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Abstract Several numerical time integration methods for multibody system dynamics are

described: an energy preserving scheme and three energy decaying ones, which introduce

high-frequency numerical dissipation in order to annihilate the nondesired high-frequency

oscillations. An exhaustive analysis of these four schemes is done, including their formu-

lation, and energy preserving and decaying properties by taking into account the presence

of nonlinear algebraic constraints and the incrementation of finite rotations. A new energy

preserving/decaying scheme is developed, which is well suited for either stiff or nonstiff

nonlinearly constrained multibody systems. Examples on a series of test cases show the

performance of the algorithms.

Keywords Time integration . DAE systems . Nonlinear multibody systems dynamics .

Energy preservation . Energy dissipation

1 Introduction

Integration of second-order index 3 Differential-Algebraic Equations (DAE) may lead to

numerical instability when an integration method of the Newmark family is used, because

of the algebraic constraints that are the cause of unbounded linearly growing oscillations in

the acceleration response (weak instability). If a high-frequency dissipation is introduced,

this instability can be controlled in the linear regime, e.g., using either HHT [1] or Hulbert

α-generalized methods [2].

In the nonlinear regime, the stability cannot be guaranteed by usual methods of analysis

that are based on the properties of the system amplification matrix. An alternative to ensure

the stability of the solution is by means of schemes that verify the preservation of the total

energy of the system at each time step. This discrete preservation of a positive amount over

each time step ensures the algorithm unconditional stability in the nonlinear regime [3].
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Energy preserving methods were used for the first time in the context of the Finite-Element

Method by Haug et al. [4] and Hughes et al. [5], where the preservation of the energy was

enforced as a constraint by using Lagrange multipliers. These methods, termed enforced
preservation methods, are not considered strictly as preserving or dissipative schemes: since

the higher modes are dissipated while the total system energy must at the same time remain

constant, these algorithms transfer energy from the higher to the lower modes, a process that

is nonphysical [6].

Simo et al. [7–10] explored the idea of midpoint equilibrium that follows on from the work

of Hilber et al. [11] and Zienkiewicz et al. [12], to introduce algorithms that preserve the

total energy for unconstrained systems of rigid bodies, rods, nonlinear beams, and nonlinear

elastodynamics. Ibrahimbegovic and Mamouri [13] have developed an energy conserving

algorithm for flexible multibody systems with constraints. Betsch and Steinmann have pro-

posed energy preserving schemes for N-body problems [14], nonlinear elastodynamics [15],

mechanical systems with holonomic constraints [16], and dynamics of constrained rigid

bodies [17], using a mixed Galerkin-based discretization method, a temporal counterpart of

mixed finite-element methods in space.

Bauchau et al. [18] proposed an energy preserving scheme for flexible multibody systems

where the equations are discretized so that they imply perfect preservation of the energy for

the elastic parts of the system and guarantees that the work performed by the constraint forces

associated with the kinematic constraints perfectly vanishes. The combination of these two

features ensures the stability of the numerical integration process for nonlinear multibody

flexible systems. Géradin [19] proposed an energy preserving scheme inspired in Bauchau’s

methodology, which was reviewed by the authors in an early work [20].

However, the unconditional stability of the energy preserving methods is not enough for

obtaining a satisfactory performance of the scheme, because of the spurious high-frequency

oscillations that may appear, e.g., with a sudden variation of stiffness or with shock, con-

served all along the response masking the answer. For this reason, alternative schemes have

been proposed. A methodology that leads to a systematic formulation of energy dissipative

integration schemes is time-discontinuous Galerkin (TDG) [21], initially developed for hy-

perbolic equations. Bauchau et al. [18, 22, 23] proposed “practical” schemes constructed

by using finite-difference schemes that imply an energy balance obtained directly from the

computation of the work done by the inertia and elastic forces over a time step. This condition

of energy balance is used to derive the requisites to obtain the preservation or dissipation of

the energy. Armero and Romero [24, 25] proposed energy decaying algorithms for nonlin-

ear elastodynamics without control of the asymptotic spectral radius. Ibrahimbegovic and

Mamouri [26] developed a scheme as an extension of existing energy conserving schemes

[10, 13, 27]. Recently, Bottasso and Trainelli [6] reviewed some of the temporal underlying

schemes mentioned earlier, pointing out differences and similarities between them.

In this work, a systematic way for formulating a dissipative integration scheme is proposed

with the following features: (i) unconditionally stable integration in constrained nonlinear

elastodynamics, (ii) energy dissipation with control of the asymptotic spectral radius, (iii)

capability of handling nonlinear constraints, (iv) capability of handling large finite rotations,

and (v) continuous variation of the asymptotic spectral radius varying from energy preser-

vation up to total annihilation. All these features are of utmost importance for the good

performance of a time integration algorithm in flexible multibody dynamics, and are not

verified by most of the algorithms mentioned earlier.

The paper is organized as follows: in Section 2, the problem is formulated. In Section 4,

the energy preserving scheme studied in [20] is reformulated, by using the time-continuous

Galerkin approximation. Based on the same methodology, dissipative schemes are developed
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by using the time-discontinuous Galerkin approximation. Several algorithms are developed

and analyzed all along Section 5 by comparing their performances for a set of test cases.

Section 3 describes these nonlinear dynamics tests which were designed to highlight the

merits and failures of each algorithm: (i) a nonstiff case without constraints, (ii) a nonstiff

case with nonlinear constraints, and (iii) a stiff case with nonlinear constraints. Conclusions

and future work are given in Section 6.

2 Formulation of the problem

Let us describe a conservative mechanical system in terms of N generalized coordinates q

submitted to R algebraic constraints

Φ(q) = 0. (1)

Its dynamic properties can be derived from an appropriate description of the potential energy

of the systemV = V(q) and of its kinetic energy, which can be put in a quadratic form without

loss of generality

K = 1

2
vTMv. (2)

The (M × M) inertia matrix M can be assumed constant, symmetric, and positive definite

since velocities v are expressed in a material frame. The latter are treated as quasicoordinates

and thus take the form of linear combinations of generalized coordinate time derivatives

v = L(q)q̇, (3)

L(q) being a (M × N ) matrix with M ≤ N . This inequality covers the case in which the

description of angular velocities is made in terms of redundant rotation parameters such as

Euler parameters. In this case, the redundancy between parameters has to be removed by

adding appropriate constraints to the global set (1).

The motion equations result from the application of Hamilton’s principle:

δ

∫ t2

t1

{
1

2
vTMv − μT (v − L(q)q̇) − V(q) − λTΦ(q)

}
dt = 0. (4)

By performing successive variations on the variables μ, λ, v, and q:

– the variation of the multipliers μ restores the velocity Equations (3)

– variation of the multipliers λ restores the constraints set (1)

– the variation of the velocitiesv shows that the multipliersμhave the meaning of generalized

momenta

μ = Mv (5)

– the variation of the generalized displacements q yields∫ t2

t1

{
δqT

(
−∂V

∂q
− ∂ΦT

∂q
λ + ∂

∂q
[(Lq̇)Tμ]

)
+ δq̇TLTμ

}
dt = 0 (6)

from which the dynamic equilibrium equations will be extracted.
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Integration by parts of Equation (6) yields

[δqTLTμ]t2
t1 +

∫ t2

t1

δqT

{
−∂V

∂q
− ∂ΦT

∂q
λ + ∂

∂q
[(Lq̇)Tμ] − d

dt
(LTμ)

}
dt = 0. (7)

The combination of Equations (5) and (3) gives

μ = ML(q)q̇. (8)

Then, the equations of motion become a first-order DAE system, with variables q, μ, and λ:

LTμ̇ + ∂V
∂q

+ BTλ + L̇Tμ − ∂

∂q
[(Lq̇)Tμ] = 0

μ − ML(q)q̇ = 0

Φ(q) = 0,

(9)

where B = ∂Φ/∂q is the Jacobian matrix of constraints. Note that the latter two terms in

Equation (9a) can be written as

L̇Tμ − ∂

∂q
[(Lq̇)Tμ] = G(μ)q̇, (10)

where the matrix G(μ) has the following components:

G jp =
∑

i

μi

(
∂Li j

∂qp
− ∂Lip

∂q j

)
. (11)

Skew-symmetry of G follows immediately. The final form of the equations of motion is thus:

LTμ̇ + ∂V
∂q

+ BTλ + G(μ)q̇ = 0

μ − ML(q)q̇ = 0

Φ(q) = 0.

(12)

3 Test examples

Four test examples were chosen in order to show the performance of the different algorithms

in the nonlinear regime, also taking into account the presence of nonlinear constraints and

the stiff character of the differential equation. These examples are:

(a) Nonlinear, unconstrained, nonstiff problem: a simple pendulum with one degree of

freedom q = θ (Figure 1). The expressions of kinetic and potential energies are written

as:

K = 1

2
mθ̇2�2 V = (1 − cos θ )mg�

m = 1, � = 1 with q0 = π/2 and v0 = 0 are adopted as initial conditions.
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Fig. 1 The simple pendulum

(b) Nonlinear, constrained, nonstiff problem: a simple pendulum modeled with two degrees

of freedom qT = [x y] and one nonlinear constraint Φ = x2 + y2 − �2 = 0. The ex-

pressions of the corresponding kinetic and potential energies are:

K = 1

2
m(ẋ2 + ẏ2) V = −mgy,

where m = 1 and � = 1. Initial conditions are xT
0 = [1 0] and vT

0 = [0 0].

(c) Nonlinear, constrained nonstiff problem: a double pendulum modeled with four degrees

of freedom and nonlinear constraints (Figure 2):

qT = [x1 y1 x2 y2] Φ =
[

x2
1 + y2

1 − �2
1

(x2 − x1)2 + (y2 − y1)2 − �2
2

]
.

The corresponding kinetic and potential energies expressions are

K = 1

2
m1

(
ẋ1

2 + ẏ1
2
) + 1

2
m2

(
ẋ2

2 + ẏ2
2
)

V = m1gy1 + m2gy2,

where m1 = m2 = 1 and �1 = �2 = 1 are adopted, with xT
0 = [1 0 1 1] and v0 =

[0 0 0 0] as initial conditions.

y

x

1

2

m1

m2

g

x1

x2

y2

y1

Fig. 2 The double pendulum
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(d) Nonlinear, constrained, stiff problem: the same double pendulum of the previous item

with a mass m1 200 times smaller than m2, producing in this way an ill-conditioned mass

matrix: m1 = 0.005 and m2 = 1 are adopted.

4 The time-continuous Galerkin approximation: Energy preserving scheme

4.1 Discretization of the equation of motion

In the Galerkin approximation, the equations of motion are enforced in a weak (integral)

manner. The Galerkin approximation of the equations of motion (12) is written as

h

2

∫ 1

−1

W1(τ )(q̇ − L−1v)dτ

+h

2

∫ 1

−1

W2(τ )

(
Mv̇ + L−TGq̇ + L−T ∂V

∂q
+ L−TBTλ

)
dτ = 0, (13)

where Wi (τ ) are the weight functions, h is the time-step size, and τ is a nondimensional time

variable (τ = −1 at tn and τ = 1 at tn+1). By using piecewise linear interpolation functions

for the displacements and velocities (Figure 3) and piecewise constant test functions W1 and

W2, the set of discrete equations are obtained as:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

h
LT

n+ 1
2

M (vn+1 − vn) + 1

h
Gn+ 1

2
(qn+1 − qn) + ∂V

∂q

∣∣∣∣
n+ 1

2

+ BT
n+ 1

2

λn+ 1
2

= 0

1

h
Ln+ 1

2
(qn+1 − qn) = 1

2
(vn+1 + vn)

Φn+1 = 0.

(14)

The matrix Ln+ 1
2

will depend on the adopted rotation parametrization. The parametrization

used (Euler parameters) assures a constant matrix Ln+ 1
2

as is shown in a previous work [20].

4.2 Energy preservation in the discrete scheme

The total energy of the system is E(q, q̇) = K(q̇) + V(q), where the kinetic energy has as a

final expression K = 1
2
vTMv and the potential energy V(q) is a function of the generalized

coordinates q. The total energy change in a time step can be evaluated computing the work

done by the elastic, constraint, and inertia forces.

tn tn+ /

tn+

Fig. 3 The time-continuous
Galerkin approximation of
displacements and velocities
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To prove the total energy preservation of the discrete scheme, Equation (14a) is multiplied

by the displacements jump (qn+1 − qn)T over a time step

1

h
(qn+1 − qn)TLn+ 1

2
M (vn+1 − vn) + 1

h
(qn+1 − qn)TGn+ 1

2
(qn+1 − qn)

+ (qn+1 − qn)T ∂V
∂q

∣∣∣∣
n+ 1

2

+ (qn+1 − qn)TBT
n+ 1

2

λn+ 1
2

= 0. (15)

By looking at the first term, it can be identified that the kinetic energy jump over a time

step is:

1

h
(qn+1 − qn)TLn+ 1

2
M (vn+1 − vn) = 1

2
(vn+1 + vn)TM (vn+1 − vn) = Kn+1 − Kn . (16)

Due to the skew-symmetry of the matrix G, the second term becomes identically null

1

h
(qn+1 − qn)TGn+ 1

2
(qn+1 − qn) = 0. (17)

In terms of elastic forces derived from the potential V , the derivative at the midpoint

(∂V/∂q)n+ 1
2

is substituted by the approximation (∂V/∂q)∗
n+ 1

2

(discrete directional derivative

[28]) that satisfies the next condition:

(qn+1 − qn)T ∂V
∂q

∣∣∣∣∗
n+ 1

2

= Vn+1 − Vn . (18)

In the constraint forces term, the concept of discrete directional derivative is used one more

time, where now the Jacobian matrix of constraints Bn+ 1
2

is replaced by the approximation

B∗
n+ 1

2

in order to satisfy

(Φn+1 − Φn) = B∗
n+ 1

2

(qn+1 − qn). (19)

With this condition,

(qn+1 − qn)TB∗T
n+ 1

2

λn+ 1
2

= (Φn+1 − Φn)λn+ 1
2
. (20)

The configuration at time tn is assumed to be compatible, Φn = 0. Then, forcing

Φn+1 = 0 (21)

guarantees that the work of the constraints forces is zero.

By substituting Equations (16)–(19) into Equation (15) it can be seen that the total energy

change of the system over a time step results in

En+1 − En = Kn+1 − Kn + Vn+1 − Vn = 0. (22)

Therefore, the scheme formed by the equation set (14) preserves the total energy of the system

if Equations (18), (19), and (21) are satisfied.
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Fig. 4 Simple pendulum: displacement responses for test cases a and b in Cartesian coordinates (energy-
preserving integration scheme)

4.3 Numerical examples

The energy-preserving scheme was applied to solve the four test cases. It can be observed

in Figures 4 and 5 that the displacements and velocities responses computed by this scheme

are correct in the first two test cases a and b, with an exact conservation of the total energy

of the system (Figure 6). The nonstiff double pendulum (test case c) is also correctly solved

(Figure 7). Finally, for the stiff double pendulum (test case d), although energy is exactly pre-

served, the ill-conditioned mass matrix generates large spurious oscillations in the numerical

response which mask the response (Figure 8).

4.4 Discussion

In this section, a time integration scheme based on time-continuous Galerkin approxi-

mation with independent interpolation of displacements and velocities was introduced. A
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Fig. 5 Simple pendulum: velocity responses for test cases a and b in Cartesian coordinates (energy-preserving
integration scheme)

discretization process was developed for elastic and inertial forces that preserves the total

mechanical energy of the system at the discrete solution level. The discretized constraint

forces guarantee the exact satisfaction of nonlinear constraints and the vanishing of their

work over the time step. The energy-preserving scheme provides unconditional stability for

nonlinear multibody systems. However, it lacks the high-frequency numerical dissipation

required to tackle realistic engineering problems.

5 Time-discontinuous Galerkin approximation

In order to annihilate the spurious high-frequency oscillations that arise in flexible problems

or in rigid problems with ill-conditioned mass, a new scheme that provides bounds on the

Springer



Multibody Syst Dyn

0 1 2 3 4 5 6 7 8 9 10
-10

-8

-6

-4

-2

0

2

4

6

8

10
Simple Pendulum - constrained and uncostrained cases - h=0.02

Time

kinetic energy
potential energy

total energy

s
ei

gr
e

n
E

Fig. 6 Simple pendulum: kinetic, potential, and total energy for both test cases a and b (energy-preserving
integration scheme). Note that curves for both test cases are superposed

algorithmic total energy over a typical time step [tn, tn+1] and at the same time introduces

dissipation in the high-frequency regime will be constructed. For this purpose, the time-

discontinuous Galerkin approximation will be used, which is a natural way to arrive at the

set of discrete equations of an algorithmic total energy dissipative scheme [21].

Discontinuities on displacements and velocity fields q and v at the initial time tn are

allowed in this scheme (Figure 9). A contribution taking into account the value of these

discontinuities will appear in the weighted residual expressions. An additional state at time

t j = limε→0(tn + ε) is added and the following averaged quantities at the middle points are

defined:

(·)g = 1

2
((·)n+1 + (·) j ), (·)h = 1

2
((·) j + (·)n). (23)

The scheme moves forward from the initial to the final time through two coupled steps, one

from tn to t j and the other from t j to tn+1.

5.1 Energy decaying scheme without control of the amount of the dissipated energy

5.1.1 Discretization of the equation of motion

The discontinuous Galerkin approximation of the equations of motion (12) can be written as:

h

2

∫ 1

−1

W1(τ )[q̇ − L−1v]dτ

+ h

2

∫ 1

−1

W2(τ )

[
Mv̇ + L−TGq̇ + L−T ∂V

∂q
+ L−TBTλ

]
dτ

+W1(−1)(q j − qn) + W2(−1)[M (v j − vn) + L−TGh(q j − qn)] = 0, (24)
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Fig. 7 Double pendulum: time responses for velocities and energies in Cartesian coordinates for m1 = m2 =
1, for test case c (energy-preserving integration scheme)

where the test functions are

W1(τ ) = A1 + B1τ, W2(τ ) = A2 + B2τ. (25)

Displacements and velocities are linearly interpolated over the time step [t j , tn+1]:

q = q j (1 − τ ) + qn+1(1 + τ )

2
, q̇ = (qn+1 − q j )

h

v = v j (1 − τ ) + vn+1(1 + τ )

2
, v̇ = (vn+1 − v j )

h
.

(26)
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Fig. 8 Double pendulum: time responses for velocities and energies in Cartesian coordinates for m1 = 0.005
and m2 = 1 for test case d (energy-preserving integration scheme)
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Internal and constraint forces are similarly interpolated, by grouping the contributions at the

midpoint g:

∂V
∂q

= ∂V
∂q

∣∣∣∣
g

+ τ

2

(
∂V
∂q

∣∣∣∣
n+1

− ∂V
∂q

∣∣∣∣
j

)

BTλ = BT
gλg + τ

2

[
BT

n+1λn+1 − BT
j λ j

]
.

(27)

By taking independent variations on the parameters A1, A2, B1, and B2, the following discrete

equations system is obtained, which is solved in an iterative form to obtain qn+1, q j , vn+1,

v j , λg , and λ j⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

h
LTM (vn+1 − vn) + ∂V

∂q

∣∣∣∣
g

+ BT
gλg + 1

h
Gm(qn+1 − qn) = 0

1

h
LTM

(
v j − vn

) − 1

3

[
∂V
∂q

∣∣∣∣
g

− ∂V
∂q

∣∣∣∣
h

]
+ 1

6

[
∂V
∂q

∣∣∣∣
j

− ∂V
∂q

∣∣∣∣
n

]
− 1

3

(
BT

g λg − BT
h λ j

) + 1

h
Gh(q j − qn) = 0

1

h
L(qn+1 − qn) − 1

2
(vn+1 − v j ) = 0

1

h
L(q j − qn) + 1

6
(vn+1 − v j ) = 0

Φ j = 0

Φn+1 = 0.

(28)

The fact that L is constant for the adopted rotation parametrization and the following ap-

proximation have been used:

Gg(qn+1 − q j ) + Gh(q j − qn) � Gm(qn+1 − qn) (29)

with:

Gm = Gm(Hm); Hm = 1

2
(Hn + Hn+1) = 1

2
J(Ωn + Ωn+1) (30)

5.1.2 Energy decay in the discrete scheme

If Equation (28a) is multiplied by the displacements jump (qn+1 − qn) and Equation (28b)

by (q j − qn), we can get:

1

h
(qn+1 − qn)TLTM (vn+1 − vn) + (qn+1 − qn)T ∂V

∂q

∣∣∣∣
g

+ (qn+1 − qn)TBT
g λg + 1

h
(qn+1 − qn)TGm(qn+1 − qn) = 0

Springer



Multibody Syst Dyn

1

h
(q j − qn)TLTM (v j − vn) − 1

3
(q j − qn)T

[
∂V
∂q

∣∣∣∣
g

− ∂V
∂q

∣∣∣∣
h

]

+ 1

6
(q j − qn)T

[
∂V
∂q

∣∣∣∣
j

− ∂V
∂q

∣∣∣∣
n

]
− 1

3
(q j − qn)T

(
BT

g λg − BT
h λ j

)
+ 1

h
(q j − qn)TGh(q j − qn) = 0. (31)

By using the displacements–velocities relationships (28c) and (28d) and by linearly combin-

ing Equations (31a) and (31b):

1

2
(vn+1 + v j )

TM (vn+1 − vn) − 1

2
(vn+1 − v j )

TM (v j − vn)

+ (qn+1 − q j )
T ∂V

∂q

∣∣∣∣
g

+ (q j − qn)T ∂V
∂q

∣∣∣∣
h

+ 1

2
(q j − qn)T

[
∂V
∂q

∣∣∣∣
j

− ∂V
∂q

∣∣∣∣
n

]
+ (qn+1 − qn)TBT

g λg − (q j − qn)T
(
BT

g λg − BT
h λ j

)
+ (qn+1 − qn)T 1

h
Gm(qn+1 − qn) + (q j − qn)T 1

h
Gh(q j − qn) = 0. (32)

After some algebraic manipulations, it can be shown that the first two terms are equal to the

sum of the kinetic energy jump over the time step [tn, tn+1] plus a positive term Knj which

can be called kinetic energy of the jump:

1

2
(vn+1 + vn)TM (vn+1 − v j ) − 1

2
(vn+1 − v j )

TM (v j − vn) = Kn+1 − Kn + Knj , (33)

where the kinetic energy of the jump is defined as

Knj = 1

2
(v j − vn)TM (v j − vn) � 0. (34)

Once again, the midpoint elastic forces (∂V/∂q)g and (∂V/∂q)h are replaced by their dis-
crete directional derivative counterparts, giving the jump of potential energy over the time

step:

(qn+1 − q j )
T ∂V

∂q

∣∣∣∣∗
g

+ (q j − qn)T ∂V
∂q

∣∣∣∣∗
h

= Vn+1 − V j + V j − Vn = Vn+1 − Vn . (35)

The third term in Equation (32) involving derivatives of potential energy will be called

potential energy of the jump; it is nonnegative for convex potential energy functions:

Vnj = 1

2
(q j − qn)T

[
∂V
∂q

∣∣∣∣
j

− ∂V
∂q

∣∣∣∣
n

]
� 0. (36)
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For the constraint forces, the matrices Bg and Bh are approximated with B∗
g and B∗

h , using

once again the concept of discrete directional derivative in such a way that

B∗
g(qn+1 − q j ) = Φn+1 − Φ j ; B∗

h (q j − qn) = Φ j − Φn . (37)

Then,

(qn+1 − qn)TB∗T
g λg − (q j − qn)T

(
B∗T

g λg − B∗T
h λ j

)
= (Φn+1 − Φ j )

Tλg + (Φ j − Φn)Tλ j . (38)

The configuration at time tn is assumed to be compatible, Φn = 0. Then, by enforcing

Φ j = 0 and Φn+1 = 0 (39)

implies that the work of the constraints forces vanishes.

Finally, for the last two terms:

(qn+1 − qn)T 1

h
Gm(qn+1 − qn) = 0

(q j − qn)T 1

h
Gh(q j − qn) = 0 (40)

because of the skew-symmetry of Gm and Gh .

By substituting Equations (33)–(37) and (40) in Equation (32), it can be seen that the

change of the total energy of the system becomes

Kn+1 − Kn + Vn+1 − Vn + c2 = En+1 − En + c2 = 0, (41)

where the quadratic term is the total energy of the jump

c2 = Enj = Knj + Vnj � 0. (42)

Finally,

En+1 = En − c2 −→ En+1 � En, (43)

that is, the scheme proposed by the set of Equation (28) implies the inequality (43), which

guarantees the decay of the total energy of the system if Equations (35)–(37) and (39) are

satisfied.

5.1.3 Numerical examples

In the test examples solved using the proposed energy decaying scheme, it can be observed

that the numerical oscillations that appeared in the double pendulum with ill-conditioned

mass matrix, are now completely damped out (Figure 10). However, Figure 11 shows that

the scheme dissipates too much energy. For the simple pendulum, the responses are plotted

in Figures 12 and 13. It can be observed that although the results of the unconstrained case

are correct, in the case of the constrained model the energy dissipation is again excessive.
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Fig. 10 Double pendulum: time responses for displacements and velocities in Cartesian coordinates for
m1 = 0.005, m2 = 1, in test-case d (energy-decaying integration scheme without dissipation control)

5.1.4 Discussion

A time integration scheme based on time-discontinuous Galerkin approximation with inde-

pendent interpolation of displacements and velocities was developed. The scheme is closely

related to the energy preserving scheme and it implies a discrete energy decay statement.

The discretization process for the constraint forces is left unchanged, that is, the work they

perform vanishes exactly and constraints are exactly satisfied. This procedure provides non-

linear unconditional stability and high-frequency numerical dissipation. Note that there is no

control on the amount of dissipated energy. Note also that, although unconstrained problems

are solved correctly with a small amount of dissipation, the computed solutions for nonlinear

constrained problems present an excessive amount of energy dissipation.
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Fig. 11 Double pendulum: time responses for kinetic, potential, and total energy for m1 = 0.005 and m2 = 1,
in test-case d (energy-decaying integration scheme without dissipation control)

5.2 Energy decaying scheme with control of dissipated energy

The algorithm proposed in the previous section is extended to include an algorithmic control

in the amount of numerical dissipation. The procedure is exactly the same as before but the

expressions of the interpolated displacements, velocities, and internal forces are now:

q = (q j + qn+1)

2
+ τ

(qn+1 − αq j − (1 − α)qn)

2
, q̇ = (qn+1 − q j )

h

v = (v j + vn+1)

2
+ τ

(vn+1 − αv j − (1 − α)vn)

2
, v̇ = (vn+1 − v j )

h
(44)

∂V
∂q

= ∂V
∂q

∣∣∣∣
g

+ τ

2

[
∂V
∂q

∣∣∣∣
n+1

− α
∂V
∂q

∣∣∣∣
j

− (1 − α)
∂V
∂q

∣∣∣∣
n

]
, (45)

where the algorithmic parameter α ∈ [0, 1] will be shown to control the amount of dissipation.

On the contrary, the forces of constraint are interpolated as in the previous scheme:

BTλ = BT
gλg + τ

2

(
BT

n+1λn+1 − BT
j λ j

)
. (46)

The weight functions are the same used for the previous scheme.

5.2.1 Discretization of the equation of motion

A weighted residual expression of the equations of motion (12) is formed, as in the previous

scheme, and after integration, the TDG discrete form of the equations of motion can be
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written as: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

h
LTM (vn+1 − vn) + 1

h
Gm(qn+1 − qn) + ∂V

∂q

∣∣∣∣
g

+ (BTλ)g = 0

1

h
LTM (v j − vn) + 1

h
Gh(q j − qn) − 1

3

[
∂V
∂q

∣∣∣∣
g

− ∂V
∂q

∣∣∣∣
h

]

+ 1

6
α

[
∂V
∂q

∣∣∣∣
j

− ∂V
∂q

∣∣∣∣
n

]
− 1

3

(
BT

gλg − BT
h λ j

) = 0

L
1

h
(qn+1 − qn) = 1

2
(v j + vn+1)

L
1

h
(q j − qn) = −1

6

[
vn+1 − αv j + (α − 1)vn

]
Φ j = 0

Φn+1 = 0

(47)

with 0 ≤ α ≤ 1.

5.2.2 Energy decay in the discrete scheme

The decay of energy for this scheme will be proved now. For this purpose, Equation (47a) is

multiplied by (qn+1 − qn)T and Equation (47b) by (q j − qn)T to get

1

h
(qn+1 − qn)TLTM (vn+1 − vn) + 1

h
(qn+1 − qn)TGm(qn+1 − qn)

+ (qn+1 − qn)T ∂V
∂q

∣∣∣∣
g

+ (qn+1 − qn)T(BTλ)g = 0 (48)

1

h
(q j − qn)TLTM (v j − vn) + 1

h
(q j − qn)TGh(q j − qn)

− (q j − qn)T 1

3

[
∂V
∂q

∣∣∣∣
g

− ∂V
∂q

∣∣∣∣
h

]
+ (q j − qn)T 1

6
α

[
∂V
∂q

∣∣∣∣
j

− ∂V
∂q

∣∣∣∣
n

]
− (q j − qn)T 1

3

(
BT

gλ − BT
h λ j

) = 0. (49)

Combining linearly the latter two expressions:

1

2
(v j + vn+1)TM (vn+1 − vn) − 1

2
[vn+1 − αv j + (α − 1)vn]TM (v j − vn)

+ (qn+1 − qn)T ∂V
∂q

∣∣∣∣
g

− (q j − qn)T 1

2

[
∂V
∂q

∣∣∣∣
g

− ∂V
∂q

∣∣∣∣
h

]
+

− (q j − qn)T 1

2
α

[
∂V
∂q

∣∣∣∣
j

− ∂V
∂q

∣∣∣∣
n

]
+ (qn+1 − qn)TBT

gλg − (q j − qn)T
(
BT

gλg − BT
h λ j

) = 0, (50)
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Fig. 12 Simple pendulum: displacements for test cases a and b in Cartesian coordinates (energy-decaying
integration scheme without dissipation control)

where, after some algebraic manipulations, the terms corresponding to the kinetic energy

jump Kn+1 − Kn , and to the kinetic energy of the jump Knj , multiplied by the factor α can

be identified:

1

2
(v j + vn+1)TM (vn+1 − vn) − 1

2
[vn+1 − αv j + (α − 1)vn]TM (v j − vn)

= Kn+1 − Kn + αKnj = Kn+1 − Kn + αKnj .

The expression of the kinetic energy of the jump is as before:

Knj = 1

2
(v j − vn)TM (v j − vn) � 0. (51)
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Fig. 13 Simple pendulum: kinetic, potential and total energy for test cases a and b (energy-decaying integra-
tion scheme without dissipation control)

Once again, the concept of the discrete directional derivative for the potential energy terms

will be used, in order to replace the expressions (∂V/∂q)g and (∂V/∂q)h by their discrete

directional counterparts in order to verify Equation (35)

(qn+1 − q j )
T ∂V

∂q

∣∣∣∣∗
g

+ (q j − qn)T ∂V
∂q

∣∣∣∣∗
h

+ (q j − qn)T 1

2
α

[
∂V
∂q

∣∣∣∣
j

− ∂V
∂q

∣∣∣∣
n

]

= (Vn+1 − V j ) + (V j − Vn) + (q j − qn)T 1

2
α

[
∂V
∂q

∣∣∣∣
j

− ∂V
∂q

∣∣∣∣
n

]
.

In the RHS are identified the potential energy jump over the time-step [tn, tn+1] plus the

potential energy of the jump, that in order to be positive must also satisfy the local convexity
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expressed in Equation (36). The constraint and gyroscopic forces are treated in the same way

as in the previous section, i.e., the work done by them is null.

Finally, the change of the total energy has the expression:

Kn+1 − Kn + αKnj + Vn+1 − Vn + αVnj = En+1 − En + α(Knj + Vnj ) = 0 (52)

from which

En+1 = En − αc2 c2 ≥ 0 −→ En+1 � En . (53)

For α = 0, an energy preserving scheme is obtained (note that it is different from that of

Section 4), while for α = 1 the maximum energy dissipation is reached. Note also that the

energy decaying scheme presented in the previous section is recovered for α = 1.

5.2.3 Numerical examples

The performance of the algorithm will be shown by analyzing the responses computed for

the simple and double pendulums.

Figure 14 plots the simple pendulum displacements responses for the case α = 0 for both

models, a and b, whereas Figure 15 displays their velocities time responses. Clearly, the

responses computed for both models differ completely, and a locking phenomenon can be

observed in the constrained model.

This locking is also observed in the responses computed in the double-pendulum test

cases (constrained models). In all cases, the total energy is perfectly preserved for the energy

preserving scheme (Figure 16).

Figure 17 shows the amount of dissipation changes for different values of the parameter α

for the simple pendulum. In the constrained model, the greatest amount of dissipation is not

obtained for a value of α = 1, as is the case for the unconstrained model. Moreover, the energy

decays almost 10,000 times more for the constrained case than in the unconstrained one.

5.2.4 Discussion

In this section, a scheme with an algorithmic control of the amount of dissipated energy

was introduced. This control works well only for unconstrained problems and for linearly

constrained cases (although not shown here for brevity). The amount of dissipation increases

monotonously with α from 0 to 1 in these cases. However, a locking phenomenon appears for

nonlinearly constrained systems with α = 0, and an excessive dissipation is reached when

α 	= 0. These problems are related to the independent interpolation fields of displacements

and velocities, with a drift of constraints at the velocity level.

5.3 Energy decaying scheme with velocity constraints: α − κ algorithm

In order to avoid the numerical troubles of the previous scheme, it will be reformulated using

the constraint stabilization technique proposed by Gear et al. [29–31], with a reduction of the

governing DAEs from index 3 to index 2. The idea is to introduce a new algebraic constraint

equation BL−1v = 0 with an associated Lagrange multiplier η. By applying the Hamilton’s

principle in the same way as was done in Section 2, the new motion equations will result
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Fig. 14 Simple pendulum: displacements for test cases a and b in Cartesian coordinates (energy-decaying
integration scheme with dissipation control)

from:

δ

∫ t2

t1

{L − μT(v − Lq̇) − λTΦ − ηTBL−1v}dt = 0. (54)

Performing the variation on the variable v, we can have

μ = Mv − L−TBTη. (55)

Now introducing this expression in Equation (54) and with the help of Equation (3):

δ

∫ t2

t1

{
−1

2
vTMv − V(q) + vTMLq̇ − λTΦ − ηTBL−1v

}
dt = 0. (56)
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Fig. 15 Simple pendulum: velocities for test cases a and b in Cartesian coordinates (energy-decaying inte-
gration scheme with dissipation control)

This is the expression of the Hamilton’s principle from which the motion equations will be

derived. Now, performing the variation on the variables v, λ, η, and q successively:

– variation of v yields

−Mv + MLq̇ − L−TBTη = 0 (57)

– variation of the multipliers λ restores the constraints set (1)

– variation of the multipliers η gives

BL−1v = 0 (58)
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Fig. 16 Simple pendulum: kinetic, potential, and total energy for test cases a and b (energy decaying inte-
gration scheme with dissipation control)

– variation of the generalized displacements q yields

∫ t2

t1

{
− ∂V

∂q
δq −

(
∂Φ

∂q

)T

λ + δq̇(LTMv) + δq
∂

∂q
[(Lq̇)TMv]

}
dt = 0 (59)

from which the dynamic equilibrium equations will be extracted.

Integration by parts of Equation (59) yields

LTMv̇ + G(Mv)q̇ + ∂V
∂q

+ BTλ = 0. (60)
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Fig. 17 Simple pendulum: total energy for test cases a and b for different values of parameter α (energy-
decaying integration scheme with dissipation control)

Then, the equations of motion become a first-order DAE system with variables q, v, λ, and

η: ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

LTMv̇ + Gq̇ + ∂V
∂q

+ BTλ = 0

− LTMv + LTMLq̇ − BTη = 0

Φ = 0

BL−1v = 0.

(61)

This formulation provides the automatic enforcement of the velocity-level constraint besides

the position-level one, thus eliminating the problem of drift for these constraints.
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5.3.1 Discretization of the equation of motion

The interpolated displacements and velocities have the same expressions as in the previous

scheme:

q = (q j + qn+1)

2
+ τ

(qn+1 − αq j − (1 − α)qn)

2
, q̇ = (qn+1 − q j )

h

v = (v j + vn+1)

2
+ τ

(vn+1 − αv j − (1 − α)vn)

2
, v̇ = (vn+1 − v j )

h
.

(62)

In the same way, internal and constraint forces are interpolated:

∂V
∂q

= ∂V
∂q

∣∣∣∣
g

+ τ

2

[
∂V
∂q

∣∣∣∣
n+1

− α
∂V
∂q

∣∣∣∣
j

− (1 − α)
∂V
∂q

∣∣∣∣
n

]
BTλ = BT

gλg + τ

2

(
BT

n+1λn+1 − BT
j λ j

)
BTη = BT

gηg + τ

2

(
BT

n+1ηn+1 − BT
j η j

)
.

(63)

The time-discontinuous Galerkin approximation of Equation (61) can be written as

∫ 1

−1

W1(τ )
[
q̇ − L−1M−1L−TBTη − L−1v

]
dτ

+
∫ 1

−1

W2(τ )

[
Mv̇ + L−TGq̇ + L−TBTλ + L−T ∂V

∂q

]
dτ

+W1(−1)(q j − qn) + W2(−1)[M (v j − vn) + L−TGh(q j − qn)] = 0, (64)

where

W1(τ ) = A1 + B1τ, W2(τ ) = A2 + B2τ. (65)

Integration of this expression leads to the discrete equations system formed by the

equilibrium equations, the velocities/displacements relationships, and the constraints at
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displacement-level and at velocity-level:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

h
LTM (vn+1 − vn) + 1

h
Gm(qn+1 − qn) + ∂V

∂q

∣∣∣∣
g

+ (BTλ)g = 0

1

h
LTM (v j − vn) + 1

h
Gh(q j − qn) − 1

3

[
∂V
∂q

∣∣∣∣
g

− ∂V
∂q

∣∣∣∣
h

]

+ 1

6
α

[
∂V
∂q

∣∣∣∣
j

− ∂V
∂q

∣∣∣∣
n

]
− 1

3

(
BT

gλg − BT
h λ j

) = 0

1

h
LTML(qn+1 − qn) − κ

2

(
BT

n+1ηn+1 + BT
j η j

) − κ

2
LTM (vn+1 + v j ) = 0

1

h
LTML(q j − qn) + κ

6

(
BT

n+1ηn+1 − BT
j η j

)
+ κ

6
LTM (vn+1 − αv j − (1 − α)vn) = 0

Φ j = 0

Φn+1 = 0

B jL
−1v j = 0

Bn+1L
−1vn+1 = 0

(66)

for 0 ≤ α ≤ 1.

An algorithmic parameter κ was introduced, which will be adjusted following the criterion

of verifying energy preservation in the case α = 0, as is shown in the next section. This

parameter should be κ = 1 + O(h), that is,

lim
h→0

κ = 1 (67)

for consistency. For α = 0, the scheme preserves the total energy of the system (depending

on the value of κ) and for α = 1 it reaches the maximum energy dissipation.

5.3.2 Energy decay in the discrete scheme – computation of κ

The free parameter κ is computed by asking that in the case α = 0 the total energy of the

system should be preserved. This idea leads to an equation that gives the value to be used at

each time step.

Let us premultiply Equation (66a) by (qn+1 − qn)T, Equation (66b) by (q j − qn)T,

Equation (66c) by (vn+1 − vn)TL−1, and Equation (66d) by (v j − vn)TL−1. Combining

linearly these four equations and after some algebraic manipulations:

κ

2

(
vT

n+1Mvn+1 − vT
n Mvn

)
+ κα

2

(
vT

j Mv j − vT
j Mvn − vT

n Mv j + vT
n Mvn

)
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+ (qn+1 − q j )
T ∂V

∂q

∣∣∣∣
g

+ (q j − qn)T ∂V
∂q

∣∣∣∣
h

+ (q j − qn)T α

2

[
∂V
∂q

∣∣∣∣
j

− ∂V
∂q

∣∣∣∣
n

]
+ (qn+1 − q j )

TBT
gλg + (q j − qn)TBT

h λ j

+ κ

2
(vn+1 − vn)TL−1(Bn+1ηn+1 + B jη j )

− κ

2
(v j − vn)TL−1

(
BT

n+1ηn+1 − BT
j η j

) = 0. (68)

The work done by the gyroscopic forces is null because of the skew-symmetry of Gm and

Gh , as was reported in the previous sections.

By identifying the different energy terms and grouping them together:

κ
[
Kn+1 − Kn + α

2
(v j − vn)TM (v j − vn)

]
+Vn+1 − Vn + (q j − qn)T α

2

[
∂V
∂q

∣∣∣∣
j

− ∂V
∂q

∣∣∣∣
n

]
+ κ

2
(vn+1 − vn)TL−1(Bn+1ηn+1 + B jη j )

− κ

2
(v j − vn)TL−1(BT

n+1ηn+1 − BT
j η j ) = 0, (69)

where the concept of discrete directional derivative has been used again as was done in

the previous sections, replacing the expressions (∂V/∂q)g and (∂V/∂q)h by the discrete

counterparts that verify the expressions (35). Matrices Bg and Bh were approximated with

B∗
g and B∗

h in order to satisfy Equation (37).

Now, for α = 0, the algorithmic total energy of the system must be perfectly preserved,

that is:

(Vn+1 − Vn) + κ(Kn+1 − Kn)

+ κ

2

[
ηT

j B jL
−1(vn+1 + v j − 2vn) + ηT

n+1Bn+1L
−1(vn+1 − v j )

] = 0. (70)

Then, a closed form to compute the κ coefficient is obtained:

κ = 1 − ηT
j B jL

−1(vn+1 + v j − 2vn) + ηT
n+1Bn+1L

−1(vn+1 − v j )

2(Kn+1 − Kn) + ηT
j B jL−1(vn+1 + v j − 2vn) + ηT

n+1Bn+1L−1(vn+1 − v j )
.

(71)

It can be seen that κ is 1 minus a measure of the work done by the constraint forces at the

velocity level with respect to the kinetic energy jump.

5.3.3 Remarks

– The computation of the algorithmic parameter κ is based on requiring the integrator to be

conservative for α = 0. A similar technique was proposed by Simo [8] and Betsch and

Steinmann [14], with the difference that in those cases this technique was used to enforce

the energy preservation at all levels, while in the present proposal the technique is applied
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only for compensating the energy contribution of the velocity-level constraint forces. This

technique has also been used recently by Pfeiffer and Arnold [32] for Hamiltonian systems.

– The denominator in Equation (71) is not guaranteed to be different from zero at every

step. Therefore, the scheme may face troubles when this term is close to zero. This aspect

deserves further study to determine the influence it can have on the computations.

– The algorithmic parameter κ should be 1 + O(h) for consistency. In most cases, the

increment in the work of the constraint forces at velocity level is much smaller than the

kinetic energy jump, thus satisfying this requirement. However, at steps in which the

denominator of Equation (71) is small, this condition could be violated. In order to avoid

this inconvenience, in our experiments we limited the value of κ to lie within the interval

[1 − h/2, 1 + h/2]. In this way, the energy preservation was not exactly verified at every

time instant, and at certain time steps a slight energy drift was observed. However, this

energy drift was small since the contribution of the velocity-level forces of constraint is

much smaller than the leading energy terms.

– An alternative is simply to keep the value of κ constant and equal to 1. The resulting

scheme is not conservative for α = 0, but it still verifies that for increasing values of α the

amount of dissipation increases monotonously (see Equation (69), where the α factors are

the positive definite kinetic and deformation energies of the jump). As pointed out in the

preceding remark, the energy drift introduced by the forces of constraint at the velocity

level is much smaller than the leading energy terms, which verify preservation.

– It should be noted that the equations of motion should be properly scaled to avoid ill

conditioning of the equations when the time step is decreased [33, 34].

5.3.4 Algorithm properties

Several properties of the algorithm, such as its stability and accuracy properties in the

linear range, can be studied by a conventional analysis based on the characteristics of the
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amplification matrix. Let us consider a one degree-of-freedom linear oscillator of natural

frequency ω:

q̈ + ω2q = 0, (72)

and solve this equation numerically with our algorithm with time-step h.

The spectral radius, relative period errors, and algorithmic damping are shown in Figures

18–20, respectively, as a function of h/T = ωh/(2π ). The results are compared with those

given by generalized-α [2] and HHT [1] methods, for three different values of spectral

radius at infinity: ρ∞ = 0.6, 0.8 and the value of maximum dissipation for each scheme, i.e.,
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ρ∞ = 0.5 for the HHT and ρ∞ = 0 for the two others. Figure 19 shows that the algorithm

α − κ has the smallest period error, for any value of α. Asymptotic annihilation is achieved

with the α − κ scheme and the unconditional stability is ensured because the spectral radius

is always smaller than unity.

5.3.5 Numerical examples

Figure 21 shows that now this scheme works well in the constrained case (it does so also for

the unconstrained case). The locking problem has disappeared. In addition, the amount of

energy dissipated increases monotonously with α and its values are now 1000 times lower

than before for the case of α = 1 (Figure 22).

Figure 23 shows a plot of the evolution of the parameter κ , for an integration performed

with α = 0, using a time-step size h = 0.02. We can see that the consistency requirement of

having κ close to 1 was clearly verified in this example.

The convergence of the algorithm for the simple pendulum problem is plotted in Figure

24, where the second order of convergence for the displacements and the first order for the

Lagrange multiplier λg can be observed.
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Figures 25 and 26 plot the time responses for the test case d, in which κ was kept constant

equal to one (κ = 1) and the energy dissipation was maximized by setting α = 1. The time

step used in this analysis was h = 0.01. It should be noted that when using the energy

preserving scheme, it was not possible to perform the analysis with a time step higher than

h = 0.001 because of the violent velocity oscillations (Figure 8). This algorithm was able to
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solve the same test case by using a time step which was 10 times higher than with the energy

preserving scheme.

6 Concluding remarks

A variety of time integration schemes for constrained multibody dynamics were analyzed.

It has been shown that although the energy preserving scheme provides nonlinear uncon-

ditional stability for MBS, it lacks high-frequency numerical dissipation without which many

time algorithms can lead to the damage of the computation in realistic engineering problems.

The high-frequency numerical dissipation is therefore imperative for time integration of

multibody systems in order to assure the stability of the solution, and it was demonstrated

that it can be obtained using schemes with independent interpolation of displacements and

velocities. It was demonstrated that not only constraints but also the time derivatives of

constraints should be imposed when using independent interpolation of displacements and

velocities to avoid locking. A new algorithm was proposed based on this idea, that meets

specific requirements of unconditionally stable integration in constrained nonlinear elasto-

dynamics, energy dissipation with control of the asymptotic spectral radius, capability of

handling nonlinear constraints, capability of handling large finite rotations, and continuous

variation of the asymptotic spectral radius varying from energy preservation up to total an-

nihilation. In order to achieve these properties, a discretization process was developed for

elastic and inertial forces to obtain the corresponding preservation or dissipation of the total

mechanical energy of the system at the discrete solution level. A discretization process was

developed also for the constraint forces, so as to guarantee the exact satisfaction of nonlinear

constraints and the exact vanishing of their work.

The performance of the proposed algorithm was demonstrated with a series of numerical

tests covering the most important characteristics of numerical models of MBS.
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19. Géradin, M., Cardona, A.: Flexible Multibody Dynamics: A Finite Element Approach. Wiley, New York
(2000)
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