (A19)) and a simple consequence of the
properties of the trace functional:

tr

{
m−1α fα(ωα) Im

[∫ t

0

dt′ e−iωαt′CT
α

∫ t′

0

dt′′G(t′, t′′)Cα eiωαt′′

]}

= tr

{
m−1α fα(ωα)

{
1

2
Im

[
eiωαt

∫ t

0

dt′ e−iωαt′CT
α

∫ t′

0

dt′′G(t′, t′′)Cα eiωαt′′e−iωαt

]

+
1

2
Im

[
e−iωαt

∫ t

0

dt′
∫ t′

0

dt′′ eiωαt′′CT
α GT (t′, t′′)Cαe

−iωαt′eiωαt

]}}
.

(B7)
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Doing this, Eq. (B6) transforms into

⟨HEα⟩ =
1

2
tr [ωα fα(ωα)]

+
1

4

∫ t

0

dt′
∫ t

0

dt′′ tr
{
m−1α cos [ωα (t′ − t′′)] CT

α ⟨{Xh (t′) , Xh T (t′′)}⟩Cα

}
− 1

4

∫ t

0

dt′
∫ t

0

dt′′ tr
{
m−1α fα(ωα) sin[ωα(t

′ − t′′)]CT
α ⟨i [Xh(t′), XhT (t′′)]⟩Cα

}
− 1

2
tr

{
m−1α gα(ωα) Im

[∫ t

0

dt′ eiωαt′CT
α

∫ t′

0

dt′′G(t′, t′′)Cα eiωαt′′

]}

+
1

2
tr

{
m−1α Dα(ωα) Im

[∫ t

0

dt′ eiωαt′CT
α

∫ t′

0

dt′′G(t′, t′′)Cα eiωαt′′

]}

− 1

4

∑
β

tr

{
m−1α fα(ωα)

∫ t

0

dt′
∫ t

0

dt′′ sin[ωα(t
′ − t′′)]

× CT
α Im

[∫ t′

0

dt1

∫ t′′

0

dt2 G(t′, t1)Cβe
iωβt1 (mβωβ)

−1
e−iωβt2CT

β G
T (t′′, t2)

]
Cα

}

+
1

4

∑
β

∫ t

0

dt′
∫ t

0

dt′′ tr
[
m−1α cos [ωα (t′ − t′′)]

×CT
αRe

[∫ t′

0

dt1

∫ t′′

0

dt2 G(t′, t1)Cβe
iωβt1 (mβωβ)

−1
fβ(ωβ) e

−iωβt2CT
β G

T (t′′, t2)

]
Cα

]

+
1

4

∑
β

∫ t

0

dt′
∫ t

0

dt′′ tr
{
m−1α cos[ωα(t

′ − t′′)]

×CT
αRe

[∫ t′

0

dt1

∫ t′′

0

dt2 G(t′, t1)Cβe
iωβt1(mβωβ)

−1 gβ(ωβ) e
iωβt2CT

β G
T (t′′, t2)

]
Cα

}

+
1

4

∑
β

∫ t

0

dt′
∫ t

0

dt′′ tr
{
m−1α cos[ωα(t

′ − t′′)]

×CT
α Im

[∫ t′

0

dt1

∫ t′′

0

dt2 G(t′, t1)Cβe
iωβt1(mβωβ)

−1 Dβ(ωβ) e
iωβt2CT

β G
T (t′′, t2)

]
Cα

}

(B8)

We notice that the last two terms in this expression can be conveniently expressed in terms of the spectral density as

Cβe
iωβt1 (mβωβ)

−1
fβ(ωβ) e

−iωβt2CT
β =

∫ ∞
0

dω Iβ(ω)e
iω(t1−t2) fβ(ω). (B9)

In what follows it will be convenient to use the notation

K(ω, ω′, t) =

∫ t

0

dt′e−iω
′t′

∫ t′

0

dt′′G(t′, t′′)eiωt′′ . (B10)

In fact, it will be useful to express K in terms of the An coefficients of the Green’s function. After some calculations
one can show that

K (ω, ω′, t) =
∑
n

[
t sinc[(ω − ω′ + nωd)t/2] an(iω) e

i(ω−ω′+nωd)t/2 + Fn(ω, ω
′)
]
, (B11)

where we defined

an(iω) =

∫ t

0

dt′An(t
′) e−iωt′

Fn(ω, ω
′) =

an(iω)− an[i(ω
′ − nωd)]

i(ω − ω′ + nωd)
.

(B12)
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Both an and Fn are functions of t, but we do not write the explicit dependence in an effort to keep the notation
simple. Finally, we rewrite the mean energy of Eα as

⟨HEα⟩ =
1

2
tr [ωα fα(ωα)]

+
1

4

∫ ∞
0

dω

∫ t

0

dt′
∫ t

0

dt′′ ω cos[ω(t′ − t′′)]tr
{
Iα(ω) ⟨{Xh(t′), XhT (t′′)}⟩

}
− 1

4

∫ ∞
0

dω

∫ t

0

dt′
∫ t

0

dt′′ ω sin[ω(t′ − t′′)]tr
{
Iα(ω) ⟨i [Xh(t′), XhT (t′′)]⟩

}
fα(ω)

+
1

2
tr

{
m−1α gα(ωα) Im

[∫ t

0

dt′ eiωαt′CT
α

∫ t′

0

dt′′G(t′, t′′)Cα eiωαt′′

]}

+
1

2
tr

{
m−1α Dα(ωα)Re

[∫ t

0

dt′ eiωαt′CT
α

∫ t′

0

dt′′G(t′, t′′)Cα eiωαt′′

]}

+
1

8

∑
β

∫ ∞
0

dω′
∫ ∞
0

dω ω′ tr
[
Iα(ω

′)K(ω,−ω′, t) Iβ(ω)K†(ω,−ω′, t)
]
[fβ(ω) + fα(ω

′)]

+
1

8

∑
β

∫ ∞
0

dω′
∫ ∞
0

dω ω′ tr
[
Iα(ω

′)K(ω, ω′, t) Iβ(ω)K†(ω, ω′, t)
]
[fβ(ω)− fα(ω

′)]

+
1

4

∑
β

Re

{∫ ∞
0

dω′
∫ ∞
0

dω ω′ tr
[
Iα(ω

′)K(ω,−ω′, t) Iβ(ω)KT (ω, ω′, t)
]
gα(ω)

}

+
1

4

∑
β

Im

{∫ ∞
0

dω′
∫ ∞
0

dω ω′ tr
[
Iα(ω

′)K(ω,−ω′, t) Iβ(ω)KT (ω, ω′, t)
]
Dα(ω)

}

(B13)

Equation (B13) above is an exact expression valid for all times. Below we will study its long-time limit and compute
the heat currents from it.

2. Long-time behavior of the mean energy

In this section we will study the long-time behavior of the mean energy of one thermal reservoir, which is exactly
given by the Eq. (B13). Provided that a stable stationary regime for S exists, the terms involving Xh decay to zero
for long times. Therefore, in this limit, the time dependence of ⟨HEα⟩ is contained in the K function alone (we will
ignore the fourth and fifth terms on the right-hand side for now; see the note below). Moreover, we will study the
average over a period τd of the time derivative of Eq. (B13) and, for this reason, we can drop all constant terms
appearing in such equation (among them, the contribution of the thermal energy and other terms, which we will show
below). To complete our calculation and analyze the long-time limit of the energy, we need to examine the last four
terms in Eq. (B13). Here we discuss in detail the behavior of the second one of those terms (since the analysis of the
others is completely analogous). Using the expression for K above, the trace in that term can be written as

tr[Iα(ω
′)K(ω, ω′, t)Iβ(ω)K†(ω, ω′, t)]

=
∑
n

t2 sinc2[(ω − ω′ + nωd)t/2]tr[Iα(ω
′)an(iω)Iβ(ω)a

†
n(iω)]

+
∑

n,m̸=n

t2 sinc[(ω − ω′ + nωd)t/2] sinc[(ω − ω′ +mωd)t/2] e
i(n−m)ωdt/2 tr[Iα(ω

′)an(iω)Iβ(ω)a
†
m(iω)]

+
∑
n,m

2 t sinc[(ω − ω′ + nωd)t/2]Re
{
ei(ω−ω

′+nωd)t/2 tr[Iα(ω
′)an(iω)Iβ(ω)F

†
m(ω, ω′)]

}
+
∑
n,m

tr[Iα(ω
′)Fn(ω, ω

′)Iβ(ω)F
†
m(ω, ω′)].

(B14)

As we mentioned above, our goal is to study the average over a period τd of the time derivative of ⟨HEα⟩. Therefore,
we will only keep terms which are linear in time (the ones that oscillate or are constant will vanish after differentiation
and averaging). In order to find those terms, we will make use of the fact that

lim
t→∞

t sinc(ωt) = lim
t→∞

t sinc2(ωt) = 2π δ(ω), (B15)
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and

lim
t→∞

an(iω) = Ãn(iω), (B16)

where Ãn(iω) is to be understood as

Ãn(iω) = lim
σ→0+

Ãn(σ + iω). (B17)

Also, in the long-time limit, Fn is constant. Therefore, in the long-time limit, the second term on the right-hand side
of Eq. (B14) oscillates with frequencies that are multiples of ωd, and the third and fourth one tend to a constant.
Thus, all these terms can be disregarded and the only relevant one turns out to be the first one, which behaves as

t2sinc2[(ω − ω′ + nωd)t/2]tr[Iα(ω
′)an(ω)Iβ(ω)a

†
n(ω)] → 2πtδ(ω − ω′ + nωd)tr[Iα(ω

′)Ãn(iω)Iβ(ω)Ã
†
n(iω)]. (B18)

Hence, for long times, the relevant terms of the mean energy of Eα are

⟨HEα⟩ →
π

4

∑
n,β

∫ ∞
0

dω ω tr[Iα(ω)Ãn[i(ω − nωd)]Iβ(ω − nωd)Ã
†
n[i(ω − nωd)]][fβ(ω − nωd)− fα(ω)]t (B19)

where the summation is over all n ∈ Z and we used the property Ãn(iω) = Ã∗−n(−iω). All other terms are either
constant or oscillatory and they vanish when averaged for long times.

Note regarding the terms in Eq. (B13) that include the functions gα and Dα. These terms appear to significantly
contribute in the long-time average only in the case in which ωa = kωd/2 with k some integer but, if this were true,
it would create a discontinuity in the average value of the heat current (as a function of ωα). This, of course, cannot
be, because ⟨HEα⟩ and its derivative are continuous functions of ωα for any t > 0 and, thus, their average for long
times must be a continuous function too. Therefore, their contribution must vanish (due to a condition analogous to
Eq. (A19) that, so far, remains elusive) and the correct expression for the case ωa = kωd/2 is the one we obtained
above (Eq. (B19)), which is continuous for any value of ωα.

3. Average heat current of a reservoir

In this section we will compute the average heat current exchanged with a thermal reservoir in the long-time limit,
˙̄Qα, which, as we previously said, is obtained by averaging d⟨HEα⟩/dt in a period of the driving for long times. Then,
we will show that the obtained expression can be split as the sum of a contribution arising from resonant and another

one arising from nonresonant processes. From Eq. (B19) it is immediate that ˙̄Qα is

˙̄Qα =
π

4

∑
n,β

∫ ∞
0

dω ω tr[Iα(ω)Ãn[i(ω − nωd)]Iβ(ω − nωd)Ã
†
n[i(ω − nωd)]][fβ(ω − nωd)− fα(ω)]. (B20)

In order to separate the contributions of the resonant and nonresonant processes, the first step is to split the summation
for positive and negative values of n:

˙̄Qα =
π

4

∑
β

∫ ∞
0

dω ω tr[Iα(ω)Ã0(iω)Iβ(ω)Ã
†
0(iω)][fβ(ω)− fα(ω)]

+
π

4

∑
n>0,β

∫ ∞
0

dω ω tr[Iα(ω)Ãn[i(ω − nωd)]Iβ(ω − nωd)Ã
†
n[i(ω − nωd)]][fβ(ω − nωd)− fα(ω)]

+
π

4

∑
n<0,β

∫ ∞
0

dω ω tr[Iα(ω)Ãn[i(ω − nωd)]Iβ(ω − nωd)Ã
†
n[i(ω − nωd)]][fβ(ω − nωd)− fα(ω)].

(B21)

The first term on the right hand side of Eq. (B21), which we will call ˙̄QST
α , corresponds to the static heat current and

it is such that
∑

α
˙̄QST
α = 0. That is, there is no net heat flow in the absence of driving. With a change of variables
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in the integrand we can write the second term on the right hand side of Eq. (B21) as

∑
n>0,β

∫ ∞
0

dω ω tr[Iα(ω)Ãn[i(ω − nωd)]Iβ(ω − nωd)Ã
†
n[i(ω − nωd)]]{fβ(ω − nωd)− fα(ω)}

=
∑

k>0,β

∫ kωd

0

dω ω tr[Iα(ω)Ãk[i(ω − kωd)]Iβ(kωd − ω)Ã†k[i(ω − kωd)]][fβ(kωd − ω) + fα(ω)]

+
∑

k>0,β

∫ ∞
0

dω (ω + kωd) tr[Iα(ω + kωd)Ãk(iω)Iβ(ω)Ã
†
k(iω)][fβ(ω)− fα(ω + kωd)].

(B22)

Lastly, on the third term on the right-hand side of Eq. (B21) we change the sign of the n’s:

∑
n<0,β

∫ ∞
0

dω ω tr[Iα(ω)Ãn[i(ω − nωd)]Iβ(ω − nωd)Ã
†
n[i(ω − nωd)]][fβ(ω − nωd)− fα(ω)]

=
∑

k>0,β

∫ ∞
0

dω ω tr[Iα(ω)Ã−k[i(ω + kωd)]Iβ(ω + kωd)Ã
†
−k[i(ω + kωd)]][fβ(ω + kωd)− fα(ω)].

(B23)

Note that in all summations we replaced the index n that was an integer for k, that can only be a positive integer to
be consistent with the equations in main text. Introducing the changes described above, Eq. (B21) can be written as

˙̄Qα =
π

4

∑
β

∫ ∞
0

dω ω tr[Iα(ω)Ã0(iω)Iβ(ω)Ã
†
0(iω)][fβ(ω)− fα(ω)]

+
π

4

∑
k>0,β

∫ kωd

0

dω ω tr[Iα(ω)Ãk[i(ω − kωd)]Iβ(kωd − ω)Ã†k[i(ω − kωd)]][fβ(kωd − ω) + fα(ω)]

+
π

4

∑
k>0,β

∫ ∞
0

dω (ω + kωd) tr[Iα(ω + kωd)Ãk(iω)Iβ(ω)Ã
†
k(iω)][fβ(ω)− fα(ω + kωd)]

+
π

4

∑
k>0,β

∫ ∞
0

dω ω tr[Iα(ω)Ã−k[i(ω + kωd)]Iβ(ω + kωd)Ã
†
−k[i(ω + kωd)]][fβ(ω + kωd)− fα(ω)].

(B24)

Thus, we can write the total heat current exchanged with Eα as

˙̄Qα = ˙̄QST
α + ˙̄QNR

α + ˙̄QR
α . (B25)

The contribution of the nonresonant processes, ˙̄QNR
α , is contained in the second term on the right-hand side of Eq.

(B24) and can be written as

˙̄QNR
α =

∑
k>0,β

∫ kωd

0

dω (kωd − ω) p̃
(k)
α,β(ω)[nβ(ω) + 1/2] +

∑
k>0,β

∫ kωd

0

dω ω p̃
(k)
β,α(ω)[nα(ω) + 1/2], (B26)

where in the first term we made a change of variable in the integrand and in the second one, we used the translation
of the argument property of the Ãk coefficients. Also, we defined the emission rate per unit frequency

p̃
(k)
α,β(ω) =

π

2
tr[Iα(kωd − ω)Ã−k(iω)Iβ(ω)Ã

†
−k(iω)] (B27)

and used the relation fα(ω) = 2nα(ω) + 1. The nonresonant processes correspond to the creation of two pairs of
excitations in the reservoirs, one in the mode of frequency kωd − ω and the other one, in the one with frequency ω,
such that both frequencies add up to kωd. The first term on the right-hand side of Eq. (2) corresponds to the case
in which mode kωd − ω is excited in Eα, while mode ω is excited in Eβ . Analogously, the second term corresponds to
the opposite case: mode ω is excited in Eα and mode kωd−ω is excited in Eβ . These processes are depicted in Fig. 3.
The first term on the right hand side of Eq. (B26) is represented in gray and the second one, in green. On the other

hand, the contribution of the resonant processes, ˙̄QR
α , comes from the third and fourth terms on the right-hand side
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FIG. 3. Nonresonant processes between two reservoirs Eα and Eβ .

of Eq. (B24). These can be written as

˙̄QR
α =

∑
k>0,β

∫ ∞
0

dω (ω + kωd) p
(k)
α,β(ω)nβ(ω)−

∑
k>0,β

∫ ∞
0

dω (ω + kωd) p
(−k)
β,α (ω + kωd)nα(ω + kωd)

+
∑

k>0,β

∫ ∞
0

dω ω p
(−k)
α,β (ω + kωd)nβ(ω + kωd)−

∑
k>0,β

∫ ∞
0

dω ω p
(k)
β,α(ω)nα(ω)

(B28)

where we defined the transition rate per unit frequency

p
(k)
α,β(ω) =

π

2
tr[Iα(ω + kωd)Ãk(iω)Iβ(ω)Ã

†
k(iω)], (B29)

and used the translation of the argument property to arrive at the second and third terms on the right-hand side of
Eq. (B28). The resonant processes correspond to the transport of excitations between different environmental modes,
due to absorption (or emission) of energy from (or into) the driving field. The first two terms on the right-hand side
of Eq. (B28) correspond to opposite processes. The first one, being positive, indicates that an excitation is being
transported from the mode ω in Eβ to the mode ω + kωd in Eα, while absorbing a packet of energy kωd from the
driving field. The second one corresponds to the reverse process: an excitation is being transported from the mode
ω + kωd in Eα to the mode ω in Eβ , while dumping kωd into the driving field. Analogously, the third and fourth
terms on the right-hand side of Eq. (B28) correspond to opposite processes too. The third one describes an excitation
being transported from the mode ω + kωd in Eβ to a mode ω in Eα, while dumping kωd into the driving field. The
fourth one, in turn, describes an excitation being transported from the mode ω in Eα to a mode ω+ kωd in Eβ , while
absorbing kωd from the driving field. These processes are depicted in Fig. 4. The first two terms on the right hand
side of Eq. (B28) are represented in gray, and the third and fourth ones, in green.

Notably, using the translation of the argument property of the Ãk coefficients, one can show that the transition
rates per unit frequency of opposite processes are equal. That is,

p
(−k)
β,α (ω + kωd) = p

(k)
α,β(ω). (B30)

This is nothing but the principle of detailed balance. Using this relation, Eq. (B28) can be written as the sum of two
terms only:

˙̄QR
α =

∑
k>0,β

∫ ∞
0

dω (ω + kωd) p
(k)
α,β(ω)[nβ(ω)− nα(ω + kωd)]−

∑
k>0,β

∫ ∞
0

dω ω p
(k)
β,α(ω)[nα(ω)− nβ(ω + kωd)]. (B31)
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FIG. 4. Resonant processes between two reservoirs Eα and Eβ .

Equation (B31) shows that, although the transition rate is the same for opposite processes, there is a net flow of
excitations in the direction in which the occupation number is lowest. For example, if nβ(ω) > nα(ω + kωd) in the
first term on the right hand side of Eq. (B31), then the net transport of excitations is from the mode ω in Eβ to the
mode ω + kωd in Eα.

4. Total heat current

The total heat exchanged ∆Q is obtained from the equations above by adding the contributions from all reservoirs.

That is, ∆Q = τd
∑

α
˙̄Qα. The only computation needed is a change of indices in the summation (α ↔ β) to cancel

duplicate terms. Explicitly, we have

∆QNR = τd
∑
k,α,β

kωd

∫ kωd

0

dω p̃
(k)
α,β(ω)[nβ(ω) + 1/2] (B32)

and

∆QR = τd
∑
k,α,β

kωd

∫ ∞
0

dω p
(k)
α,β(ω)[nβ(ω)− nα(ω + kωd)] (B33)

where the summation is over positive integer k’s. This proves Eqs. (2) and (3) of the main text, which are the basis
of our analysis for the properties of linear thermal engines.

Appendix C: Relation between ˙̄QS and ˙̄QE

In this section we will prove the statement given in the Sec. III in the main text: the average heat current ˙̄QS is
determined by the average variation of energy of the reservoirs. In order to do this, we first consider the definitions
of the heat currents of the working medium and reservoirs, respectively:

Q̇S = −i⟨[HS , HS,E ]⟩
Q̇E = −i⟨[HE , HS,E ]⟩.

(C1)
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It is evident that Q̇S + Q̇E = −i⟨[H,HS,E ]⟩ = −d⟨HS,E⟩/dt. We will now show that d⟨HS,E⟩/dt can be written as
the derivative of a periodic function and, thus, when averaged over a period of the driving for long times it vanishes.

Therefore, we obtain ˙̄QS +
˙̄QE = 0, as we stated in the main text. A straightforward computation shows that

Q̇S = −⟨PTM−1
∑
α

Cαqα⟩

Q̇E = ⟨XT
∑
α

Cαm
−1
α pα⟩.

(C2)

Finally, using Heisenberg’s equation of motion to eliminate the coordinates of the environment we arrive at

Q̇S + Q̇E =
d

dt
⟨XT [Ṗ + V (t)X]⟩. (C3)

As the stationary state of S is τd periodic, the right-hand side of the previous equation is the derivative of a τd-periodic
function, as we wanted to prove.

Note that this implies that the it is not necessary to include the interaction energy when defining the work produced
and heat exchanged by the engine in the main text in Eq. (1) (as it is customary in strong-coupling thermodynamics
[3, 27–29]), because it will vanish when computing the average value of its derivative.

Appendix D: Clausius inequality

In this section we will derive the form of Clausius inequality shown in Eq. (6) in the main text. We begin from the
equation for the heat flowing from the working medium to the reservoir:

∆QR
E←S/τd = −

∑
k,α,β

∫
I−

dω ω p
(k)
αβ (ω)[nβ(ω)− nα(ω + kωd)]

+
∑
k,α,β

∫
I+

dω(ω + kωd)p
(k)
αβ (ω)[nβ(ω)− nα(ω + kωd)]

(D1)

In the first term in Eq. (D1) we have nβ(ω) < nα(ω + kωd) and, therefore, ω > [Ωβ(ω)/Ωα(ω + kωd)](ω + kωd).
Conversely, in the second term we have nβ(ω) > nα(ω + kωd) and, therefore, ω + kωd > [Ωα(ω + kωd)/Ωβ(ω)]ω. By
replacing these inequalities in the integrands of their respective terms, and considering the minimum of the quotient
of characteristic frequencies in order to write them outside the integrals and summations, we arrive at

∆QR
E←S/τd > −min{Ωβ(ω)/Ωα(ω + kωd)}

∑
k,α,β

∫
I−

dω(ω + kωd)p
(k)
αβ (ω)[nβ(ω)− nα(ω + kωd)]

+ min{Ωα(ω + kωd)/Ωβ(ω)}
∑
k,α,β

∫
I+

dω ω p
(k)
αβ (ω)[nβ(ω)− nα(ω + kωd)].

(D2)

Equation (D2) can be bounded again by considering the minimum between both minimums:

∆QR
E←S/τd > min{m, 1/M}

−
∑
k,α,β

∫
I−

dω(ω + kωd)p
(k)
αβ (ω)[nβ(ω)− nα(ω + kωd)]

+
∑
k,α,β

∫
I+

dω ω p
(k)
αβ (ω)[nβ(ω)− nα(ω + kωd)]

 ,

(D3)

where m = min{Ωα(ω)/Ωβ(ω+kωd)} and M = max{Ωα(ω)/Ωβ(ω+kωd)} and we used the fact that, for any function
f , min{1/f} = 1/max{f}. By noticing that the right hand side of Eq. (D3) is |∆QR

E→S |/τd, we arrive at the desired
inequality.
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Appendix E: Cost of preparing nonthermal reservoirs

Consider the definition of the efficiency of the engine shown in the main text (Eq. (7)):

η =
|∆QR

E→S | −∆QR
E←S −∆QNR

|∆QR
E→S |

. (E1)

This would be the efficiency of the engine computed in step (iii) of the process described there. Now, let us include
the energy invested C in step (ii) to transform a thermal reservoir in a nonthermal one. Since this cost does not reduce
the amount of work done by the engine, it should be included only in the denominator of η (which represents the
total energy invested). We call this new efficiency η̃:

η̃ =
|∆QR

E→S | −∆QR
E←S −∆QNR

|∆QR
E→S |+ C

=
1

1 + C/|∆QR
E→S |

η. (E2)

In the main text we showed that η < ηg, thus

η̃ <
1

1 + C/|∆QR
E→S |

ηg. (E3)

As we added the cost to obtain the nonthermal reservoir starting from a thermal one, this bound should be similar
to the Carnot limit for the complete process:

1

1 + C/|∆QR
E→S |

ηg ≃ ηc. (E4)

Solving this equation for C/|∆QR
E→S |, we obtain Eq. (9) shown in the main text.
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