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Abstract
This study presents the preparation of magnetic carbon nanocomposites (MCNCs) through a two-step procedure: (i) in situ 
co-precipitation of magnetite  (Fe3O4) nanoparticles into four different carbonaceous matrixes and (ii) post-pyrolysis treat-
ment to coat the magnetic core. Four post-pyrolysis MCNCs were obtained: MACP (post-pyrolyzed magnetic activated 
carbon), MCCP (post-pyrolyzed magnetic charcoal),  MHCPOR (post-pyrolyzed magnetic hydrochar from orange residue), 
and  MBCPSFH (post-pyrolyzed magnetic biochar from sunflower husk). These four samples were compared with the starting 
MCNCs prepared without post-pyrolysis treatment: MAC, MCC,  MHCOR, and  MBCSFH, respectively. After post-pyrolysis 
treatment, a thin carbon layer surrounding some of the magnetite nanoparticles was identified by transmission electron 
microscopy. Post-pyrolysis modified the porous structure and chemical composition of MCNCs. Furthermore, a leaching 
test with acid sulfuric solution at 90 °C was carried out. The results suggested that the  MHCPOR and  MBCPSFH were more 
stable in an acidic medium than MACP and MCCP, indicating that the coat generated during post-pyrolysis of hydrochar 
and biochar could partially protect the magnetic core by reducing Fe leaching into the aqueous solution. Biochar and the 
hydrochar-based MCNCs before and after post-pyrolysis treatment exhibit superparamagnetic properties; however, their 
saturation magnetization  (Ms) decreased considerably. These results open the potential application fields of MCNCs obtained 
by post-pyrolysis of biochar and hydrochar-based materials in acidic mediums.
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1 Introduction

Nanotechnology and nanoscience have evoked great interest 
in the scientific community since materials at nanodimen-
sions (1–100 nm) enhance their physicochemical properties 

that differ from bulk materials. Different nanomaterials have 
been synthesized, particularly the iron oxide nanoparticles 
(IONPs) which are applied in different fields such as elec-
tronics, biomedicine, and environmental remediation [1, 2]. 
Magnetite  (Fe3O4) has gained special attention among iron 
oxide nanoparticles due to its high surface area-to-volume 
ratio, chemical stability, superparamagnetic behavior, and bio-
compatibility [3]. Nevertheless, they exhibit drawbacks, such 
as aggregation trends, resulting from their high surface area 
and magnetic dipole interactions between particles. Moreo-
ver, when exposed to air, magnetite can be easily oxidized 
to maghemite ( �-Fe2O3). Furthermore, leasing these metal 
nanoparticles could cause secondary pollution, limiting their 
potential uses [4]. Thus, exploring suitable porous materi-
als as stabilizers and carriers is necessary to support IONPs. 
Magnetic porous materials can be further employed as adsor-
bents or catalysts in different chemical processes [5, 6].

Activated carbons are unique carrier materials due to their 
excellent ability to support nanoparticles, stability, high surface 
area, and porous structure [7, 8]. However, commercial activated 
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carbons are expensive due to the feedstock manufacturing char-
acteristics and activation processes. These disadvantages have 
caused the exhaustive finding of economically low-cost alter-
natives like carbonaceous materials (biochars and hydrochars) 
prepared by thermochemical treatments of biomass wastes [9, 
10]. These materials can be applied in many fields, including 
soil amendment and adsorption of pollutants in water, soil, and 
atmosphere [11, 12]. However, it would be interesting to extend 
its use to adsorption processes of pollutants in acid mine water 
and as catalysts in hydrometallurgical processes [13, 14].

It has been established that a proper coating of IONPs by 
carbonaceous structures can improve their stability and protect 
the magnetic core of IONPs from oxidation and disaggrega-
tion [15, 16]. Several studies have pointed out the importance 
of employing a carbon layer since it is (i) practical, (ii) bio-
compatible, and (iii) would lead to reducing the damage of 
the magnetic core when exposed to aggressive conditions 
[17–19]. To achieve a proper coating of the magnetic core, 
a wide range of treatments are available, including chemical 
vapor deposition, solution plasma processing, hydrothermal 
methods, spray pyrolysis, and solid-phase synthesis [20–22]. 
It has been demonstrated that IONP encapsulation employing 
different coatings based on citric acid, lactonic acid, polyvi-
nylpyrrolidone, or polyethylene glycol enhances the chemi-
cal, thermal, and colloidal stabilities [23, 24]. The treatments 
mentioned above are well known and efficient. Nonetheless, 
they are time- and cost-consuming. Therefore, this study aims 
to use an economical, operationally easy, and efficient treat-
ment such as slow pyrolysis as a post-thermal treatment of 
magnetic carbonaceous materials to coat the magnetic core 
with carbon [25]. In the post-thermal treatment, volatile com-
pounds are generated, contributing to the coat formation. It 
is hypothesized that released volatiles are also in charge of 
coating the magnetic nanoparticles reducing the damage of 
IONPs in an acidic medium. For this reason, a leaching exper-
iment was designed to control iron dissolution in an acidic 
medium. Magnetic carbon nanocomposites before and after 
post-pyrolysis treatment underwent an exhaustive characteriza-
tion, employing spectroscopic and microscopic techniques. We 
hypothesized that post-pyrolysis treatment of magnetic carbon 
nanocomposites can increase their stability in acidic medium 
and can open the potential application fields of magnetic car-
bon nanocomposites in acidic mediums such as adsorbents 
in acid mine water and hydrometallurgical processes and the 
preparation of advanced materials from biomass wastes.

2  Materials and methods

2.1  Materials

Sulfuric acid  (H2SO4 96%) and iron (II) sulfate 
heptahydrate  (FeSO4·7H2O) was supplied from 

Labkem (Barcelona, Spain). Iron (III) chloride 6-hydrate 
 (FeCl3.6H2O) was purchased from PanReac AppliChem 
(Barcelona, Spain), and sodium hydroxide (NaOH) was 
supplied by Merck (Darmstadt, Germany). Commercial 
activated carbon was purchased from PanReac (Barcelona, 
Spain), and commercial charcoal was obtained from Ibe-
cosl (Spain). The orange residue (OR) was supplied by 
one company of orange juice production located in south-
west Spain, and sunflower husk (SFH) was supplied by a 
company of sunflower oil production located in Argentina.

2.2  Preparation of biochar and hydrochar

The feedstocks (orange residue and sunflowers husk) were 
washed, dried at 40 °C, and sieved until a homogeneous 
grain size (< 2 mm). The biochar  (BCsfh) was prepared by 
pyrolysis of SFH. For this purpose, a certain amount of SFH 
was placed into closed ceramic crucibles that were further 
introduced into a nickel container and covered with coke 
particles to accomplish an inert atmosphere. Samples were 
placed in a muffle and heated until 700 °C. The final tem-
perature was maintained for 2.5 h.

Hydrochar from the orange residue  (HCOR) was pre-
pared as follows: 1.0 L of wet orange residue solution 
with 30% solid content was introduced in a Teflon recipi-
ent inside a Hastelloy autoclave supplied by Demede S.L. 
The autoclave has two thermocouples, one is inserted 
into the Teflon recipient in contact with the sample, and 
another is in contact with the outer part of the Hastel-
loy wall. The temperature difference between the two 
thermocouples is around 20 °C. Samples were heated 
at 240 °C, and the final temperature was maintained for 
6 h. After cooling down to room temperature, the aque-
ous solutions were filtered, and the hydrochar was dried 
at 90 °C for 24 h.

2.3  Preparation of magnetic carbon 
nanocomposites

The four magnetic carbonaceous materials, magnetic bio-
char obtained from sunflower husk  (MBCSFH), magnetic 
hydrochar obtained from the orange residue  (MHCOR), 
magnetic activated carbon (MAC), and magnetic char-
coal (MCC), were performed by in situ co-precipitation 
of magnetite nanoparticles into corresponding carbona-
ceous solid  (BCSFH,  HCOR, CAC, and CC, respectively). 
For this purpose,  FeCl3.6H2O and  FeSO4.7H2O in a ratio 
of 2:1 were mixed and stirred with the carbonaceous 
solid until homogeneous dispersion. Further on, NaOH 
5 M was added dropwise to obtain the magnetic carbo-
naceous materials.
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2.4  Post‑pyrolysis treatment of magnetic carbon 
nanocomposites

Four post-pyrolyzed magnetic carbonaceous materi-
als,  MBCPSFH,  MHCPOR, MACP, and MCCP, were prepared 
by post-pyrolysis of  MBCSFH,  MHCOR, MAC, and MCC, 
respectively. The experimental procedure was adapted from 
Luis M. Martínez-Prieto [26]. First, a known amount of each 
magnetic carbonaceous material  (MBCSFH,  MHCOR, MAC, 
and MCC) was weighed and pyrolyzed in an inert atmos-
phere at 600 °C using a heating rate of 15 °C  s−1. The final 
temperature was maintained for 2 h, and the final product 
was collected, sieved, and saved in flasks. Figure 1 shows the 
two main steps involved in preparing both kinds of magnetic 
carbonaceous materials.

2.5  Characterization of post‑pyrolyzed magnetic 
carbon nanocomposites

Characterization of magnetic carbon nanocomposites with-
out  (MBCSFH,  MHCOR, MAC, and MCC) and with post-
pyrolysis treatment  (MBCPSFH,  MHCPOR, MACP, and 
MCCP) was performed as follows: carbon, hydrogen, nitro-
gen, and sulfur contents were determined by dry combustion 
using a LECO CHNS 932 Analyzer (SCAI-Malaga Univer-
sity, Spain). Oxygen was obtained by difference as 100%-
(%C + %H + %N + %S + %Ash). In addition, atomic ratios 
(H/C) and (O/C) were calculated. pH, redox potential (Eh), 
and electrical conductivity ( � ) of carbonaceous magnetic 
carbons were determined on aqueous solutions at a concen-
tration of 4 g  L−1 of a carbonaceous sample in distilled water 
solution using a Crison micro pH 2000, a pH 60 DHS, and 
EQUIPO EC, respectively. Besides, ash content was calcu-
lated by heating the samples at 800 °C for 24 h in a muffle. 
The relative ash content was then calculated as follows:

The presence of functional groups of the materials was stud-
ied by Fourier transform infrared (FTIR) spectroscopy using 
a spectrophotometer Vertex 70 (Bruker). For the acquisition 
of spectra, a standard spectral resolution of 4  cm−1 was used 
in the spectral range of 4000–400  cm−1 and 64 accumulations 
per sample. The crystal structure was determined by an X-ray 
diffractometer (XRD; SmartLab3KW, Rigaku D, Japan). The 
BET surface area and pore size were used to determine the 
porous structure of the materials through  N2 adsorption–des-
orption experiments using a Porosimetry System ASAP2460, 
Atlanta, USA (SCAI Universidad de Málaga). Transmission 
electron microscopy (TEM Jeol 100 CX II) was employed to 
study the materials topographically and morphologically. Zeta 
potential as a pH function was carried out using a zeta potential 
analyzer (Nano-ZS90X, Malvern, UK). Magnetization curves, 
expressing specific magnetization (M) as a function of applied 
magnetic field (H) at room temperature, were obtained using a 
vibrating sample magnetometer (VSM) LakeShore 7404 oper-
ated with maximum applied fields μ0Hmax = 1.8 T.

2.6  Stability studies of magnetic carbon 
nanocomposites in acidic medium

Stability tests in an acidic medium of magnetic carbona-
ceous materials were carried out. First, 5 g of each sample 
was put in contact with 100 mL of  H2SO4 0.5 M, and the 
temperature was set at 90 °C according to temperatures 
used in potential applications of magnetic carbon nano-
composites as catalysts [13, 14]. Furthermore, aliquots 
were taken every 2, 4, 6, 24, and 48 h to quantify the con-
centration of Fe (mg  L−1) in the solution using an Analyst 
400 PerkinElmer (AAS) spectrometer.

(1)Ash(%) =
(weight of samples at 800◦C)

(initial weight of sample)
∗ 100%

Fig. 1  Two main steps to preparing the post-pyrolyzed magnetic carbon nanocomposites
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3  Results and discussion

3.1  Characterization of magnetic carbon 
nanocomposites

3.1.1  Morphology

TEM micrographs of magnetic carbon nanocomposites 
are displayed in Fig. 2. All the micrographs expose nano-
particle agglomeration. The nature of magnetic nanopar-
ticles could explain this agglomeration as they possess 
high surface energy and exhibit dipole–dipole attraction 
[27–29]. For both reasons, they adhere and create signifi-
cant clusters that could affect the further application or 
not. In this specific case, the formation of clusters was not 
the main issue. On the other side, in Fig. 2 (a1), goethite 
( �-FeOOH) intermediates appear as anisotropic crystals 
(needle-shaped) and magnetite as isotropic and topotactic 
structures [30]. Most micrographs exposed different parti-
cle sizes ranging from 5 to 50 nm. As seen in micrographs 
a2, b2, c2, and d2, magnetic carbon nanocomposites were 
post-pyrolyzed, goethite crystals almost disappeared, sug-
gesting that under 600 °C, goethite undergoes chemical, 
structural, and crystalline transformations [31]. Some 
studies have shown that under temperature, goethite can 
be transformed into hematite ( �-Fe2O3) [32, 33], indicat-
ing that some of the goethite phases are converted into 
hematite phases.

On the other hand, the post-pyrolyzed magnetic carbon 
nanocomposites seem different from the non-pyrolyzed 
materials. “Core–shell” structures can be seen in micro-
graphs a2, b2, c2, and d2 (Fig. 2), where a thin carbon 
coating encapsulates the magnetite nanoparticles. It is 
most evident in Fig. 2 (d2). However, the carbon coating 
might not be homogeneous over the whole nanoparticle. 
This point is consistent with previous studies [34], where 
researchers prepared magnetic nanoparticles encapsulated 
in carbon that, through a slow pyrolysis treatment, mag-
netite nanoparticles were covered with a thin carbon layer 
that ranges from 2 to 5 nm. Post-pyrolysis treatment of 
carbonaceous matrix releases volatiles that are the ones 
that create the carbon coating surrounding the magnetic 
core. However, the carbon layer was not continuous, with 
cracks and gaps appearing [31].

3.1.2  Physicochemical characteristics of magnetic carbon 
nanocomposites

Table 1 shows the elemental analysis of magnetic carbon 
nanocomposites. The results indicate that the carbon and 
hydrogen content decreased after post-pyrolysis treat-
ment. However, the oxygen content of MAC increases with 

post-pyrolysis from 2.37 to 9.28, whereas for MCC,  MHCOR, 
and  MBCSFH, the oxygen content decreases during post-
pyrolysis treatment. Carbonaceous structures’ changes in 
carbon, hydrogen, nitrogen, sulfur, and oxygen percentage 
are indicators of chemical transformations (condensation, 
volatilization, and decarboxylation). Post-pyrolysis treat-
ment also produces ash enrichment, especially for  MHCOR, 
due to lower temperatures used during HTC and, conse-
quently, higher weight loss during post-pyrolysis treatment.

Moreover, the O/C atomic ratio was related to the 
content of oxygen-containing functional groups. As O/C 
increases, the polar oxygen functional groups increase 
[35]. As can be observed in Table 1, the post-pyrolyzed 
magnetic carbonaceous materials present lower O/C val-
ues than the non-pyrolyzed magnetic carbon nanocom-
posites (MAC, MCC,  MHCOR,  MBCSFH). Post-pyrolysis 
treatment significantly decreases the H/C atomic ratio 
indicating high aromaticity of post-pyrolyzed materials 
[36]. The lower H/C value of post-pyrolyzed materials 
corresponds to MACP, whereas the highest index cor-
responds to MCCP and  MHCPOR. Initially,  MHCOR was 
the highest H/C atomic ratio material because hydrochar 
 HCOR was obtained at the lowest temperature (240 °C) 
than  BCSFH (700 °C) and commercial AC or CC. It is 
established that biochars present more aromatic and 
fewer aliphatic structures than hydrochars [37].

Finally, the pH of eight magnetic carbon nanocompos-
ites are alkaline, ranging from 8.50 to 10.08 for MAC and 
 MHCPOR, respectively. Post-pyrolysis treatment increases 
the pH in all cases due to ash enrichment and decarboxy-
lation reactions. The highest increment is observed in the 
treatment of  MHCOR, according to H/C and O/C variations 
during post-pyrolysis. After post-pyrolysis treatment, mag-
netic carbonaceous materials show a more reductive charac-
ter related to lower H/C ratios, with Eh values ranging from 
250 to 287 mV. Finally, the EC shows significant variations: 
MAC, the material with a high EC value, and  MHCPOR with 
the lowest.

3.1.3  Porosity development of magnetic carbon 
nanocomposites

Table 2 shows the BET surface area, pore-volume, and pore 
diameter obtained by BET and BJH models. MCNCs show 
values of BET surface areas between 57.69 and 511.43 
 m2  g−1 for MCC and MAC, respectively. The BET surface 
area of MCC,  MHCOR, or  MBCSFH increases with post-
pyrolysis treatment. However, MAC’s BET surface area and 
pore volume slightly decreased from 511.43 to 425  m2  g−1 
and 0.131 to 0.120  cm3  g−1, respectively. This difference 
can be attributed to the sintering or collapse of tiny pores of 
MAC inside the carbon structure [38]. Moreover, the pore 
diameter of MAC, MC, and MBC decreases when samples 
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are post-pyrolyzed and increases in the case of  MHCOR from 
5.56 to 7.88 nm.

The  N2 adsorption–desorption isotherms are displayed 
in Fig. 3. As can be seen in the graphs, there is an important 

difference between isotherms of eight magnetic carbona-
ceous. MAC, MACP,  MHCOR,  MHCPOR, and  MBCSFH 
maintained type IV isotherms related to mesoporous devel-
opment. MCC and MCCP behave as type V, which is also 

Goethite

a1) a2)

b1)

b2)

c1)c2)C1)

d1) d2)

Fe3O4

Carbon layer

Fig. 2  TEM of (a1) MAC, (a2) MACP, (b1) MCC, (b2) MCCP, (c1)  MHCOR, (c2)  MHCPOR, (d1)  MBCSFH, and (d2)  MBCPSFH\
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associated with macroporous or non-porous materials [39, 
40]. Besides, post-pyrolyzed magnetic carbon nanocom-
posites (MACP, MCCP,  MHCPOR, and  MBCPSFH) reached 
quantity adsorbed values lower than the initial carbon 
nanocomposites (MAC, MCC,  MHCOR, and  MBCSFH) sug-
gesting that these materials possess different porous struc-
tures and pore sizes (the size of the hysteresis loop could 
qualitatively be taken as evidence of this) [41, 42]. MAC, 
MCC,  MHCOR,  MHCPOR, and  MBCSFH have an H3-type 
hysteresis loop associated with non-rigid aggregates of 
plate-like particles [43]. MACP and  MBCPSFH are more 
likely to have H4, which might indicate the presence of a 
combination of micropores and mesopores [44].

Table 1  Elemental analysis, 
pH, Eh, and electrical 
conductivity of magnetic carbon 
nanocomposites

* Calculated by difference

Sample C (%) H (%) N (%) S (%) O* (%) O/C H/C Ash (%) pH Eh (mV) �(�S∕cm)

MAC 47.25 0.46 0.00 0.09 2.37 0.04 0.11 49.83 8.50 320 772
MCC 35.74 1.56 0.00 0.00 9.15 0.19 0.52 53.54 9.50 331 151
MHCOR 25.89 2.28 0.31 0.16 15.01 0.43 1.05 56.34 9.30 360 129
MBCSFH 40.45 0.58 0.04 0.09 8.20 0.15 0.11 50.62 8.52 415 128
MACP 37.82 0.05 0.00 0.04 9.28 0.18 0.01 52.81 8.90 287 172
MCCP 33.70 0.34 0.00 0.00 6.86 0.15 0.12 59.09 9.73 257 268
MHCPOR 20.22 0.21 0.16 0.12 6.05 0.22 0.12 73.23 10.08 250 74
MBCPSFH 40.31 0.27 0.03 0.12 6.75 0.12 0.08 52.51 8.60 266 135

Table 2  BET surface area, pore volume, and pore diameter of magnetic 
carbon nanocomposites

Material SBET  (m2  g−1) Pore volume 
 (cm3  g−1)

Pore 
diameter 
(nm)

MAC 511.43 ± 1.27 0.131 6.44
MCC 57.69 ± 0.04 0.001 11.27
MHCOR 83.47 ± 0.12 - 5.56
MBCSFH 244.14 ± 0.58 0.075 7.87
MACP 425.00 ± 1.03 0.121 4.98
MCCP 120.41 ± 2.03 0.006 4.28
MHCPOR 84.28 ± 0.95 0.021 7.88
MBCPSFH 257.18 ± 0.96 0.076 4.61

Fig. 3  N2 adsorption–desorption isotherms of magnetic carbon nanocomposites
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3.1.4  FTIR analysis

In Fig. 4, FTIR spectra of magnetic carbon nanocom-
posites are summarized. All spectra exhibit a stretch-
ing vibration mode around 500  cm−1 attributable to the 
Fe–O bond in iron oxide nanoparticles [45, 46]. This 
peak has subtly shifted and is more distorted in MACP, 
MCP,  MHCPOR, and  MBCPSFH, which might point to a 
partial coating of the magnetic core. Besides, the broad 
peak in the range 3300 − 3500  cm−1 confirms the pres-
ence of the O − H stretching vibration. This broad peak 
decreases its intensity in MACP and MHCPor spectra. 
Moreover, vibration bands at approximately 1600  cm−1, 
corresponding to the stretching of C = C groups, were 
observed in all samples, reflecting the aromatic rings 
present in the structure of each material.

3.1.5  Zeta potential

Zeta potential measurements as a function of pH are 
exhibited in Fig. 5. The graphs showed that the post-
pyrolyzed magnetic carbon nanocomposites (MACP and 
 MHCPOR) reached a more negative zeta potential than 
the non-post-pyrolyzed materials in the pH range from 3 
to 9. All magnetic carbon nanocomposites (MAC, MCC, 

 MHCOR,  MBCSFH) possess an isoelectric point at differ-
ent pH values. Nevertheless, when the materials suffered 
a post-pyrolysis treatment, the isoelectric point of MACP 
and  MHCPOR is not visible, at least in the studied pH 
range. MCCP and  MBCPSFH have an isoelectric point; 
at low pH values of approximately 3.8 and 3.5, respec-
tively. The post-pyrolyzed magnetic carbon nanocom-
posites can acquire more negative zeta potential due to 
the partial coating of magnetite. These results suggest 
a more stable dispersion due to a possibly electrostatic 
stabilization in the colloidal system. The oxygen atoms 
in the carbonaceous matrixes are the ones that promote 
the repulsive forces.

3.1.6  Crystalline structure

Figure 6 shows the diffractograms of eight magnetic car-
bon nanocomposites. All samples show similar patterns 
related to the crystalline planes that could be indexed 
to the spinel inverse structure of magnetite (JCPDS 
19–0629). It is essential to mention that it is not simple 
to differentiate crystalline planes of magnetite and magh-
emite since they possess the same cubic structure. Mag-
netite can be easily oxidized to maghemite. In this study, 
the synthesis procedure of magnetite was followed; it is 

Fig. 4  FTIR of magnetic carbon nanocomposites
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still challenging to ensure that the obtained iron oxide is 
magnetite. For this reason, it is suggested that there must 
be a mixture of magnetite/maghemite, expecting to have 
more magnetite. The prominent peaks obtained at around 
23.87, 30.15, 35.52, 43.25, 53.60, 57.10, and 62.72° can 
be ascribed to (111), (200), (311), (440), (422), (511), 
and (499) planes, representative of  Fe3O4. Additionally, 
some goethite crystalline planes are visible, standing out 
the one appearing at around 21° that is indexed to (110), 
which supports the idea of goethite transformation into 
other possible iron oxide phases such as hematite. This 
plane disappeared in the post-pyrolyzed magnetic carbo-
naceous diffractograms. In addition, when MAC, MCC, 
 MHCOR, and  MBCSFH are pyrolyzed, diffraction peaks 
seem sharpened. Furthermore, the wideband that appears 
between 20 and 30 is characteristic of the amorphous 
phase of carbonaceous materials [47].

3.2  Stability tests of magnetic carbonaceous 
materials

Figure 7 displays the concentration of Fe in a sulfuric 
acid solution to measure the stability of magnetic carbon 

nanocomposites and post-pyrolyzed magnetic carbon 
nanocomposites. Each graph compares the magnetic car-
bonaceous material with the analogous post-pyrolyzed 
magnetic carbonaceous materials. At a strongly acidic 
medium (pH < 1), iron oxide nanoparticles are vulner-
able to corrosion and post-dissolution by three main 
mechanisms reported in the literature: protonation, com-
plexation, and reduction [48]. For this main reason, it is 
convenient to coat  Fe3O4 nanoparticles to prevent this 
undesired effect of damaging and affecting the magnetic 
core. As can be seen in Fig. 7a, the carbon-coated materi-
als that employed commercial activated carbon (MACP) 
and charcoal (MCCP) as the carbonaceous coatings sug-
gest a non-homogenous coating of the magnetic core due 
to the high concentration of Fe (mg  L−1) in the solution, 
which indicated that  Fe3O4 disaggregation occurred with 
 H2SO4 solutions at 90 °C within 48 h of contact time. 
MAC and MACP leached more Fe than MCCP and MCC. 
Besides, MAC and MCC leached more Fe than MACP 
and MCCP, leading to Fe concentrations of 3430 and 
802 mg  L−1, respectively.

On the other hand, when carrying out the stabil-
ity test using the biochar and the hydrochar-based 

Fig. 5  Zeta potential as a function of pH of magnetic carbon nanocomposites
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magnetic carbon nanocomposites  (MHCPOR,  MHCOR, 
 MBCPSFH, and  MBCSFH), Fe concentrations in the solu-
tion decreased considerably (Fig. 7b). From both materi-
als, coated originated during post-pyrolysis treatment of 
 MBCPSFH acts as a better stabilizer and more effective 
coating, reducing Fe leaching into the acidic medium, 
achieving values up to 163 mg  L−1 within 48 h of leach-
ing at 90 °C. Moreover, when employing  MHCOR and 
 MBCSFH (the non-coated magnetic carbon–based materi-
als), Fe concentration increased in the medium, pointing 
out a partial encapsulation that protects magnetite nano-
particles when coating the magnetic core. It is suggested 
that temperature (when pyrolyzed the magnetic carbon 
nanocomposites) promotes the releasing of volatiles from 
biochar and hydrochar carbon matrix which, by physi-
cal or chemical interactions, lead to formation of carbon 
structures deposited on the magnetite surface.

3.2.1  Magnetic properties

The biochar and the hydrochar-based magnetic carbon 
nanocomposites  (MHCPOR,  MHCOR,  MBCPSFH, and 
 MBCSFH) were selected for subsequent analysis of mag-
netic properties. The four magnetic carbon nanocompos-
ites exhibit superparamagnetic properties characteristic of 
single-domain ferro- or ferrimagnetic particles with sizes 
below approximately 50  nm. The coercive fields vary 
between 6 and 18 mT, the  MBCPSFH being greater. This 
sample presents the largest dipole moment of np and the 
largest estimated size of the magnetic core. The least coer-
cive corresponds to  MBCSFH. Saturation magnetizations 
are below 1.4  Am2  kg−1  (MHCPor) and above 0.3  Am2  kg−1 
 (MHCOR). These are very small values compared to those 
of the magnetite and maghemite phases, which implies that 
these phases are minor components of the samples; hence, 

Fig. 6  XRD of magnetic carbon nanocomposites
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the coating mass reduces the specific moment Ms of the 
samples. The potential fractions of these phases were esti-
mated from the magnetizations obtained and those reported 
in the literature for the pure phases at RT (93  Am2  kg−1 for 
magnetite and 76  Am2  kg−1 for maghemite). As observed in 
Fig. 8a,  MBCSFH shows a higher  Ms than  MBCSFH [49–51].

On the contrary, Fig. 8b, suggests that  MHCPOR reaches 
greater  Ms. Both materials have suffered the same thermal 
treatment at 600 °C. Their difference lies in the amorphous 
carbon matrix employed (biochar and hydrochar, respec-
tively). Possible interpretations are that the nanoparticles 
are stone/layer with thick carbon layers or that the sample is 
a mixture of NP stone/layer and other structures of a carbon-
based majority non-magnetic phase.

The dipole moments (in Table 3) of np obtained depend on 
the fitting method. Langevin-type settings vary between 13,300 
 (MHCPOR) and 20,300 �B  (MBCPSFH), for Chantrell’s definitions, 
between 6100  (MHCPSFH) and 19,100 �B ((MBCPSFH). There 
is consistency in relative values but an appreciable difference in 
absolute values. Their relative standard deviations are generally 
close to 1 (the largest are those of  MBCSFH and  MHCPSFH, > 1 
for both adjustment models). The relative standard deviation of 
 MBCPSFH is the smallest of all, and the magnetic pits of this sam-
ple are less scattered. The low value obtained from the Langevin 
analysis (< 0.02) is striking. This result suggests that, since NPs 
are not in a colloidal medium but are part of a powder with limited 
motion freedom, the Chantrell approach is the most appropriate 
for analyzing the magnetization cycles.

Fig. 7  Stability test in terms 
of iron leaching of magnetic 
carbon nanocomposites
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The mean volumes of the magnetic pits are calculated 
by dividing the mean moment of np by the saturation mag-
netization of the magnetic phase, which was arbitrarily 
assumed to be 75 emu/g.

The estimated values of the diameters (assuming spheri-
cal pits)

< V >=< μ > ∕MS

Fig. 8  Magnetic properties of 
magnetic carbon nanocompos-
ites

Table 3  Magnetic parameters of magnetic carbon nanocomposites  MBCsfh,  MBCPsfh,  MHCor and  MHCPor

Sample Hc (mT) D_Ch (nm) D_Lan (nm) Ms Lan  (Am2 
 kg−1)

Ms Ch  (Am2  kg−1) Ch < u >  (uB) Lan < u >  (uB)

MBCSFH 5.86 7.20 8.80 0.62 0.65 7929 14476
MBCPSFH 17.45 9.80 9.90 0.55 0.54 19650 20318
MHCOR 10.26 7.00 9.20 0.34 0.36 7192 16372
MHCPOR 7.64 6.60 8.60 12.16 132.452 6059 13295
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are between 6.6 and 9.9 nm; the largest, 9.8–9.9 nm, 
corresponds to MBCP, and the smallest, 6.6–8.6  nm 
(depending on the fit model), to  MHCPOR. The most uni-
form resulting sizes using Langevin analysis, in this case, 
is in the range of 8.6–9.9 nm for all samples [52–54].

4  Conclusions

Magnetic carbon nanocomposites were prepared using a co-
precipitation method followed by post-pyrolysis treatment at 
600 °C. The main conclusions are the following:

Post-pyrolysis treatment of magnetic carbon nanocom-
posites converts goethite (a reaction intermediate) into a 
possible hematite phase. Core–shell systems are possibly 
formed with a thin carbon coating encapsulating the iron 
oxide nanoparticles.

The post-pyrolyzed magnetic carbon nanocomposites 
gained more negative zeta potential.

Post-pyrolysis treatment increases the aromaticity of 
carbon structures. In contrast, the BET surface area shows 
low deviations for hydrochar, biochar, and charcoal-based 
materials and slight decreases for magnetic carbon nano-
composites prepared using activated carbon.

Post-pyrolysis treatment increases the stability of mag-
netic carbon nanocomposites in an acidic medium, decreas-
ing the leaching of iron indicating that the coat generated 
during post-pyrolysis could partially protect the magnetic 
core by reducing Fe leaching into the acidic aqueous 
medium. Magnetic carbon nanocomposites obtained from 
biochar and hydrochar show lower iron leaching than those 
from commercial charcoal or activated carbon indicating the 
highest stability of carbon coating.

The biochar and the hydrochar-based magnetic carbon 
nanocomposites before and after post-pyrolysis treatment 
exhibit superparamagnetic properties. The saturation mag-
netization decreased as the coating layer became denser 
because of a dead layer around the magnetic core. The 
reduction in the core size also contributed to the lowered 
in the  Ms values.

These results open the potential application fields of 
magnetic carbon nanocomposites obtained by in situ co-
precipitation of magnetite nanoparticles into biochar and 
hydrochar-based-carbonaceous materials and post-pyrolysis 
treatment in acidic mediums.
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