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Steroid hormone receptors (SHRs) belong to a large family of ligand-activated

nuclear receptors that share certain characteristics and possess others that

make them unique. It was thought for many years that the specificity of

hormone response lay in the ligand. Although this may be true for pure

agonists, the natural ligands as progesterone, corticosterone and cortisol

present a broader effect by simultaneous activation of several SHRs.

Moreover, SHRs share structural and functional characteristics that range

from similarities between ligand-binding pockets to recognition of specific

DNA sequences. These properties are clearly evident in progesterone (PR) and

glucocorticoid receptors (GR); however, the biological responses triggered by

each receptor in the presence of its ligand are different, and in some cases,

even opposite. Thus, what confers the specificity of response to a given

receptor is a long-standing topic of discussion that has not yet been

unveiled. The levels of expression of each receptor, the differential

interaction with coregulators, the chromatin accessibility as well as the DNA

sequence of the target regions in the genome, are reliable sources of variability

in hormone action that could explain the results obtained so far. Yet, to add

further complexity to this scenario, it has been described that receptors can

form heterocomplexes which can either compromise or potentiate the

respective hormone-activated pathways with its possible impact on the

pathological condition. In the present review, we summarized the state of

the art of the functional cross-talk between PR and GR in breast cancer cells

and we also discussed new paradigms of specificity in hormone action.
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Introduction

Steroid hormones play diverse roles in the regulation of

biological functions such as pregnancy, sex organ development,

inflammation and immune responses, cholesterol distribution

and brain function (1, 2). These effects are mediated by the

members of the highly conserved Steroid Hormone receptor

(SHR) sub-family that includes receptors for estrogens (ER),

progestins (PR), androgens (AR), glucocorticoids (GR) and

mineralocorticoids (MR) (3) (Figure 1A i). In fact, a general

structural organization is common to all nuclear receptor family

members, although the regulation of their quaternary structure

may differ (5).

The SHR´s structure has been extensively discussed in

excellent reviews (11–13). Briefly, SHRs are composed of three

different domains: an N-terminal ligand-independent activation

function 1 domain composed of an intrinsically disordered

region (AF-1), a central DNA-binding domain (DBD), which

links to the C-terminal ligand-binding and the activation

function 2 domain (LBD/AF-2) through a hinge region.

Particularly, the AF-2 domain is a primarily hydrophobic

groove formed by residues from helices H3, H4 and H12 of

the LBD/AF-2 domain, where the H12 position plays a critical

role in the AF-2 spatial conformation and SHRs function. In fact,

AF-2 interacts with specific residues present in particular

coregulators’ amino acid motifs (LxxLL and I/LxxII for

coactivators and corepressors families, respectively) arranged

on one side of their amphipathic helix (7). Here we will focus on

PR and GR, two receptors that shared several features ranging

from several aspects of ligand-binding to the DNA sequences to

which the receptor binds (Figure 1A ii). In the absence of

ligands, these receptors are part of a protein complex

associated with chaperones and co-chaperones, which increase

the affinity of SHRs to their ligands in vivo (14). Early

reconstitution experiments with GR (15) and with PR

established that the central proteins in the activation pathway

include Hsp40, Hsp70, Hsp90, HOP, and p23 (16, 17). Recently,

has been shown that coordinated chaperone interactions

enhance stability, function and regulation of GR (18).

Activation occurs when the ligand interacts with the receptor

and initiates a signal transduction cascade which ultimately leads

to changes in gene expression, whose canonical pathway is

depicted in Figure 1B i. PR and GR present a heterogeneous

distribution concentrated in liquid condensates or foci

(Figure 1B ii). The formation of these discrete foci (19–29),

containing ~40-80 receptor molecules have been reported (30).

This nuclear compartmentalization would modulate the kinetics

of biochemical reactions and thus would actively participate the

transcription process (reviewed in (4)).

SHR´s mechanism of action involves genomic and

nongenomic processes. Genomic actions result from the direct

binding of ligand-activated receptor complexes to specific

hormone responsive DNA elements located at the enhancers
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and promoters of target genes; and/or the ligand-receptor

recruitment to other regions in the genome, relying on

additional transcription factors such as FOXA1, GATA-3,

STAT5, NFk-B, and AP-1, among others (31, 32).

Several families of co-activators interact directly with ligand-

receptor complexes. Some of them do so through the AF-1

domain (33, 34), while others by means of the LBD/AF-2 (35). In

this way, the regulation of gene transcription by these receptors

is closely associated with the reorganization of chromatin at

target genes.

In addition to these direct genomic effects, steroid hormones

induce rapid nongenomic responses similar to those initiated by

peptide growth factors (36, 37). For example, progestins can

activate Src/p21ras/Erk and the PI3K/Akt pathways, either via

an interaction of the PR with ERa, which itself activates c-Src

and PI3K, or by direct interaction of PR with the SH3 domain of

c-Src (38–40). A growing body of evidence suggests that GR may

also act via nongenomic mechanisms. Glucocorticoid activation

of a membrane associated GR regulates gap junction

intercellular communication and neural progenitor cell

proliferation by a mechanism that requires c-Src activity and

rapid MAPK-dependent phosphorylation of connexin-43 (41).

Traditionally, the genomic and nongenomic actions of

steroid hormones have been considered as two independent

pathways, but we found that both pathways converge in the

modification of structural components of the target

chromatin (42).

The breast develops predominantly after birth: a poorly

developed ductal system initially begins to unfold during

puberty and gains in complexity during adulthood (43). From

pregnancy to lactation, lobuloalveolar growth is followed by the

complete differentiation of the mammary epithelium and at

weaning, a dramatic switch from survival to death signaling

occurs, leading to mammary gland involution. During these

periods experienced throughout a woman’s life, hormones

promote first mammary gland development resulting in ductal

elongation, then in adulthood, through recurrent estrous cycles

trigger side branching and upon each pregnancy they control

cyclical periods of cellular proliferation, differentiation and

regression of the mammary epithelium (44). While ER is

required at an earlier stage to induce ductal elongation, PR is

needed later for side branching and alveologenesis (44–46).

Progestins were described to be involved in driving cell

proliferation, thus favoring breast cancer development but also

to inhibit ER-dependent breast tumorigenesis (7, 47). Moreover,

progestins also inhibit the production and secretion of milk and

stimulate the proliferation of epithelial cells during late

pregnancy (48). On the other hand, glucocorticoids (GCs) play

a key role at puberty and pregnancy (49, 50); they promote

lactation and the synthesis of milk proteins, maintaining the

differentiation stage of the mammary epithelium (51–53). GR is

expressed in all stages from normal to cancerous breast tissue

(54, 55).
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FIGURE 1

(A) Domain structure of SHRs. i) Basic domain structure of SHRs is composed of an unstructured N-terminal domain (NTD) that contains the
Activation Function 1 (AF-1) surface, a zinc finger DNA-binding domain (DBD), a flexible hinge region, and a LBD that binds to ligands and
interacts with co-regulator proteins through the Activation Function 2 (AF-2) surface. ii) Domain size and amino acid length of different
members of the SHRs sub-family. The DBD and LBDs are the most conserved regions whereas the other domains are more variable in length
and sequence composition. (B) Mechanisms of action of SHRs. Individual action i) The canonical pathway is shown. Steroid hormone binding to
the steroid hormone receptor (SHR), often in the cytoplasm, causes the receptor to undergo a conformational change and translocate to the
nucleus, where it interacts with specific DNA sequences to regulate transcription of target genes. ii) Distribution of SHRs in liquid condensates
or foci in the nucleus [Reviewed in (4)]. iii) Steroid hormone receptor could form multimers or quaternary structure after DNA binding (5, 6).
Interesting, this mechanism brings together regions that may be distant in the linear genome. Crosstalk between SHRs. iv) The SHRs co-
recruitment to DNA response elements occurs in presence of both ligands. As a result, this crosstalk triggers a specific gene program. SHRs=
ERa/PR (7); SHRs= GR/PR (8); SHRs= ERa/GR (9). v) Redirection mechanism in which the presence of R5050 in GC-free medium leads to the
binding of GR to REL and FHOX1 motifs and repress the expression genes required for PR function (8). On one hand, it has been described that
R5020 can directly activate and could drive GR binding (10) but R5020 activated PR could also participate indirectly stabilizing REL and/or
FOXH1, increasing GR binding. This possibility, although feasible, requires further investigation.
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PR in mammary epithelial cells:
Different mechanisms engaged
depending on the cell type and
clinical status

PR is expressed from a single gene as two main isoforms,

PRA (94 kDa) and PRB (116 kDa) (56, 57), both are transcribed

from two distinct promoters and exhibit different transcriptional

and biological activities as ligand-activated transcription factors.

PRB is a full-length receptor; PRA is a truncated form of PRB

lacking the N-terminal 164 amino acids (56, 58). Both isoforms

are usually co-expressed at similar levels in normal breast while a

significant increase in PRA or PRB was detected in breast cancer

that correlates with lesion progression, from the normal state to

malignancy. In this regard, the PRA/PRB ratio has been proposed

as a prognostic and predictive factor for antiprogestin

responsiveness in breast cancer (59). Some reports indicated

that a high ratio of PRA/PRB is associated with worse prognosis,

and recurrence after tamoxifen (60, 61), yet other studies

concluded that higher PRA/PRB are related with biomarkers of

better prognosis (59, 62). These contradictory results speak

clearly that the mechanism of action of PR is more complex

than we originally thought and requires further investigation.

Moreover, PRA and PRB can form homodimers or heterodimers

that exhibit distinct transcriptional regulatory functions by

targeting different subsets of genes (63–66).

In the mammary gland, the luminal epithelium forms the

inner layer of the ducts and the basal epithelium harbors

myoepithelial cells that form the outer layer of the mature

mammary ducts as well as stem and progenitor cells. The

mammary ducts also comprise fibrous connective tissue, and

variable amounts of adipose tissue (43, 67). In the adult mouse

mammary gland, PR is expressed only in a fraction of the

luminal epithelial cells, where progesterone promotes alveolar

growth by a paracrine mechanism. In PR+ breast luminal cells

progesterone upregulates RANKL expression. Then, RANKL

binds to RANK expressed on the surface of neighboring PR-

luminal cells or basal cells, activating downstream pathways of

cell proliferation, expansion, and survival. Progesterone can also

induce adjacent PR+ cell proliferation by a cell-autonomous,

CCND1-dependent mechanism. Moreover, progesterone also

elicits the proliferation of PR- luminal epithelial cells by a

paracrine mechanism involving RANK and the NFkB
signaling pathway (68).

Most of the research performed so far has been carried out in

breast cancer cell lines, with very few studies conducted in

normal human breast. Therefore, the role of PR in mammary

physiology is underrepresented. This is justified by the loss of

receptors detected in normal mammary cells once in culture.

However, some steps have already been taken to overcome this

issue. In 2009 Graham et al. reported the development and
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validation of a physiologically relevant model of matrix-

embedded normal human breast cells, which was appropriate

for studying hormone action in the normal breast (69).

Moreover, Clarke et al. performed genome wide PR binding

studies in breast cancer cells and in immortalized normal breast

cells (70). Although PR binding was correlated with

transcriptional outcome in both cell lines, there was a

remarkably low overlap between the PR cistromes and in

transcriptional targets. Moreover, distinct patterns of

enrichment of known cofactor binding motifs were detected,

with FOXA1 sites over-represented in breast cancer binding

regions and NF1 and AP-1 motifs uniquely enriched in normal

cells (70). What determines this difference? The expression levels

and/or activation of the cofactors that participate in PR signaling

could explain these variations. Hence, the pioneer factor FOXA1

would be a tumoral cofactor of PR. Conversely, NF1 and AP-1

would be the transcription factors chosen by PR in the normal

context. An in-depth analysis of the differences in gene

expression and PR binding in systems that adequately

recapitulate both normal and breast cancer systems, may

provide clinically valuable information on hormonal action.

Thus, cofactor levels may modulate PR specificity (70).

Functional studies, performed in human breast, support that

PR+/ER+ cells do not proliferate in direct response to hormone

signals, but rather exert a paracrine effect on the surrounding

PR-/ER- cells (71, 72). In contrast, almost 70% of breast cancers

express ER and PR and require their ligands during breast cancer

progression, suggesting that these cells switch from paracrine to

autocrine mechanisms, as they acquire the ability to proliferate

during the tumorigenic process. However, the mechanisms that

drive this “switch” are not known. In this regard, the presence of

tumoral cofactors such as FOXA1 or the availability of other

receptors could help to redirect PR and/or ER binding towards

an oncogenic program. Indeed, as it has been described for ER

and PR, the formation of receptor heterocomplexes in the

presence of both ligands could regulate the process towards

malignancy in PR+/ER+ cells (7).
GR in mammary epithelial cells: Its
dual role in cell proliferation/
differentiation depending on the
cellular context

It is well known that GR mediates the effects of stress

hormones, and of synthetic derivatives that are widely used in

the clinic as anti-inflammatory and immunosuppressive agents

(73). In the mammary gland, GR was found strongly localized in

the nuclei of myoepithelial cells surrounding lobular and duct

units and occasionally localized in the nuclei of stromal and

endothelial cells (74). The GR nuclear localization indicates that
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the receptor is transcriptionally active, since the inactive GR

resides mainly in the cytoplasm bound to heat shock proteins

and immunophilins (14, 75).

In mammary development, GR was shown to be essential for

cell proliferation during lobulo-alveolar development and to

contribute to mammary lobular unit spatial formation (50). Of

note, GCs also exert anti-proliferative and anti-apoptotic activity

in mammary epithelial breast cancer cell lines (76, 77). These

steroids are used in the treatment of metastatic breast cancer to

reduce the side effects produced by the chemotherapy, and to

treat symptoms related to advanced cancer. However, despite the

fact that GR expression in mammary tissue declines from

normal to precancerous lesions and to invasive breast

carcinoma (54, 78), the increment in stress hormones during

breast cancer progression results in GR activation even at distant

metastatic sites. This, in turn, increases intra-tumor

heterogeneity and colonization, therefore reducing cell

survival. These observations suggest that caution is needed

when including GCs in the treatment of breast cancer

patients (79).

Activated GR undergoes phosphorylation, oligomerization

and nuclear translocation (80). In the nucleus, the receptor is

predominantly recruited to pre-accessible sites along with

chromatin remodeling enzymes (81). Interestingly, GR is also

able to initiate DNAse hypersensitive sites as a pioneer factor

(82–84).

Like PR, chromatin remodeling factors regulate GR binding

to DNA and thus, are involved in the overall function of GR.

This points out the chromatin landscape as a major contributing

factor to the GR-regulated cell-type specific gene expression (84–

90). In fact, Johnson et al. reported that all GR binding events

involving the SWI/SNF remodeling complex are either pre-

recruited by other factors or recruited by the receptor itself (88).

In mouse mammary epithelial cells, 51% of pre-programmed

GR binding sites are enriched in the pioneer transcription factor

AP-1 (89), which along with GR triggers the recruitment of

several remodelers such as Brg1, Chd4, and Snf2h (91).

Nevertheless, activated GR induces de novo remodeling of

chromatin at a minority (~15%) of GR binding sites in a

highly tissue-specific manner (85, 89, 90, 92, 93). The current

evidence suggests that in mammary epithelial cells this

pioneering capacity of AP-1 would be relevant for regulating

chromatin accessibility not only at GR target enhancers but also

at other genomic regions (89).

The oligomeric status of the GR has also been considered to

play a key role in the mechanism of action of the activated

receptor. Moreover, in the late 1990s the oligomerization state

was proposed as a parameter in the search for synthetic ligands

with dissociate GC effects (6). In this sense, we have reported

that hormone-activated GR adopts a dimer configuration in the

nucleus of living murine mammary adenocarcinoma cells (94)

and upon binding to a specific DNA binding site the GR dimer

becomes a tetramer (Figure 1B iii) (5, 6). Of note, tetrameric
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configuration was also detected in activated PR complexes in the

same cells (5). The influence of DNA binding on the quaternary

structure of the GR proposes a similarity to an allosteric

structural transition of the receptor once bound to its target

DNA region (95–97).
Functional crosstalk between SHRs:
Complexity comes to the forefront

Although at different concentrations, various hormones are

present simultaneously in the bloodstream or locally at their

target cells. For instance, estrogens that are governed by the

menstrual cycle coincide at any time with high levels of GCs,

which are regulated by stress and circadian cycles. These

multiple signals converge to the same cell and, together, they

participate in the cellular response. In this sense, the

mechanisms of hormonal action need to be studied in an

integrated manner, where different receptors could be

activated simultaneously by their cognate ligands.

GCs exert an antagonistic effect on estrogen-dependent cell

growth in ER+/GR+ breast carcinoma cells and reduce their cell

proliferation through a functional crosstalk between both

receptors (Figure 1B iv) (9, 32, 98–100). On the other hand,

also in breast cancer models, it has been proposed that PR

redirects ERa chromatin binding events. ERa and PR form a

complex in the presence of both ligands, resulting in a unique

gene expression program that is associated with good clinical

outcome (Figure 1B iv) (7). In this case, it has been proposed that

PR functions as a molecular rheostat to control ERa chromatin

binding and transcriptional activity.

Furthermore, it was recently reported the generation of

metastasis-competent circulating tumor cells (CTCs) in

patients with breast cancer occur during sleep, in the rest

phase; while CTCs generated during the active phase are

devoid of metastatic ability. The authors found that key

circadian rhythm hormones such as melatonin, testosterone

and GCs dictate CTC generation dynamics (101). Treatment

with the synthetic GC dexamethasone (DEX) or testosterone did

not affect primary tumor size but resulted in a marked reduction

in single CTCs and CTC clusters (101). These key effects of

hormones that determine the metastatic capacity of cancer cells

are likely to occur in the presence of both GCs and androgens,

thus, a putative crosstalk between both activated receptors could

be directly operating in this process.

Unlike the functional connections between ERa with PR and

GR, or AR with ERa and GR, few studies have addressed the

influence of GR on the transcriptional activity of PR and vice

versa. Similarities in protein structure as well as in the DNA

sequences to which the receptors bind are readily evident for PR

and GR (>90% sequence identity between their DNA binding

domains (DBD). However, the resulting biological response
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differs markedly. For example, the association of progestins with

breast cancer incidence and progression contrasts with the

growth suppressive action of GCs on ER+/PR+ breast tumor

cells (102, 103). In fact, in those cell types, increased circulating

levels of progestins and estrogens and/or overexpression of their

receptors lead to uncontrolled cell division (47, 104). On the

other hand, previous works suggested that GR would act as a

suppressor of proliferation (52, 105) as well as a cell death

inducer in tumoral mammary epithelium (106).

To address the existence of a potential crosstalk between PR

and GR, we used PR+/GR+ breast cancer cell lines (107, 108)

where we found that GC-free or DEX-activated GR inhibits PR-

dependent cell proliferation and dedifferentiation through the

modulation of certain PR-target genes, i.e. GREB1, STAT5A,

ELF5 and SNAI1 (8). In the presence of DEX, the antagonistic

effect increases and involves the formation of GR-PR protein

complexes. By ChIP-seq and sequential ChIP analyses, we

detected overlapped binding of GR and PR at key enhancer

sites and confirmed co-recruitment of both receptors to shared

sites (Figure 1B iv). Moreover, GC-free GR upon stimulation

with the PR-agonist R5020, can bind to REL and FOXH1 motifs

and repress the expression of nearby genes encoding for SWI/

SNF and other chromatin remodeler complexes such as

SMARCD2, ARID1A and INO80C (Figure 1B v). Thus, in the

presence of the synthetic progestin R5020, relocated GR are

bound to a subset of genes required for PR function, reinforcing

the anti-progestational effect of GCs in ER+/PR+ breast cancer

cells (8).

The mechanism behind the R5020-dependent GR binding to

approximately 600 unique sites could be due at least by two non-

mutually exclusive mechanisms: 1) a direct effect of R5020 on

the GR or 2) an indirect mechanism whereby activated PR would

stabilize GR binding to other transcription factors (i.e. REL or

FOXH1) genomic regions (Figure 1B v).

Regarding the direct effect, although R5020 is considered a

PR specific agonist, it has been reported that R5020 can also

activate GR (10). Thus, R5020 binding to GR would induce a

unique conformational change to the receptor leading to its

recruitment to REL and/or FOXH1-enriched regions. However,

we can also speculate that R5020-activated PR could favor GR

recruitment to REL and/or FOXH1 regions throughout an

indirect mechanism. Accordingly, it has been reported that

FOXH1 can act as a hormone-independent corepressor of AR

in prostate cancer cells; indeed, a protein-protein interaction was

identified between the AR AF-1 domain and FOXH1

independently of the presence of dihydrotestosterone (109). In

this model, R5020-activated PR could release FOXH1/REL,

which in turn would bind to their sites in the genome favoring

GR loading (Figure 1B v, right panel). Whether GR and PR

physically interact with FOXH1 and/or REL in mammary cells is

unknown and more research is required to support this second

hypothetical mechanism.
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Conclusions and perspectives

Given the concentration of different steroid hormones varies

considerably over a wide range of time (from hours, days and even

weeks), several receptors might be coexisting and simultaneously

activated by their ligands. Thus, the mechanism of control of one

receptor over the other/s could be very frequent and could be

involved in relevant receptor-mediated functions. This brings up a

complex scenario in which several activated hormone receptors

could be interacting reciprocally, regulating the final

transcriptional output and their function in the target cell. This

crosstalk between receptors could be positive, implying synergism

between hormone pathways, or on the contrary, negative, through

competition for pathways, for co-regulators and for binding sites

in the genome.

Thus, it will be key to elucidate the causes that establish this

hierarchy between receptors. What determines which receptor leads

and regulates the activity over the other/s? The circulating levels of

ligands, receptor levels, and the cellular identity of the target cell

(more adapted to respond to one stimulus than to another) are

factors that could be involved in this complex scenario. Also, under

these circumstances, heterologous complexes, composed of different

activated receptors and with different stoichiometry, could be

formed and reciprocally regulate the hormonal pathways involved.

We propose that the prevalence of one or the other

mechanism is dependent upon which ligand and/or

combination of ligands bind to each receptor. Under this

hypothesis, new questions arise regarding GR and PR

functional crosstalk. How does the ligand-dependent

conformation acquired by each receptor influence the control

of gene expression? Do the GR-PR heterocomplexes display the

same activity as homo-PR or homo-GR complexes? Do the GR-

PR heterocomplexes recruit the same set of co-regulators? Do

they have similar intranuclear dynamics compared to

homodimers? Recruitment of the GR to non-canonical sites

requires the presence of the transcription factor that directly

recognizes that site, or does it do so by a different mechanism?

To address these questions, state-of-the-art techniques that

allow us to monitor simultaneously homo- and heterocomplexes

populations of PR and GR in the same cell, are required. For this

purpose, it is necessary to engineered cell lines through

mutations targeting the interacting regions involved in the

formation of homo- and heterodimers. Moreover, mass

spectrometry will enable to identify the protein interactome of

each receptor population; Next Generation Sequencing (NGS)

including ChIP-seq and RNA-seq will help to decipher the

defined cistromes for each receptor population; and high-

resolution microscopy will allow to visualize the nuclear

dynamics of homo- or hetero-complexes in response to

hormone, including the formation of condensates. This will

shed light on the complex mechanism by which SHRs act

upon simultaneous activation. Therefore, and from a
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pharmacological point of view, understanding PR-GR crosstalk

could contribute to the design of new endocrine combined

therapies that minimize tumor resistance, colonization, and

metastasis and thus, provide tumorigenesis vulnerability for

therapeutic improvement in patients.
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