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Abstract

This work deals with the description of electrokinetic flow in microfluidic networks involving multiple channels intersections. A generalized
one-dimensional modelling is carried out to predict flow rate and electric current in each branch of the network, as a function of applied electric
potentials and pressure gradients. Mathematical derivations ground on thermodynamic formalisms for electrokinetic phenomena, and takes into
account the characteristics of every channel and circulating fluid in the system. The coefficients that relate driving forces and conjugated flows are
derived for both slit and cylindrical microchannels, with arbitrary values of surface potential and electric double layer thickness. Calculations are
used to rationalize typical operations performed in analytical devices that consist of well-defined microchannel networks. The modelling suggested
also provides an accurate basis to study fundamental aspects of electrokinetic phenomena in microfluidic systems.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Analytical microfluidic devices, as those currently used in
chemical, biological and medical applications, basically consist
of different networks of microchannels that connect chambers
and reservoirs [1–5]. The architecture of these networks may be
more or less complex, involving the basic units drawn schemati-
cally in Fig. 1. In order to manipulate the transport of fluids,
microchannels are generally subjected to pressure gradients,
electric fields, or a combination of the two. Therefore, in view
of technological applications, reliable models are necessary
to describe the coupled flows of matter and electricity devel-
oped in every branch of the network. For this purpose, a sound
understanding of the mechanisms governing electrokinetic phe-
nomena in microfluidic systems is required [12].

Detailed treatments of microchannel networks involve the
modelling of electrokinetic and transport phenomena in the
whole system, considering effects in two and three dimensions,
which demands important computational efforts [7,9,12–14].
Nevertheless, if microchannels are sufficiently slim, flows are
fully developed and two-dimensional effects are present near

∗ Tel.: +54 342 4559174/75/76/77; fax: +54 342 4550944.
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the channel intersections only (Reynolds numbers are normally
lower than 1 in microchannels [15]). Under these circumstances,
one-dimensional modelling applies as a first approximation.
This approach greatly simplifies calculations and still provides
valuable information to design and operate integrated microflu-
idic systems. Thus, compact models have been derived by
emulating electrical circuits [6,9,16,17]. Although useful in
practical manipulations, these models are limited to micro-scale
channels and relatively high ionic concentrations, as calculations
assume negligibly thin electric double layers (EDL) in relation
to channel cross-sectional size. The effect of heterogeneities in
channel characteristics is also underestimated. Addressing these
issues, a more complete analysis has been proposed to model
single junction networks of cylindrical capillaries [8]. However,
for the particular case of electro-osmotic flow (EOF), equations
reported apply for channel ends exposed to atmospheric pressure
only.

It should be observed that the simultaneous presence of both
electric potential and pressure gradients need to be considered,
because these conjugated forces can rarely be decoupled. In
systems driven solely by pressure, streaming phenomena occur
when microchannels contain interfacial charge, and hence the
electrokinetic ζ-potential is present (see, for instance [18]).
Conversely, in systems driven by EOF, pressure differences
take place if the ζ-potential varies from one branch to another

0927-7757/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
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Fig. 1. Schematic representation of different microchannel networks: (a) T-
shaped [6], (b) cross-shaped [7], (c) multi-branch [8], (d) double-T [9], (e)
double-cross [10], and (f) multi-junction [11]. References cited above are some
of several examples found in the recent literature. In particular, schemes (b) and
(e) include the nomenclature used here to identify branches and junctions in
calculations. Also in these schemes, arrows indicate the positive direction of the
flow.

[13,19,20]. Further, even when channel ends are open to atmo-
sphere, pressure gradients arise due to differential meniscus
curvatures generated in the reservoirs located at channel ends
[21,22], or due to unequal fluid heights, for example, when the
plate containing the network is not placed normal to gravity
[21,23]. As a last point, it is worth noting that novel applications
combine EOF and pressure-driven flow in the same device [24].

In this context of analysis, the present work discusses a
generalized modelling of the one-dimensional, steady state, elec-
trokinetic flow in microchannel networks. Systems containing
multiple junctions and channels with different characteristics
(geometry, surface properties, circulating fluid) are taken into
consideration. Calculations are aimed to assess the flows of mat-
ter and electricity in each branch of the network, as a function
of applied electric potentials and pressure gradients. The mod-
elling is performed in the framework of Onsager relations for
electrokinetic phenomena [25]. In this sense, the work deals
with a particular, extended application of the general formalism
revised in [26] and, more specifically, in [27]. In fact, here the
coefficients entering the conductance matrix, which relates driv-
ing forces and conjugated flows, are derived for both axial and

plane-symmetric electrokinetic flows, with arbitrary values of ζ-
potential and EDL thickness. In addition, these results are then
used to interpret typical operations carried out in well-defined
microfluidic networks.

The paper is organized as follows: in Section 2, the equations
required to predict the flow rate and the electric current in net-
works of microchannels are outlined. These equations include
coupling coefficients that must be deduced from the governing
equations of electrokinetic flow. For the purposes, theoretical
concepts are overviewed in Section 3. Then in Section 4, the
coefficients are derived in a general form that involves cylindri-
cal and slit microchannels. In particular, analytic expressions are
given for symmetric electrolyte solutions flowing through slit
channels with relatively low surface potentials (Appendix A).
Finally, in Section 5, some examples are considered to illustrate
the capability of the approach to explain situations of practical
interest.

2. Conjugated flows in microchannel networks

2.1. Single microchannels

The aim of this section is to quantify the flow rate Q and the
electric current I developed in straight microchannels, which
contain interfacial charge and the associated EDL of ions in
solution. The driving forces are electric potential and pressure
differences between the ends of the channels, �V and �P,
respectively. In steady state and isothermal conditions, the simul-
taneous flows are described by Onsager relations [25]:

Q = L11�P + L12�V, (1)

I = L21�P + L22�V, (2)

where L11, L12, L21, and L22 are coupling coefficients that depend
on the characteristics of both microchannel and fluid, as it will
be described in detail in Sections 3 and 4. In particular, the
matrix of coefficients is symmetric, i.e., L12 = L21, thus satis-
fying Onsager fundamental theorem [25–27]. Eqs. (1) and (2)
assume that there are no concentration gradients in the axial
direction, which is a good approximation provided the channels
are sufficiently slim. When osmotic effects are important, an
additional term is involved in these equations [26–28].

2.2. Single junction networks

Given networks with one channel intersection, like those
shown in Fig. 1a–c, it is of interest to predict the flow rate and the
electric current in every branch. For this purpose, the following
conservation equations are written:∑N

i=1
Qi = 0, (3)

∑N

i=1
Ii = 0, (4)

where sub index i refers to branch number and N is the total num-
ber of branches in the network (for example, N = 4 in Fig. 1b).
Eq. (3) derives from a simple mass balance for incompressible
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fluids with uniform density throughout the network. Eq. (4),
also known as Kirchoff law for circuit nodes, establishes the
electric charge conservation. Introducing Eqs. (1) and (2) for
each branch, Eqs. (3) and (4) result,

∑N

i=1
L11,i�Pi + L12,i�Vi = 0, (5)

∑N

i=1
L21,i�Pi + L22,i�Vi = 0, (6)

with the following definitions:�Pi = Pi − Pc and�Vi = Vi − Vc.
Here, Pi and Vi are, respectively, pressures and potentials applied
to the end of the ith branch, while Pc and Vc are the values
reached at the junction c. As indicated in Fig. 1b, flows are
positive going out of the junction.

In well-characterized networks, Pc and Vc are the only
unknowns. These independent variables can be determined by
solving the system of linear equations given by (5) and (6), which
is rearranged in a form suitable for the application of Cramer
rule:

[∑N
i=1L11,i

∑N
i=1L12,i∑N

i=1L21,i
∑N
i=1L22,i

][
Pc

Vc

]
=
[∑N

i=1L11,iPi + L12,iVi∑N
i=1L21,iPi + L22,iVi

]
,

(7)

or equivalently, A·z = a, where A is the (2 × 2) matrix of coef-
ficients, z the vector containing the variables (z1 = Pc, z2 = Vc),
and a is the vector that consists of the summations on the right
hand side (RHS) of Eq. (7). Therefore, provided det A is not
zero, the unknowns are calculated as zr = det Ar/det A, where
Ar consists of matrix A with the rth column replaced by vector
a. Once Pc and Vc are determined, the flow rate and electric
current are obtained from Eqs. (1) and (2), respectively, for any
branch of the network.

2.3. Double junction networks

For networks with a second junction c′ and the associated
branches i′ (Fig. 1e), the following balances need to be consid-
ered, apart from Eqs. (3) and (4):

∑N ′

i′=1′Qi′ = 0, (8)

∑N ′

i′=1′Ii′ = 0, (9)

where N′ is the number of branches of the second junction. In
agreement with the sign convention defined in Fig. 1e, pres-
sure and potential differences related to c′ are�Pi′ = Pc′ − Pi′
and �Vi′ = Vc′ − Vi′ , respectively. In addition, the branch that
connects the junctions is designated cc (common channel), thus
�Pcc = Pc′ − Pc and �Vcc = Vc′ − Vc. In order to find the 4
unknowns involved in this problem, i.e., Pc, Vc, Pc′ and Vc′ ,
the system of equations composed by (3), (4), (8) and (9) is

expressed,⎡
⎢⎢⎢⎢⎣

∑N
i=1L11,i

∑N
i=1L12,i −L11,cc −L12,cc∑N

i=1L21,i
∑N
i=1L22,i −L21,cc −L22,cc

−L11,cc −L12,cc
∑N ′
i′=1′L11,i′

∑N ′
i′=1′L12,i′

−L21,cc −L22,cc
∑N ′
i′=1′L21,i′

∑N ′
i′=1′L22,i′

⎤
⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎣
Pc

Vc

Pc′

Vc′

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

∑N
i�=ccL11,iPi + L12,iVi∑N
i�=ccL21,iPi + L22,iVi∑N ′
i′ �=ccL11,i′Pi′ + L12,i′Vi′∑N ′
i′ �=ccL21,i′Pi′ + L22,i′Vi′

⎤
⎥⎥⎥⎥⎥⎦ . (10)

By analogy with the treatment given above to the single junction
problem, the vectorial form of Eq. (10) is B·z = b, where B is
the (4 × 4) matrix of coefficients, z the vector of the unknowns
(z1 = Pc, z2 = Vc, z3 = Pc′ , z4 = Vc′ ), and b is the vector on the
RHS of Eq. (10). As before, the pressures and potentials in the
junctions are zr = det Br/det B, where Br consists of matrix B
with the rth column replaced by vector b.

2.4. Further considerations

It may be readily inferred the way in which this methodology
is extended to networks with three or more channel intersections,
where the number of unknowns doubles the number of junctions.
In the case shown in Fig. 1f, for example, the unknowns are 6 and
hence one has to handle 6 × 6 matrices. In any case, calculations
can be carried out by using standard mathematical software.
Therefore, if the applied pressures and potentials are given, and
the matrix of coefficients is known for the system, the pressures
and potentials at the junctions can be calculated, and then both
Q and I are obtained for every branch in the network.

The above analysis is general and valid for different channel
geometries and electrolyte solutions [27], the characteristics of
which enter through the coupling coefficients. Thus, the follow-
ing task in this modelling consists in finding the expressions of
L11, L12 and L22 from the governing equations of electric and
hydrodynamic fields in microchannels.

3. Fundamentals of electrokinetic phenomena

This section accounts for the steady-state electrokinetic flow
developed in straight microchannels. For the sake of simplic-
ity, axial and plane-symmetric flows are considered, which
match those developed in cylindrical and slit microchannels,
respectively (Fig. 2a). The unidirectional flow domain of these
geometries is illustrated in a unified form in Fig. 2b, where d
is the half-space between the plates in slits, or the inner radius
in cylindrical capillaries. Both fluid velocity and electric current
are established in the axial direction y, and vary in the transverse
direction x.

Previous analysis can be found in several papers considering
slits [29–31] and cylindrical capillaries [28,32,33], as well as
in wider texts concerning hydrodynamics and interface science
[34,35]. More complex geometries require elaborate calcula-
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tions (for instance [36]) that are beyond the aim of the present
work. A similar comment may be added in relation to time-
dependent starting flows [37]. In what follows, the subject is
briefly reviewed and the main equations are outlined, in order to
derive the expressions of the coupling coefficients afterwards in
Section 4.

3.1. Electric field in the fluid domain

The total electric potential involves two contributions: exter-
nal potentials applied to channel ends, and EDL potentials
associated with charged solid–fluid interfaces (Sections 3.2 and
3.3). The electric potential distribution φ(x, y) is governed by
Poisson equation,

−ε∇2φ(x, y) = ρe, (11)

where ε is the electric permittivity andρe = e
∑
kzknk is the elec-

tric charge density of the electrolyte solution, which is obtained
as the summation over all type-k ions, with valence zk and
number density nk (e is the elementary charge). As mentioned
before, if microchannels are slim enough (l/d � 1; Fig. 2a), the
ion densities are quite uniform along the channel, and hence
∂2φ/∂y2 ≈ 0. Consequently, the electric field in the axial direc-
tion (−∂φ/∂y) will be also uniform, and can be readily calculated
from the potential difference between the ends of the channel:

∂φ

∂y
= �V

l
. (12)

In addition, the distribution of ions will be determined solely by
the variation of φ in the transverse direction x. For these reasons,
the total potential is normally writtenφ(x, y) =ψ(x) + V(y), where
ψ(x) is the EDL potential at equilibrium state and V(y) is the
applied potential [28,33,34].

3.2. Standard model for the fluid–solid interface

Fig. 2c presents a highly schematic representation of the
interfacial region of microchannels. The electric potential ψs

developed at x = s, in relation to the reference potential ψ0 at
x = 0, depends on the charge generation mechanism of the sur-
face [35]. In principle, it may be thought that solid walls expose

Fig. 2. Schematic representation of: (a) cylindrical and slit microchannels; (b)
flow domain and coordinate system used in calculations; (c) solid–liquid inter-
face, involving the EDL potential ψ(x), EDL thickness 1/κ and velocity profile
u(x) (arbitrary drawings).

towards the fluid a certain number ns of specific sites able to
release or take H+ ions. Hence, in equilibrium with an aqueous
electrolyte solution, the surface becomes electrically charged (in
general, negatively) with a surface charge density,

qs = ensα(pH), (13)

whereα(pH) is the pH-dependent, net fraction of ionized sites on
the wall [38]. The compact layer (s ≥ x ≥ d; Fig. 2c) is commonly
assumed to be free of charges due to the finite size of hydrated
ions (specific ion adsorption is not considered here). Thus, the
potential drops linearly across this layer to reach the value ψd
at x = d, also designated outer Helmholtz plane [35,39]. In the
diffuse layer (d ≥ x ≥ 0; Fig. 2c), the potential decreases in a non-
linear form, because of the screening produced by counterions
and other electrolyte ions (Section 3.3).

The electroneutrality condition establishes that the surface
charge density is balanced with the total charge in the diffuse
layer of ions:

qs = −
∫ d

0
ρe(x) dx. (14)

Therefore, Eqs. (13) and (14) provide a relationship between
the surface potential and the physicochemical characteristics
of the solution. In this sense, suitable expressions of α(pH)
in terms of dissociation/association constants of surface sites
are available [38]. Furthermore, appropriate theoretical descrip-
tions have been recently reported for interfaces containing weak
acid groups, such as silanol in fused silica capillaries [40], and
carboxyl in synthetic polymer materials [41].

3.3. Ion and potential distributions in the EDL

In order to find the ion distributions nk(x) at equilibrium
state, the x-component of Nernst–Plank equation is considered
[34,35]. Taking into account that there is no radial flux of ions
nor flow in the direction x, this equation yields the Boltzmann-
type distributions for the kth ionic species in the diffuse
layer: nk(x) = n0,k exp[−zke(ψ−ψ0)/kBT], where n0,k = nk(0)
andψ0 =ψ(0) are, respectively, ion densities and electric poten-
tial at the channel centerline, kB is the Boltzmann constant, and
T is the absolute temperature. With these expressions of nk(x),
and considering the assumptions made above on φ(x, y), Eq.
(11) yields the following relation between EDL potential and
ion densities, namely Poisson–Boltzmann equation:

1

xm

∂

∂x

(
xm
∂ψ

∂x

)
= −e

ε

∑
k
zkn0,k exp

(
−zke(ψ − ψ0)

kBT

)
.

(15)

In this expression and hereafter, m is used to describe either
plane-symmetric (m = 0) or axis-symmetric (m = 1) geometries
[40]. The boundary conditions required to solve Eq. (15) in the
flow domain of microchannels are,

x = 0,
∂ψ

∂x
= 0; (16)

x = d, ψ = ψd. (17)
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At this step, it is necessary to introduce the parameter,

κ =
(
e2∑

kz
2
kn0,k

εkBT

)1/2

, (18)

the inverse of which is the well-known Debye length. For large
values of κd (thin EDL in comparison to d; Fig. 2c), the fluid
is electrically neutral at the channel centerline (n0,+ = n0,−) and
the reference potential ψ0 vanishes. This also implies that the
concentration of counterions neutralizing the interfacial charge
is negligible in comparison with the concentration of electrolyte
ions in the bulk, which is usually the case in micro-scale channels
at moderate ionic concentrations (∼10−3 M). Under these con-
ditions, and considering symmetric electrolytes, one obtains the
form of Poisson–Boltzmann equation normally used in practice
(see (A.1) in the appendix). In contrast, at very low ionic concen-
trations, or in case of nano-scale channels, where relatively low
values of κd are attained, the EDL from opposing surfaces over-
lap even at low surface potentials. Hence n0,+ �= n0,− andψ0 �= 0,
which implies special considerations to extract ψ(x) from Eq.
(15).

3.4. Fluid velocity and pressure fields

When electric fields are applied along microchannels, electric
forces acting on excess ions drag the surrounding liquid, and thus
EOF develops. If, in addition, pressure gradients exist in the
axial direction, the flow involves a hydrodynamic contribution
as well. For Newtonian fluids, the velocity profile u(x) is deduced
from the y-component of Navier–Stokes equation [34,35], which
provides the momentum balance in the fluid, here written at the
steady state:

∂p

∂y
= μ

1

xm

∂

∂x

(
xm
∂u

∂x

)
+ ρgy − ρe

∂V

∂y
. (19)

In this equation, p is the pressure, μ the fluid viscosity, ρ the
fluid density, and gy is the axial component of gravitational
acceleration g. Further, ∂P/∂y = ∂(p − ρgyy)/∂y is defined to be
a generalized pressure gradient. In a fully developed flow of
incompressible fluids, continuity equation indicates ∂u/∂y = 0,
and hence ∂2P/∂y2 = 0 [34,35]. Consequently, the pressure gra-
dient is uniform throughout the channel and can be quantified
as,

∂P

∂y
= �P

l
. (20)

In writing the boundary conditions, one should express that u(x)
vanishes at a certain plane parallel to the channel wall, also
designated shear plane (see scheme in Fig. 2c), where the value
of ψ is identified as the ζ-potential. It is commonly assumed
that the shear plane is close to the outer Helmholtz plane, hence
ζ≈ψd [35,39]. Therefore, one may write,

x = 0,
∂ψ

∂x
= 0,

∂u

∂x
= 0; (21)

x = d, ψ = ζ, u = 0. (22)

With these conditions, and substituting ρe from Eq. (15), the
solution of Eq. (19) is,

u(x) = (x2 − d2)

2(1 +m)μ

∂P

∂y
+ ε [ζ − ψ(x)]

μ

∂V

∂y
. (23)

It is worth to remark that, in this modelling, d is the half-space
between the plates in slits (m = 0) and the inner radius in cylin-
drical capillaries (m = 1). The first term on the RHS of Eq. (23)
accounts for the pressure-driven flow, and the second one rep-
resents the EOF.

The potentialψ(x) entering Eq. (23) should be obtained from
Eq. (15). Indeed, in the context of the standard electrokinetic
model, the EDL is assumed to retain its equilibrium charge dis-
tribution even when the electrolyte solution flows [35]. This
approximation holds as long as �V/l is small in comparison
with κψd and κ kBT/e [27].

3.5. Current density field

Once the velocity field is established, the electric current in
the channel is derived from the y-component of Nernst–Plank
equation [34,35]. Neglecting axial concentration gradients
(because of the assumption of slim microchannels), the flux of
kth ionic species is jk(x) = nku(x) − eFzkνknk ∂V/∂y, where F is
the Faraday constant and νk is the ionic mobility. On the RHS
of this equation, the first and second terms account for the con-
vective and conductive currents, respectively. The total current
density in the flow domain is j(x) =∑kzkjk(x), i.e.,

j(x) = ρeu(x) − σ
∂V

∂y
, (24)

where σ = eF
∑
kz

2
kνknk is the electric conductivity of the solu-

tion that, as well as ρe, depends on transverse direction x through
nk(x).

It should be noted that calculations here neglect the possible
conductivity of the stagnant layer [42]. Further, an important
effect associated with electric current in microchannels is tem-
perature rising due to internal heat generation, namely Joule
effect [12]. In this sense, the present modelling assumes that
temperature is constant and uniform throughout the system.

4. Coupling coefficients

The general expressions of flow rate and electric current in
uniform, straight channels are, respectively,

Q = Dm
1 +m

d1+m

∫ d

0
u(x)xm dx, (25)

I = Dm
1 +m

d1+m

∫ d

0
j(x)xm dx, (26)

where Dm is the cross-sectional area, being D0 = 2wd for slits
(m = 0), and D1 =πd2 for cylindrical channels (m = 1). In these
expressions, u(x) and j(x) are substituted from Eqs. (23) and (24),
which in turn include (12) and (20). Performing integrations and
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rearranging, the expressions of Q and I take the respective forms
of Eqs. (1) and (2), with the following coefficients:

L11 = − Dmd
2

(1 +m)(3 +m)μl
, (27)

L12 = L21 = Dmεζ

μl
G1, (28)

L22 = −Dm(εζ/d)2

μl
G2 − Dmσ0

l
G3. (29)

In fact Eq. (27) is the well-known hydraulic conductance: Eq.
(28) represents electro-osmosis/streaming phenomena (Onsager
reciprocal relation), and Eq. (29) comprises the electric con-
ductance, where σ0 = eF

∑
kz

2
kνkn0,k is the conductivity of the

electrolyte solution at x = 0. The dimensionless geometrical fac-
tors appearing in Eqs. (28) and (29) are,

G1 = 1 +m

d1+m

∫ d

0

(
1 − ψ(x)

ζ

)
xm dx, (30)

G2 = 1 +m

dm−1

∫ d

0

[
∂

∂x

(
ψ(x)

ζ

)]2

xm dx, (31)

G3 = 1 +m

d1+m

∫ d

0

∑
kz

2
kνkn0,k exp(−zkeψ(x)/kBT )∑

kz
2
kνkn0,k

xm dx.

(32)

It is readily seen that numerical calculations are required
to quantify these factors, taking into account that ψ(x) comes
from Eq. (15). In particular, systems involving symmetric elec-
trolytes and relatively low surface potentials allow one to derive
analytic ψ(x) functions, which simplify the integrations of Eqs.
(30)–(32). For slit channels, expressions of G1, G2 and G3 thus
obtained are presented in the Appendix A. For cylindrical chan-
nels, the respective expressions were recently reported [8] (see
also [32]).

5. Application of the model: examples of illustration

This section discusses some operational situations found in
analytical microfluidic devices, in order to exemplify applica-
tions of the model. Cross-shaped networks were selected for
this purpose, as they are widely used for injection of samples
into a given channel or fluid compartment. It may be relevant
to mention first how this operation is carried out [7,10,22]:
microchannels are filled with a background electrolyte solution.
A sample added to the inlet of channel 1 (Fig. 3a) is transported
by the solution towards channel 3, which is achieved by applying
an appropriate combination of electric potentials and pressures
to the ends of every channel (loading). Once the sample plug
reached the intersection, potentials are conveniently switched,
so that flow is established in channels 2 and 4, and simultane-
ously stopped in channels 1 and 3 (injection). Thus, a portion
of the sample plug is taken from the intersection and conducted
through the perpendicular channel. Further, to handle the size
of the sample, the operation known as focusing is carried out,

Fig. 3. Schematic representation of a cross-shaped network of microchannels:
(a) placed in the horizontal plane (Cases I, II, IV and V; Table 1); (b) tilted a
certain angle θ in relation to the horizontal plane (Case III; Table 1).

which basically consists in controlling the ratio Q2,4/Q1 during
the loading step, by modifying the applied electric potentials
[43].

Examples below consider EOF of symmetric electrolyte solu-
tions, at moderate ionic concentrations, in networks of slit
microchannels with l � w � d (Fig. 2a) and relatively low
surface potentials. Under these constraints, the geometrical fac-
tors given in the appendix ((A.3)–(A.5)) may be used in Eqs.
(27)–(29) to determine the coupling coefficients. Numerical val-
ues used in calculations were arbitrarily chosen for the purpose
of illustration.

5.1. Example 1: pressure effects in cross-shaped networks

As mentioned in Section 1, even when there are no applied
pressures and reservoirs are open to atmosphere, pressure dif-
ferences among channel ends usually arise. In relation to this,
hypothetical cases related to sample injection in systems driven
by EOF are discussed here. In all cases, the solution is con-
ducted from channel 1 to channel 3 (Fig. 3a) and, for the sake of
simplicity, Q2 = Q4 = 0 is imposed as a focusing condition. This
should be attained, in principle, with the potential and pressure
distributions reported in Table 1, Case I.

In the same table, Case II considers an excess pressure of
150 Pa in reservoir 2. A situation like this has been observed
experimentally and attributed to Laplace pressures [21,22].

Table 1
Electric potential and pressure configurations in a cross-shaped network of slit
microchannels

Case ζ3/ζ1 P1, V1 P2, V2 P3, V3 P4, V4 Pc, Vc

I 1 0, 1000 0, 500 0, 0 0, 500 0, 500

II 1 0, 1000 150, 474.4 0, 0 0, 500 37.5, 493.6

III 1 75, 1000 0, 512.8 75, 0 150, 487.2 75, 500

IV 1.8 0, 1000 0, 333.4 0, 0 0, 333.4 −486.3, 416.5

V 0.6 0, 1000 0, 611.1 0, 0 0, 611.1 324.9, 555.7

Calculations involve EOF from channel 1 to channel 3, with Q2 = Q4 = 0. Numer-
ical values are d = 3 �m, w = 100 �m, and l = 20 mm in all branches, while
ζ1 = ζ2 = ζ4 = −0.025 V. The circulating fluid is a 10−4 M KCl aqueous solution
at 20 ◦C, thus κd = 98.4. Throughout the table, pressures are given in Pa and
potentials in V.
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Calculations predict the diminution required in V2 to keep
Q2,4 = 0. Also in Table 1, Case III considers pressures distribu-
tion obtained, for instance, by tilting the cross-shaped network
about 25◦, in the way shown in Fig. 3b [21,23]. Given this situa-
tion, V2 must be increased and V4 must be decreased to achieve
the condition Q2,4 = 0.

One of the benefits of pure EOF is that the velocity profile is
flat, as long as κd is sufficiently large, which is advantageous to
avoid sample dispersions in dispensing and separation processes.
This is virtually accomplished in Case I. In Cases II and III, the
velocity profile is not flat anymore, because a pressure difference
between the junction and channel ends remains. This aspect is
better illustrated in the following example.

5.2. Example 2: cross-shaped networks with heterogeneous
channels

The effect of varying the ζ-potential in straight channels with-
out intersections [8,19,20], as well as in T-junctions [13], has
been discussed in previous works. Cross-shaped networks con-
taining branches with different ζ-potentials are analyzed here.
On the base of Fig. 3a, EOF from channel 1 towards channel 3 is
considered, and the condition Q2,4 = 0 is set beforehand. Table 1
(Cases IV and V) shows the potential distributions required to
accomplish this focusing condition, when the surface potential
of channel 3 is varied in relation to that of channels 1, 2 and 4,
which are fixed at –0.025 V. Results indicate that a pressure gra-
dient is generated along the channels, with the maximum value
at the surface potential discontinuity (channel intersection in this
case). It is observed in Table 1 that, when ζ3 is higher than ζ1
(Case IV), a negative pressure arises at the junction, and hence,
the potentials V2 and V4 must be decreased to avoid flow from
channels 2 and 4 towards the intersection. The contrary happens
when ζ3 is lower than ζ1 (Case V).

Fig. 4 shows the velocity profiles obtained in each branch
under these conditions. It is clearly seen how pressure gradi-
ents, generated because of ζ-potential discontinuities, modify
fluid velocity. Indeed, the flat profile associated with pure EOF
(full line in Fig. 4) is only attained when branches are perfectly
homogeneous in size and surface properties. An interesting
observation is that, although Q2,4 = 0 in all cases, the fluid veloc-
ity is not zero in channels 2 and 4, but a flow recirculation is
predicted to occur (of course, these results do not apply in the
close vicinity of junctions and channel ends). This phenomenol-
ogy is also observed in the cases discussed above in Example 1.

5.3. Example 3: focusing and dispensing in double-cross
networks

The double-cross injection system [10,43] is considered here,
as an example of microchannel networks with two intersections.
Fig. 5 illustrates the typical situation in which a sample (dark
gray) is conducted from channel 1 towards channel 3′. Branches
2 and 4, the so-called focusing channels, are used to control the
width of the sample plug (ws), which is carried out by regulating
the focusing ratio V2,4/V1. The sample is assumed to be com-
posed of neutral molecules, and transported solely by the EOF of

Fig. 4. Fluid velocity as a function of the relative distance κx for each branch of a
cross-shaped network: (a) channel 1; (b) channel 3; (c) channels 2 and 4. Simul-
taneously in all branches, solid lines represent Case I (ζ3/ζ1 = 1), dotted lines
represent Case IV (ζ3/ζ1 = 1.8), and dashed lines represent Case V (ζ3/ζ1 = 0.6).
Numerical values are reported in Table 1.

the background electrolyte solution. In practical situations, this
step is previous to either an electrophoretic separation through
channels 2′–4′ [10], or a selective dispense of sample to one of
compartments 2′, 3′ or 4′ [43].

If the sample is going to be delivered to the outlet of channel
3′, as shown in Fig. 5, appropriate values of V2′ and V4′ must be
applied to handle the focused stream at the second junction. As a
first approximation, one may impose Q2′ = Q4′ = 0. With this
condition in the model, the required potentials V2′,4′ are calcu-
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Fig. 5. Schematic representation of sample focusing carried out in a double-
cross microfluidic network. Dark gray zone denotes sample, and white zone
represents the background electrolyte solution. The picture intends to represent
the situation where Q2 ≈ Q4 ≈ Q1, hence the width of the focused sample stream
is ws ≈ w/3, approximately, w being the channel width (see text for further
details).

Fig. 6. (a) Relative potentials required at the ends of channels 2′ and 4′ to attain
Q2′ = Q4′ = 0 (Fig. 5), and (b) relative flow rate in channels 2 and 4, as a func-
tion of the focusing ratio. Calculations consider a 10−3 M KCl aqueous solution
at 20 ◦C (κd = 311). Also d = 3 �m, w = 100 �m, l = 20 mm, and ζ = −0.025 V
in all branches, while V1 = 1000 V andV3′ = 0. In (a), dashed lines are boundary
marks for V2 and V4 (see related text).

lated for given values of V2,4/V1. Results are shown in Fig. 6a,
for different lengths of common channel, while other branches
are set homogeneous in size and surface properties. Dashed lines
in Fig. 6a define a sort of operational window for this particular
example. In fact, the lower limit of the focusing ratio is given
by the potentials V2,4 that makes Q2,4 = 0 (Fig. 6b). If one fur-
ther diminishes the potentials in channels 2 and 4, the sample
will leak into them from the intersection. On the other extreme,
the highest values allowed for the focusing ratio are those that
produce a divergence of Q2,4/Q1 (Fig. 6b). If one increases
V2 and V4 beyond this limit, the sample will flow back to
reservoir 1.

Finally, it is worth noting that the curves plotted in Fig. 6b
offer additional features to be taken into account in the
control and optimization of focusing processes. In fact, the
width of the focused stream has been reported to be ws ≈
w/(1 + 2Q2,4/Q1), provided a fully developed, pure EOF
is attained in the network [43]. Therefore, by using data
in Fig. 6b, the size of the sample stream may be directly
related to the focusing ratio V2,4/V1. This last possibility illus-
trates the scope of the theoretical treatment presented in this
work.

6. Concluding remarks

The present paper discusses a general procedure to deal
with electrokinetic flow in microchannel networks. Calculations
allow one to obtain the flow rate and the electric current in each
branch of the network, for a given configuration of potential
and pressure gradients. The modelling is said to be generalized
because of the following reasons: (i) networks with multiple
junctions are taken into consideration, (ii) the characteristics of
every branch are included (microchannel and circulating fluid),
(iii) the simultaneous presence of electric fields and pressure
gradients is evaluated, (iv) both slit and cylindrical microchan-
nels are considered in a common fashion, and (v) equations are
not limited to asymptotic values of ζ-potential or Debye length.
Thus, the modelling comprises microfluidic systems containing
micro- and nano-scale channels, with arbitrary values of surface
potential and ionic concentrations.

Examples in the last section illustrate how the theoretical
approach accounts for practical situations found in analytical
microsystems. Indeed, relatively simple but precise calculations
may certainly help to improve the handling of these opera-
tions. Furthermore, although several improvements could be
made, the modelling suggested provides an accurate basis to
study more fundamental aspects of electrokinetic phenomena
in microfluidics: the effect of different variables like ion con-
ductivity, pH and surface potential, as well as the analysis
of concentration profiles, can be investigated in this frame-
work.
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Appendix A

Analytic expressions of the geometrical factors G1, G2 and
G3 can be derived for slit microchannels with relatively low
surface potentials. In fact, considering symmetric electrolytes
(z+ = −z− ≡ z) and large values of κd (n0,+ = n0,− and hence
ψ0 = 0), Eq. (15) with m = 0 leads to the following expression:

∂2Ψ

∂x2 = κ2 sinh(Ψ ), (A.1)

where Ψ = zeψ/kBT is the dimensionless potential [35]. Lin-
earizing the RHS of Eq. (A.1) about Ψ ≈ 0 and then integrating
yields,

Ψ (x) = Z
cosh(κx)

cosh(κd)
, (A.2)

where Z = eζ/kBT (dimensionless electrokinetic potential), since
boundary conditions (16) and (17) are used, with ζ =ψd. Eq.
(A.2) allows one to perform the integrations of Eqs. (30) and
(31), to obtain analytic expressions of G1 and G2 as follows:

G1 = 1 − tanh(κd)

κd
, (A.3)

G2 = κd

cosh2(κd)

(
sinh(2κd)

4
− κd

2

)
. (A.4)

In the case of G3, after including z+ = −z− ≡ z and n0,+ = n0,−
in Eq. (32), the fraction of summations under the integral sign
results cosh(Ψ ) + γ sinh(Ψ ), where γ = (ν+ − ν−)/(ν+ + ν−) is a
factor involving the ionic mobilities. Thus, linearizing about
Ψ ≈ 0 and integrating yields,

G3 = 1 + γZ
tanh(κd)

κd
. (A.5)

It is worth adding here that ν+ and ν− are usually considered to
be equal in practice, which means γ = 0 in Eq. (A.5). Neverthe-

Fig. A1. Geometrical factors G1, G2, and G3 for slit microchannels, as a function
of the relative cross-sectional size κd, according to Eqs. (A.3), (A.4) and (A.5),
respectively. In particular, γZ = −1/2 was arbitrarily set in (A.5) for the purpose
of illustration.

less, differences in the ionic mobilities may produce significant
alteration in the flow current [30].

Fig. A1 shows the variation of geometrical factors with κd. It
is observed that, when κd approaches 100, G1 → 1, G2 → κd/2
and G3 → 1. These asymptotic values apply for relatively con-
centrated solutions (∼10−2 M) in micro-scale channels, where
values of κd higher than 100 are attained. Nevertheless, at low
ionic concentrations (∼10−4 M), or in nano-scale channels, the
full expressions (A.3)–(A.5) must be used. On the other hand, the
linearization of Eq. (A.1) is valid for |ζ| ≤ 0.05 V, approximately,
as it can be deduced from the analysis of EDL potentials asso-
ciated with flat interfaces [35]. Therefore, using the geometrical
factors outlined in this appendix is restricted to electrokinetic
flow in slit channels with relatively low ζ-potentials. The general
case involves Eqs. (27)–(32), with ψ(x) from Eq. (15).
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