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Transition rates of noninteracting quantum particles from the Widom insertion formula
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Transition rates among different states in a system of noninteracting quantum particles in contact with a heat
reservoir include the factor 1 ∓ n̄i, with a minus sign for fermions and a plus sign for bosons, where n̄i is the
average occupation number of the final state. It is shown that this factor can be related to the difference of the
chemical potential from that of an ideal classical mixture; this difference is formally equivalent to the excess
chemical potential in a classical system of interacting particles. Using this analogy, Widom’s insertion formula
is used in the calculation of transition rates. The result allows an alternative derivation of quantum statistics from
the condition that transition rates depend only on the number of particles in the target energy level. Instead, if
transition rates depend on the particle number only in the origin level, the statistics of ewkons is obtained; this is
an exotic statistics that can be applied to the description of dark energy.
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I. INTRODUCTION

Rate equations, that govern the time evolution of average
occupation numbers n̄i of quantum states with energy εi of
a system of particles in contact with a reservoir at tempera-
ture T , have important applications in the description of, for
example, Fermi gas, phonons, or Bose-Einstein condensation
[1] (see also [2,3]). They have the form of the master equation

∂ n̄i

∂t
=

∑
j

(
n̄ jWn̄ j ,n̄i − n̄iWn̄i,n̄ j

)
(1)

with transition rates given by

Wn̄j ,n̄i = νe−β(εi−ε j )/2(1 ∓ n̄i ) (2)

where the minus sign is for fermions and the plus sign is for
bosons, and ν is a jump frequency; Wn̄j ,n̄i is the transition rate
per particle in state j from state j to state i; in both cases
Wn̄j ,n̄i depends on the occupation number in the destination
state, n̄i, but does not depend on n̄ j . The factor 1 ∓ n̄i is
generally justified using heuristic arguments (see Chap. 32 in
[2] and Secs. 8.2 and 21.2 in [3]). For example, citing [2], “in
Fermi gases and liquids processes can occur only if the final
state is unoccupied,” and factor 1 − n̄i is included; there is not
an equivalent argument to justify factor 1 + n̄i for bosons. A
similar procedure is followed in [3]. These rates reproduce
the correct average occupation numbers in equilibrium, that
is, the Fermi-Dirac and Bose-Einstein distributions (see the
Appendix), and this result can be considered as a sufficient
(heuristic) argument for factors 1 ∓ n̄i.

Transition rates proportional to 1 ∓ n̄i are used in [4] to
obtain a Fokker-Planck equation for the occupation number in
a continuous energy space (see also [5,6] and Sec. 6.8 in [7]).

*hoyuelos@mdp.edu.ar

Fokker-Planck equations for fermions and bosons can also be
derived from the free energy functional (see [8] and Sec. 6.5.4
in [9]); in particular, the so-called drift form of the Fokker-
Planck equation involves a mobility that behaves as 1 ∓ n̄i. A
Langevin approach has been developed in [10]. Fundamental
applications are the metal electron and blackbody radiation
models (see Sec. 6.5.6 in [9]). It can be considered that n̄i

represents the number of particles in a degenerate energy level
i that includes gi different states; in this case, the mentioned
factors for fermions and bosons are 1 ∓ n̄i/gi.

In this paper, a method is proposed for the derivation of
transition rates for quantum systems of noninteracting par-
ticles. It is based on a previous work for classical systems
with interacting particles [11]. The main ingredients are the
detailed balance relationship and the Widom insertion for-
mula. From detailed balance, transition rates can be related
with the insertion energy, that is, the energy needed to add
one particle. And from the Widom insertion formula [12], the
insertion energy is related to the excess chemical potential.
A separation of terms with different orders of an extensive
quantity is used to finally obtain the transition rate in terms
of the excess chemical potential, the energy difference, and an
undetermined jump frequency. In the case of noninteracting
quantum particles that is analyzed here, the excess chemical
potential, μq, represents quantum effects instead of interac-
tions. In both cases (classical with interactions or quantum
without interactions), it gives the departure of the chemical
potential from the classical ideal case.

The main difference with previous approaches is that the
method demonstrates a direct connection between transition
rates and statistics. It provides a formula for transition rates
in terms of the excess chemical potential, that is directly ob-
tained from the occupation number distributions for fermions
or bosons.

The generalization to the quantum case of the derivation
of transition rates Wn̄1,n̄2 between generic levels 1 and 2,
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developed in [11], is presented in Sec. II. When the excess
chemical potential for fermions or bosons is used in the re-
sult for the transition rate, Eq. (2) is obtained. In Sec. III
it is shown that, before assuming a specific form for μq, if
the transition rate depends only on the particle number in
the destination level, that is, if Wn̄1,n̄2 depends only on n̄2,
then the known statistics of Bose-Einstein, Fermi-Dirac, and
Maxwell-Boltzmann are obtained. On the other hand, Sec. IV
shows that if Wn̄1,n̄2 depends only on the occupation number
in the origin level, n̄1, then the exotic statistics of ewkons is
obtained; ewkons have been introduced in [13] to describe
dark energy. A summary and conclusions are presented in
Sec. V

II. THEORY

Let us consider the quantum formulation of noninteracting
particles in a volume V , in equilibrium with a reservoir at
temperature T and chemical potential μ. There is an undeter-
mined number of energy levels identified with index i. Each
level, with energy εi, has ni particles. Some basic concepts are
reviewed in the next paragraphs to make the notation clear.

A. Basic formulas

The canonical partition function for N particles is

ZN = tr e−βĤ =
∑
{ni}

′ ∏
i

Zni (3)

where β = (kBT )−1 and Ĥ is the free Hamiltonian (see, for
example, Chap. 12 in [14] and Chap. 6 in [15]). The sum

∑′
{ni}

is over all ni that satisfy
∑

i ni = N , and Zni is the canonical
partition function for level i. For fermions or bosons, we know
that Zni is equal to e−βεini and the set of possible values of {ni}
has to be determined for each case. For classical particles,

Zcl
ni

= e−βεini/ni!, (4)

and the canonical partition function of the whole system is
Zcl

N = (V/λ3)N/N!, where λ is the thermal de Broglie wave-
length (see p. 147 in [15]).

The grand partition function is

Q(μ, T,V ) = tr eβ(μN̂−Ĥ ) =
∞∑

N=0

ZN eβμN =
∏

i

Qi (5)

where N̂ is the total number of particles operator and

Qi =
∑

ni

eβμniZni (6)

is the grand partition function for level i, where the sum is
on all allowed values of ni (zero to ∞ for bosons or classical
particles and 0 or 1 for fermions). Each element of the sum
in Eq. (6) is proportional to the probability Pni of having ni

particles:

Pni = eβμniZni

Qi
. (7)

This probability is used below when introducing detailed bal-
ance and transition rates.

B. Average number of particles and the Widom
insertion formula

If volume V is large, single particle energy levels are very
close to each other. It is considered that one level with energy
εi actually encompasses a group of gi levels that are very
close; number gi also includes a possible degeneracy. Then,
the average number of particles with energy εi is given by

n̄i = gi
1

β

∂ lnQi

∂μ
. (8)

Numbers gi and n̄i are extensive quantities, proportional to V ;
gi is used later as an expansion parameter.

Different statistics are treated here in a unified way. In
order to do that, the effective energy, φni , defined as

e−βφni = Zni

Zcl
ni

, (9)

is introduced as a parameter to measure nonclassical effects:
φni = 0 for classical particles, and it is different from zero if
Zni �= Zcl

ni
. For fermions, φni diverges if ni > 1.

Using Eqs. (4), (6), and (9) to calculate the average number
of particles (8), we get (subscript i in ni can be removed from
the sum index to simplify the notation at this stage)

n̄i

gi
= 1

Qi

∞∑
n=0

n

n!
e−β(εi−μ)ne−βφn

= e−β(εi−μ)

Qi

∞∑
n=1

1

(n − 1)!
e−β[φn+(εi−μ)(n−1)]

= e−β(εi−μ)

Qi

∞∑
m=0

1

m!
e−β(φm+1−φm )e−β[φm+(εi−μ)m]

= e−β(εi−μ)〈e−β�φn〉, (10)

with �φn = φn+1 − φn. As expected, if φn = 0 then classical
statistics is recovered. Now, we define μq as

e−βμq = 〈e−β�φn〉. (11)

It can be interpreted as a correction to the chemical potential
representing nonclassical effects; it is an intensive quantity
of order O(g0

i ). We use the following notation: when μq is
written without subscript n, it is evaluated at the average
number of particles n̄i; instead, μq,n is evaluated at a specific
number of particles n. Its derivative respect to the number of
particles, μ′

q,n = ∂μq,n

∂n , is O(g−1
i ).

From the average particle number in each case, it is known
that

e−βμq =
⎧⎨
⎩

1 for classical particles,
1

1+e−β(εi−μ) = 1 − n̄i/gi for fermions,
1

1−e−β(εi−μ) = 1 + n̄i/gi for bosons.
(12)

We will use μq in order to treat all possible statistics in a
unified way, as mentioned before. Equation (11) is formally
equivalent to the Widom insertion formula [12] (see also p. 30
in [16]) since μq is interpreted as the excess chemical potential
and �φn is interpreted as the insertion energy (the interaction
energy needed to insert one particle) in a classical system of
interacting particles. In the next subsection, the differences
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φn2+1 − φn2 and φn1 − φn1−1, for energy levels 1 and 2, are
needed. They can be written in terms of μq,ni using (11) and
following the same formal steps that are described in [11]:

φn2+1 − φn2 = μq,n2 − 1

2β

	′
n2

	n2

+ μ′
q,n2

2
+ h.t., (13)

φn1 − φn1−1 = μq,n1

︸︷︷︸
O(1)

− 1

2β

	′
n1

	n1

− μ′
q,n1

2︸ ︷︷ ︸
O(g−1

i )

+ h.t., (14)

where 	ni = 1 + βniμ
′
q,ni

, and higher order terms of 1/gi are
represented by “h.t.”

C. Transition rates

Let us use labels 1 and 2 for two generic energy levels in
an initial state with n1 and n2 particles. After a jump of one
particle from level 1 to level 2, the final state has n1 − 1 and
n2 + 1 particles. Let us call WAB the transition rate from state
A = {n1, n2} to state B = {n1 − 1, n2 + 1}, and WBA the rate of
the inverse process. The system is in equilibrium and detailed
balance is satisfied:

PA WA,B = PB WB,A, (15)

with PA and PB the probabilities of states A and B. These
probabilities are PA = Pn1 Pn2 and PB = Pn1−1Pn2+1 with Pni

given by (7). Then,

Zn1Zn2 WA,B = Zn1−1Zn2+1 WB,A. (16)

From Eqs. (9) and (16) we have

WA,B

WB,A
= e−β(φn2+1−φn2 )

e−β(φn1 −φn1−1 )

Zcl
n1−1Zcl

n2+1

Zcl
n1
Zcl

n2

= e−β(φn2+1−φn2 )

e−β(φn1 −φn1−1 )

n1

n2 + 1
e−β(ε2−ε1 ), (17)

where Eq. (4) for Zcl
ni

was used.
The rate WA,B corresponds to the jump of any of the n1

particles from level 1 to level 2. The transition rates per parti-
cle in the origin level are Wn1,n2 = WA,B/n1, with n1 �= 0, and
Wn2+1,n1−1 = WB,A/(n2 + 1), where the order of subindices
indicates the jump direction. Then,

Wn1,n2 e−β(ε1+φn1 −φn1−1 ) = Wn2+1,n1−1 e−β(ε2+φn2+1−φn2 ). (18)

The next step is to use Eqs. (13) and (14) for φn2+1 − φn2

and φn1 − φn1−1 and to separate different orders. Orders g−1
1

and g−1
2 are equivalent since g1 and g2 are proportional to

V . Details of these calculations are described in [11] in the
context of interacting classical particles, where the excess
chemical potential, μex,ni , has to be replaced by μq,ni + εi. The
result is

Wn1,n2 = νe−β(ε2−ε1 )/2 eβμq,n1 /2

(1 + βn1μ′
q,n1

)1/2

e−βμq,n2 /2

(1 + βn2μ′
q,n2

)1/2

(19)
where ν is, in general, a function of the sum n1 + n2; it repre-
sents the strength of the coupling with the heat reservoir and
determines the time scale of the transition rate. This general
approach is useful to determine the form of transition rates

associated to different statistics, that are represented by μq,ni ,
but leaves factor ν undetermined.

Using (12) for e−βμq,ni in (19), we get the transition rates
for the known statistics:

Wn1,n2 =
⎧⎨
⎩

νe−β(ε2−ε1 )/2 classical particles
νe−β(ε2−ε1 )/2(1 − n2/g2) fermions
νe−β(ε2−ε1 )/2(1 + n2/g2) bosons.

(20)
The result for fermions has an immediate interpretation: the
transition rate is proportional to the number of states avail-
able in the destination energy level, g2 − n2, due to the Pauli
exclusion principle. As mentioned in the introduction, this
transition rate for noninteracting quantum particles can be
found in the literature, usually derived through heuristic ar-
guments (see, for example, Ch. 32 in [2] and Secs. 8.2 and
21.2 in [3]). Reproduction of the known results confirms the
validity of the procedure leading to Eq. (19).

III. DEPENDENCE ON DESTINATION LEVEL

From (20), it can be seen that transition rates depend only
on the number of particles in the destination level, n2. If the
condition that Wn̄1,n̄2 depends only on n̄2 is assumed, then
statistics of fermions, bosons, and classical particles should
be obtained. This assertion is verified as follows. Considering
that Eq. (19) is evaluated at the average particle numbers, the
condition implies that the factor that depends on n̄1 must be
constant, that is,

eβμq/2

(1 + βn̄μ′
q)1/2

= 1, (21)

where subindex 1 is removed in n̄1 to lighten the notation. The
constant on the right side is set equal to 1 taking into account
the case of classical particles, for which μq = 0. Solutions of
this equation are given by

e−βμq = 1 + κ n̄, (22)

where κ is a constant. Comparing with (12), κ = 0 cor-
responds to classical particles, κ = −1/g corresponds to
fermions, and κ = 1/g corresponds to bosons (subindex 1 is
removed in g1 for simplicity).

IV. EXOTIC STATISTICS

The previous analysis, in which it has been shown that
the assumption of transition rates depending only on n̄2 is
enough to derive known statistics, suggests the possibility
of exotic statistics that may be deduced from the theory
when time is reversed. The reasoning is as follows. Accord-
ing to the Feynman-Stueckelberg interpretation, antiparticles
are viewed as negative energy modes of the quantum field
that propagate backward in time. A hypothetical particle (not
necessarily an antifermion or an antiboson) that propagates
backward in time would have transition rates that, instead
of depending on the number of particles in the destination
level, depend on the number in the origin level, n̄1. The term
that depends on n2 in (19) must be constant. The possibility
of time-reversed particles is mentioned here as a motivation
to consider transition rates in which the roles of origin and
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destination levels are interchanged. The conjecture that there
are particles that meet this condition is proposed without
assuming that they are particles or antiparticles. If that is the
case, statistics should satisfy the condition

e−βμq/2

(1 + βn̄μ′
q)1/2

= 1, (23)

where subindex 2 in n̄2 was removed for simplicity. The only
difference with Eq. (21) is that the exponential has the oppo-
site sign. Solutions are

e−βμq = 1

1 − κ/n̄
, (24)

with κ a constant. Using this solution for e−βμq in the expres-
sion for the mean number of particles, Eq. (10), we obtain

n̄/g = e−β(ε−μ) + κ/g. (25)

As before, κ = 0 corresponds to classical particles. The other
case that is considered here is κ = g, that corresponds to the
so-called statistics of ewkons [13,17,18]. Calling n̄ewk = n̄/g
the average number of ewkons in one of the g states, then

n̄ewk = e−β(ε−μ) + 1. (26)

What are the features of particles that produce ewkon
statistics? This question is addressed in the next subsection.

A. Features of ewkons

What happens when particles are identical but not fully
distinguishable or indistinguishable? In this subsection, it is
shown that an intermediate category of particles, that can be
called subdistinguishable, has ewkon statistics. In order to do
that, the basic framework is presented first.

There are N particles in L states; each state has energy εi

with i = 1 · · · L. The Hamiltonian of noninteracting particles
is Ĥ = ∑L

i=1 n̂iεi where n̂i is the particle number operator of
state i. Degeneracy is taken into account implicitly since the
values of εi may be the same for different i (index i represents
a set of quantum numbers that determines the state). Note
that this definition of number ni is different from the one in
the previous sections; it does not encompass the number of
particles in degenerate states or in close energy levels when
the volume is large; it is an intensive quantity the mean value
of which is the average number of particles of the previous
sections divided by the corresponding gi.

Using the eigenstates of the number operators, the system’s
state is given by

|n1 · · · nL〉 = |n1〉 · · · |nL〉. (27)

As mentioned in Sec. II A, the canonical partition function is

ZN =
∑
{ni}

′〈n1 · · · nL|e−βĤ |n1 · · · nL〉 =
∑
{ni}

′ ∏
i

Zni . (28)

Including a superindex ∓ to indicate symmetric or antisym-
metric states, the partition function of state i with ni particles
is

Z∓
n = ∓〈n|e−βn̂ε |n〉∓ = e−βnεw∓ (29)

where w∓ is the statistical weight factor; w+ = 1 for bosons
and w− = δn,0 + δn,1 for fermions; subindex i was omitted for

FIG. 1. System of four particles arranged on a ring. A cyclic
rotation generates an indistinguishable configuration (right) due to
rotation symmetry. In cycle notation, operator C is represented by
(1,4,3,2), meaning that element 1 goes to 4, 4 goes to 3, 3 goes to 2,
and 2 goes to 1.

simplicity. Let us call |i j〉 the normalized state of particle j.
The n noninteracting particles are described by the number
sate |n〉 that, in turn, is given by the symmetrization or anti-
symmetrization of one-particle product states:

|n〉∓ = 1√
N

∑
P

(∓1)pP|i1 · · · in〉, (30)

where the sum is over possible permutations P, N is the
normalization factor, and p is the parity of permutation P,
with P|i1 · · · in〉 = |iP1 · · · iPn〉. Since the n particles are in the
same state, all permutations are equal. The normalization is
N = n!2 for bosons or fermions (in the last case the normal-
ization is 1 since n takes values 0 or 1).

Instead, for classical distinguishable particles, the statisti-
cal wight factor is

wdist = 1/n!, (31)

an expression that leads to the Maxwell-Boltzmann distribu-
tion. There are several possible justifications that include the
assumption that identical classical particles should be treated
as permutable; more extensive discussions on this fundamen-
tal subject can be found in, for example, [19–22]. In any case,
the statistical weight factor for classical particles is 1 over the
number of distinguishable configurations, n!.

There are two extreme situations: all particles indistin-
guishable with one possible configuration, or all particles
distinguishable with n! possible configurations. In the first
case, |iP1 · · · iPn〉 = |i1 · · · in〉 holds for any P because i1 =
· · · = in. In the second case, the equality {iP1 · · · iPn} =
{i1 · · · in} holds only if P is the identity. (Ket notation,
|i1 · · · in〉, is used here only for indistinguishable particles; in
other cases, curly brackets are used.)

The purpose is to analyze the possibility of an interme-
diate situation. Consider a system of n particles that are
arranged along a ring with rotation symmetry. The arrange-
ment order can be distinguished, but cyclic rotations produce
indistinguishable configurations (see Fig. 1). The number of
distinguishable configurations is (n − 1)!; since this number
is reduced from n! to (n − 1)!, the term “subdistinguishable
particles” is proposed. The resulting statistical weight factor,

wewk = 1/(n − 1)!, (32)
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corresponds to statistics of ewkons. The same factor is
obtained not only for cyclic rotations but for any cyclic per-
mutation C that satisfies Cn = I , where I is the identity (see
p. 29 in [23]). More generally, subdistinguishable particles
satisfy, by definition, the following condition: if n > 0 and if
P is equal to a cyclic permutation C applied j times, that is,
P = C j (with j = 1, · · · , n), then {iP1 · · · iPn} = {i1 · · · in}. In
other words, configurations that differ by cyclic permutations
are indistinguishable. The partition function

Zn,ewk = e−βεn

(n − 1)!
(33)

generates the statistics of ewkons for identical subdistinguish-
able particles.

The (one-level) grand partition function for ewkons is

Qewk =
∑

n

eβμnZn =
∞∑

n=1

e−β(ε−μ)n

(n − 1)!
=

∞∑
m=0

e−β(ε−μ)(m+1)

m!

= exp[−β(ε − μ) + e−β(ε−μ)] (34)

and the average number of particles is given by Eq. (26),
n̄ewk = e−β(ε−μ) + 1.

From Eqs. (10) (with n̄ewk = n̄/g) and (11), the excess
chemical potential is given by e−βμq = n̄ewkeβ(ε−μ), so

e−βμq = 1

1 − 1/n̄ewk
, (35)

with the condition n̄ewk > 1.
Using (35) in Eq. (19), the transition rate from state 1 to

state 2, with n̄1 and n̄2 average particle numbers (subscript
“ewk” is removed), is

Wn̄1,n̄2 = νe−β(ε2−ε1 )/2(1 − 1/n̄1). (36)

It depends only on the particle number in the origin level.
If there is only one particle, it cannot leave its state since
the transition rate is zero (it is an absorbing state). Starting
from an initial configuration in which ni � 1 ∀i, this con-
dition remains valid for any subsequent time. If the initial
configuration has empty states, it irreversibly evolves to the
equilibrium configuration in which all states are occupied with
at least one particle, with additional particles provided by the
reservoir, that keeps the chemical potential μ. The problem
of a divergent total particle number (or total energy) is solved
by including an upper limit for the energy, εmax (see Sec. 5 in
[18]). The limit can be assumed as a feature of the density of
states or can be a consequence of a limitation of the reservoir
to provide additional particles (without the limit, the number
of particles that the reservoir has to transfer to the system
diverges).

The procedure includes the possibility of superdistinguish-
able particles, called genkons in [13]; n particles of this kind
have (n + 1)! distinguishable configurations. This case cor-
responds to κ = −g in (25), resulting in an average number
of particles n̄gen = e−β(ε−μ) − 1. An interesting symmetry of
ewkons and genkons is that they have average particle num-
bers equal to the inverse of those of fermions and bosons,
respectively, if the sign of ε − μ is inverted. Nevertheless, su-
perdistinguishable particles are not further discussed because,
since n can be equal to −1, they lack, so far, a satisfactory
physical interpretation.

B. Ewkons and dark energy

The equation of state parameter of a perfect fluid is a
dimensionless number defined as

w = P

ρ
(37)

where P is the pressure and ρ is the energy density. It has been
observed that the universe has a negative equation of state pa-
rameter w, close to −1. In [24] a value w = −0.969 has been
reported, with statistical and systematic errors around 0.063.
The authors of [25] established an upper bound w < −0.94
at 95% confidence level. This negative value of w cannot
be produced by ordinary matter; it is related to the observed
accelerated expansion of the universe and is mainly attributed
to the presence of dark energy [25,26].

An ideal ewkon gas is an appropriate candidate for the
description of dark energy since it has an equation of state
parameter w close to −1 [13]. Since the partition function for
ewkons is available, pressure and energy density can be ob-
tained using standard thermodynamic relations. As mentioned
before, an upper limit for the energy, εmax, has to be taken into
account.

It has been shown in [17] that a nonrelativistic ideal gas of
ewkons of mass m and chemical potential μ has an equation of
state parameter given by

wewk = −1 + 5

3

μ

εmax
, (38)

where it has been assumed that εmax is much larger than μ or
kBT , and higher orders of 1/εmax are neglected.

Quantum field theory has been used in [18] to analyze the
case of a massless scalar field of ewkons, with μ = 0, and the
following value for w was obtained:

wewk = −1 + 32

β4ε4
max

(μ = 0), (39)

where, as before, εmax 
 kBT , and higher order terms are
neglected.

In both cases, a value of wewk close to −1 is obtained for
large enough values of εmax. This result suggests the possibil-
ity of using ewkons for the description of dark energy.

C. Toy model

Simplified models are useful for a better understanding
of different particle features. For example, particles with
hard-core interaction in a one-dimensional lattice, with jump
rates between neighboring sites that include an external force,
reproduce the Fermi-Dirac statistics [4,27]. Hard-core inter-
action plays the role of the Pauli exclusion principle. An
equivalent model for ewkons is proposed in the next para-
graphs.

A one-dimensional lattice of size L represents a discrete
energy space; the energy of site i is εi = i�ε, with constant
energy gaps, �ε = εi+1 − εi � 0, between any two neighbor-
ing sites. At t = 0, N particles are randomly distributed in the
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FIG. 2. Average number of particles, n̄i, against lattice position
i with transition rates for ewkons, Eq. (40). The initial condition is
random. After a time of 15 000 MC steps the equilibrium distribu-
tion is reached. Crosses are averages taken during 5000 MC steps.
Parameters: N = 200, L = 100, β�ε = 0.1. The blue curve is the
equilibrium distribution for ewkons, Eq. (26).

L sites. A particle in site i jumps to the right or to the left with
the rates corresponding to ewkons:

Wr = νe−β�ε/2(1 − 1/ni ),

Wl = νeβ�ε/2(1 − 1/ni ). (40)

Only jumps to nearest neighbors are allowed. In a small time
interval �t = 1/(2Nνeβ�ε/2), the jump probabilities are

Pr = e−β�ε (1 − 1/ni )/(2N ),

Pl = (1 − 1/ni )/(2N ). (41)

In a Monte Carlo (MC) simulation, a particle is randomly cho-
sen with probability 1/N and then jumps to the right or to the
left with probabilities e−β�ε (1 − 1/ni )/2 and (1 − 1/ni )/2,
respectively; a MC step is a time interval, equal to N�t , in
which each particle has, on average, one chance to jump. Like
fermions, ewkons have an effective repulsive interaction. A
particle can jump to another state only if there is another par-
ticle with it. The more particles are in the same state (or site),
the more probable it is to jump. Figure 2 shows numerical
results of n̄i against position i, with zero current condition
at the borders (see the figure caption for the simulation pa-
rameters). After a transient, the average number of particles
converges to Eq. (26): n̄ewk = e−β(ε−μ) + 1, represented by
the blue curve. The value of e−βμ is obtained from the con-
dition N = ∑L

i=1 n̄i.
If N < L, the equilibrium distribution is not reached, and

the final state is a frozen configuration, because there is zero
or one particle in each site; the final configuration depends on
the initial condition.

V. CONCLUSIONS

The Widom insertion formula relates the excess chemi-
cal potential with the energy needed to insert one particle.
The formula has been previously applied to derive a gen-
eral expression of transition rates in a classical system of
interacting particles [11]. These calculations are adapted for
a quantum system of noninteracting particles at temperature

T , for which the excess chemical potential, μq, represents
quantum effects (it is zero for the classical ideal mixture).
From detailed balance, transition rates can be related to inser-
tion energies that, in turn, are related to the excess chemical
potential trough the Widom insertion formula. The result for
the transition rate Wn1,n2 , from energy level 1 to energy level
2, is given in terms of the energy difference, ε2 − ε1, and the
excess chemical potential in both levels [see Eq. (19)]. The
expression evaluated at average particle numbers reproduces
known results for fermions and bosons that include a factor
1 ∓ n̄2/g2, respectively. With this factor in the transition rates,
the master equation (or Fokker-Planck equation if the energy
space is continuous) gives an irreversible evolution towards
the Fermi-Dirac or Bose-Einstein distributions.

The expression obtained for transition rates provides an
alternative procedure to derive known statistics. Starting from
the hypothesis that the transition rate depends only on the
number of particles in the destination level, then Fermi-
Dirac, Bose-Einstein, and Maxwell-Boltzmann statistics are
obtained. This result prompts an exploration in a time-
reversed situation, where origin and destination levels are
interchanged. The previous hypothesis now reads as follows:
the transition rate depends only on the number of particles
in the origin level (instead of destination level). Statistics of
ewkons is derived from this hypothesis.

The statistical weight factor for distinguishable particles is
1/n!, while for ewkons it is 1/(n − 1)!. The number of distin-
guishable configurations for ewkons is reduced with respect to
classical particles; for this reason, the term “subdistinguish-
able particles” is also used. A sufficient condition to obtain
ewkon statistics is to consider that particle configurations that
differ by a cyclic permutation are indistinguishable; this con-
dition reduces the number of distinguishable configurations to
(n − 1)!. Ewkon statistics, like Maxwell-Boltzmann statistics,
is outside the scope of the spin-statistics theorem, since the
theorem applies to indistinguishable particles.

In summary, Widom’s insertion formula provides useful
information for determining transition rates in a quantum
system of noninteracting particles. The form of the result
suggests the possibility of subdistinguishable particles with
ewkon statistics when transition rates depend only on the
number of particles in the origin level. It has been shown
in previous works [13,18] that an ideal gas of ewkons has
a negative relation between pressure and energy density, a
feature that makes them appropriate for the description of dark
energy.
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APPENDIX

The demonstration that Fermi-Dirac and Bose-Einstein
distributions are solutions of the master equation (1) in equi-
librium is presented in this Appendix. In equilibrium we have
that ∂ n̄i

∂t = 0 for all i. From Eq. (1), a sufficient condition for

034111-6



TRANSITION RATES OF NONINTERACTING QUANTUM … PHYSICAL REVIEW E 105, 034111 (2022)

equilibrium is that

n̄ jWn̄ j ,n̄i = n̄iWn̄i,n̄ j . (A1)

Using the transition rates of Eq. (2), and after some rearrange-
ment, we have

n̄ j eβε j

1 ∓ n̄ j
= n̄i eβεi

1 ∓ n̄i
= const. (A2)

Identifying the level independent constant in the right-hand
side with eβμ, where μ is the chemical potential, we get
Fermi-Dirac (plus sign) and Bose-Einstein (minus sign) dis-
tributions:

n̄i = 1

eβ(εi−μ) ± 1
. (A3)
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