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a b s t r a c t

The latent structure of executive functions (EFs) remains controversial. Confirmatory

factorial analysis (CFA) has provided support for both multidimensional (assumes EFs to be

functionally separable but related components) and bifactor (proposes all components are

nested within a common factor) models. However, these CFA models have never been

compared in patient samples, nor regarding their neuroanatomical correlates. Here, we

systematically contrast both approaches in neurotypicals and in a neurodegenerative

lesion model (patients with the behavioral variant frontotemporal dementia, bvFTD),

characterized by executive deficits associated with frontal neurodegeneration. First, CFA

was used to test the models' fit in a sample of 341 neurotypicals and 29 bvFTD patients

based on performance in an executive frontal screening battery which assesses working

memory, motor inhibition, verbal inhibition, and abstraction capacity. Second, we

compared EFs factor and observed scores between patients and matched controls. Finally,

we used voxel-based morphometry (VBM) to compare the grey matter correlates of factor
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bvFTD
Lesion model
and observed scores. CFA results showed that both models fit the data well. The multidi-

mensional model, however, was more sensitive than the bifactor model and the observed

scores to detect EFs impairments in bvFTD patients. VBM results for the multidimensional

model revealed common and unique grey matter correlates for EFs components across

prefrontal-insular, posterior, and temporal cortices. Regarding the bifactor model, only the

common factor was associated with prefrontal-insular hubs. Observed scores presented

scant, non-frontal grey matter associations. Converging behavioral and neuroanatomical

evidence from healthy populations and a neurodegenerative model of EFs supports an

underlying multidimensional structure.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
2 Recent research has also employed the term “nested” or
“general-specific” model. Several aspects differentiate a bifactor
model from a two-factor or two-dimensional model. Particularly,
the first one can include more than two factors with a nested
hierarchical structure.
1. Introduction

Executive functions (EFs) are high-level cognitive processes

that play crucial roles in the organization of mental resources

to accomplish goals (Diamond, 2013). Despite the relevance of

EFs in research and clinical settings, the construct itself re-

mains poorly understood (Baggetta & Alexander, 2016; Jurado

& Rosselli, 2007). While there is little controversy that EFs

comprise multiple components (Baggetta & Alexander, 2016;

Jurado & Rosselli, 2007), it is not clear whether their latent

structure consists of distinct but related constructs, as pro-

posed by multidimensional models, or whether they depend

on a single underlying ability, as proposed by bifactor models

(Friedman & Miyake, 2017; Karr et al., 2018). However, these

competing latent approaches have never been systematically

compared in patient samples, nor have they been compared

regarding their neuroanatomical correlates. Here, we contrast

a multidimensional and a bifactor model of EFs in neuro-

typicals and in a lesionmodel composed of behavioral variant

frontotemporal dementia (bvFTD) patients, characterized by

executive deficits mainly associated with frontal neuro-

degeneration. We performed confirmatory factorial analysis

(CFA) and voxel-based morphometry (VBM) to evaluate which

model is more sensitive to detect neurocognitive dysfunction

in patients. We expect to bring novel integrated behavioral

and neuroanatomical evidence to help elucidate the latent

structure of EFs, which has been studied mainly based on

performance measures.

Numerous components have been subsumed under the

EFs umbrella term, including working memory (WM; the

temporary storage and manipulation of information in mind

(Baddeley, 2007; Wechsler, 1987)), inhibition (the ability to

override a prepotent motor or verbal response (Aron, Robbins,

& Poldrack, 2004), and abstraction capacity (Abs.C; conceptu-

alization (Dubois, Slachevsky, Litvan, & Pillon, 2000)), among

others. The organization of EFs components is still a matter of

debate (Baggetta & Alexander, 2016; Jurado & Rosselli, 2007).

Some lines of evidence suggest that EFs are a set of diverse

cognitive capacities. EFs dissociate in some patient studies, in

relation to the functional specialization of the frontal lobes

(Godefroy, Cabaret, Petit-Chenal, Pruvo, & Rousseaux, 1999;

Stuss, 2011; Stuss & Alexander, 2007; Tsuchida & Fellows,

2013). WM would be critically associated with the dorsolat-

eral prefrontal cortex (D'Esposito et al., 1998; Smolker et al.,
2015; Wager & Smith, 2003), inhibition with inferior, medial,

and orbitofrontal regions (Aron et al., 2004; Collette et al., 2005;

Stuss, 2011), and Abs.C with rostral-prefrontal areas

(Dumontheil, 2014; Nee, Jahn, & Brown, 2014). On the other

hand, the existence of a single ability underlying all EFs has

also been proposed (Duncan, Johnson, Swales, & Freer, 1997;

Friedman & Miyake, 2017; Obonsawin et al., 2002). Notably,

different EFs share fronto-parietal engagement (Fedorenko,

Duncan, & Kanwisher, 2013; Hedden & Gabrieli, 2010;

Niendam et al., 2012).

A crucial shortcoming in EFs conceptualization lies in the

interference of non-executive processes during task perfor-

mance, or “task impurity” (Burgess, 1997). Factorial analysis,

such as CFA, can reduce this confounding by extracting

common variance across different tasks to represent a latent

(i.e., pure) construct (Miyake et al., 2000). In healthy adult

populations, both factorial multidimensional and bifactor

models have received empirical support (Karr et al., 2018). The

first one assumes that EFs components are functionally

separable (although related) constructs (Miyake et al., 2000).

Bifactor models2 propose that all components are nested

within a common factor (CF) that predicts performance in all

tasks (Friedman & Miyake, 2017). More specifically, bifactor

models include a CF that comprises the commonality of all

observed variables, and multiple domain-specific factors

representing the unique influence of each specific component

(Chen, West, & Sousa, 2006). Thus, the observed variables are

directly influenced by the common and domain-specific fac-

tors, which are assumed to present orthogonal relationships

(Chen et al., 2006). This aspect represents an advantage over

unidimensional models, where the observed variables are

uniquely affected by the CF (Brunner, Nagy, & Wilhelm, 2012).

Consequently, unidimensional models cannot capture

simultaneously domain-specific factors, which are frequently

reported in CFA models of EFs (Karr et al., 2018). A re-analysis

of 46 CFA in healthy populations (Karr et al., 2018) found that

both multidimensional and bifactor models present similar fit

indices and none could be unequivocally preferred. However,

models have never been directly compared in clinical

http://creativecommons.org/licenses/by-nc-nd/4.0/
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samples, nor regarding their brain correlates. Evidence from

lesion and neuroanatomical approaches may help to charac-

terize and compare both models.

Lesion models, including the neurodegenerative (Garcı́a-

Cordero et al., 2016; Melloni et al., 2016; Santamarı́a-Garcı́a

et al., 2017), can be useful to scrutinize the predictions of

EFs. Patients with distinctive neurocognitive profiles allow for

direct testing of the hypothesis regarding a model's brain-

behavior associations. In this context, patients with bvFTD

are characterized by early and selective deficits in EFs asso-

ciated with frontal neurodegeneration (Harciarek &

Cosentino, 2013; Johnen & Bertoux, 2019; Piguet et al., 2011;

Possin et al., 2013). The pattern of progressive degeneration

among patients with bvFTD begins in the medial and orbito-

frontal regions, followed by the anterior temporal pole,

dorsolateral prefrontal cortices, and eventually the hippo-

campus and the basal ganglia (Kril & Halliday, 2004). Despite

the fact that the initial site of atrophy does not lie in dorso-

lateral prefrontal cortices ewhich are typically engaged in

EFse current meta-analytic evidence (Beeldman et al., 2018;

Kamath, Chaney, Deright, & Onyike, 2019) points to executive

dysfunctions as core symptoms of bvFTD, with changes in

mentalizing abilities being secondary to them (Schroeter et al.,

2014). Moreover, executive impairment has been associated

with the ventromedial compromise in bvFTD (Baez et al., 2019;

Ducharme, Price, & Dickerson, 2018; Garcia-Cordero et al.,

2019; Lu et al., 2013). Thus, the bvFTD constitutes a

dysexecutive-frontal lesion model to test EFs models' out-
comes, especially in mild stages of the disease (such as the

current sample).

With some exceptions (Ambrosini, Arbula, Rossato,

Pacella, & Vallesi, 2019; Bettcher et al., 2016; Smolker et al.,

2015, 2018), the majority of CFA studies in this field are

based exclusively on behavioral measures claiming an inte-

grated approach with brain measures (Ambrosini et al., 2019).

In this line of research, VBM is a widely used method to study

the grey matter correlates of EFs which greatly overlap with

their functional bases (Ruscheweyh, Deppe, Keller, et al., 2013;

Smolker et al., 2018, 2015; Weise et al., 2019). Also, structural

neuroimaging has the advantage of being easy to implement

in patient samples given its brevity and low demand relative

to task-based functional methods.

Against this background, this work aims to compare two

competing approaches to the organization of EFs in neuro-

typicals and a lesion model composed by a group of patients

with bvFTD by combining CFA and VBM. First, we imple-

mented CFA to assess the fit of robust multidimensional and

bifactor models of EFs based on the performance of a large

sample of participants (n ¼ 370) on the INECO Frontal

Screening (IFS) (Torralva et al., 2009), a validated battery that

evaluates WM, motor inhibition (M.Inh), verbal inhibition

(V.Inh), and Abs.C. We chose the IFS given its reliable psy-

chometric properties (see details in Materials and methods,

section 2.2). As age has strong effects on EFs structure (Bock,

Haeger, & Voelcker-Rehage, 2019), we performed measure-

ment invariance testing across that variable. We then

compared IFS factor and observed scores between bvFTD

patients (n ¼ 29) and a sub-sample of controls (n ¼ 24)

matched in relevant demographic variables. Finally, we used

VBM to assess the grey matter correlates of IFS factor and
observed sores in the bvFTD group in tandem with its paired

controls.

Based on previous evidence (Karr et al., 2018), we expect

bothmodels to fit the data well. Also, in light of evidence from

frontal lesions (e.g., Tsuchida and Fellows, 2013) suggesting a

fractionated structure of EFs, we hypothesize that the multi-

dimensional model will provide a more sensitive discrimina-

tion of frontal-executive deficits in patients compared to the

bifactor model and the observed IFS scores.
2. Materials and methods

We report how we determined our sample size, all data ex-

clusions (if any), all inclusion/exclusion criteria, whether in-

clusion/exclusion criteria were established prior to data

analysis, all manipulations, and all measures in the study.

2.1. Participants

A total of 370 participants were enrolled in this study �341

healthy controls and 29 bvFTD patients. For further statistical

analyses, a subsample of 24 controls was sex, age, and

education-matched with the bvFTD group (paired controls)

eSee demographics in Table 1. Sample size adequacy was

determined using GPower 3.1 software. Our statistical design

[two-group comparisons using ManneWhitney U tests (pre-

dicting worse performance in bvFTD vs controls)] requires a

minimumof 24 subjects per group to achieve an effect size d of

1, with a ¼ .05 and b ¼ .95. Participants' inclusion and exclu-

sion criteria (as detailed below) were established prior to

assessment and data analysis.

Patients were diagnosed by an expert team composed of

cognitive neurologists, psychiatrists, and neuropsycholo-

gists, following current revised criteria (Rascovsky et al.,

2011). They were in mild stages of the disease according to

expert criteria and atrophy pattern (Supplementary Table 1

and Supplementary Figure 1), compatible with a score of 1

in the Clinical Dementia Rating scale (Seeley et al., 2008)

eindex of mild impairment (Morris, 1993). On average, bvFTD

patients presented declined cognitive state, as measured

with the Addenbrooke's Cognitive Examination test-III (ACE-

III) (< 83, cut-off for mild dementia (Mathuranath, Nestor,

Berrios, Rakowicz, & Hodges, 2000) (Table 1). Yet, patients'
ACE-III scores were highly variable, ranging from severely

impaired to normal performance (Table 1), as usually re-

ported (e.g., Chen et al., 2020; Dottori et al., 2017; Hornberger

et al., 2011), even in advanced stages of the disease

(Sheelakumari et al., 2020). Performance on general cognitive

screening tests does not always accurately reflect bvFTD

patients' clinical manifestations or functionality

(Hornberger, Piguet, Kipps, & Hodges, 2008; Kipps, Nestor,

Fryer, & Hodges, 2007; Rahman et al., 1999; Schroeter et al.,

2014), with executive and social cognition assessments

being more sensitive to the hallmark features of this condi-

tion (Harciarek & Cosentino, 2013; Johnen & Bertoux, 2019;

Piguet et al., 2011). No diagnosis nor signs of motor neuron

disease/ALS nor motor impairments were registered in any

patient. Controls declared no history of psychiatric or

neurological conditions, substance abuse disorder, heart or

https://doi.org/10.1016/j.cortex.2021.08.015
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Table 1 e Participants' demographic data.

Healthy controls (full sample) n ¼ 341 bvFTD
n ¼ 29

Paired controls
n ¼ 24

bvFTD versus
paired controls (stats)

Sex

Female 164 15 13 c2 ¼ .0

Male 172 14 11 p ¼ 1.0

Age 44.14 (16.7) [18e89] 69.2 (7.45) [55e84] 69.2 (7.47) [57e83] t ¼ .0p ¼ 1.0

Years of formal education 11.9 (4.8) [0e25] 14.0 (3.97) [4e19] 15.2 (3.52) [6e20] U ¼ 1.0 p ¼ .17

ACE-III e 72.5 (15.9) [46e92] 93.7 (4.6) [83e100] U ¼ 4.2 p < .001

Data are presented as mean (SD) [range], excepting sex. For categorical variables, we used c2 test. For continuous variables, we used Student-

t or Mann-Whitney U tests depending on data distribution. ACE-III: Addenbrooke’s Cognitive Examination-III; bvFTD: behavioral variant

frontotemporal dementia.

c o r t e x 1 4 5 ( 2 0 2 1 ) 7 9e9 682
vascular diseases, did not report symptoms of cognitive

decline, and had normal executive functioning skills (see

section 3.2). All subjects signed an informed consent in

accordance with the Declaration of Helsinki. The study was

approved by the Ethics Committee of the host institution.

2.2. The INECO Frontal Screening

All participants completed the IFS, a 10-minute easy-to-

administer, robust screening tool (Torralva et al., 2009) that

includes eight subtests to tap four EFs components:WM,M.Inh,

V.Inh, and Abs.C. This battery has shown good internal con-

sistency, and high reliability and concurrent validity (Ihnen,

Antivilo, Mu~noz-Neira, & Chonchol, 2013; Torralva et al.,

2009). Performance on the IFS is related with gold-standard

EFs tests such as the Frontal Assessment Battery, the Trail

Making Test part B, theWisconsin Card Sorting Test, and verbal

phonological fluency (Baez et al., 2014; Custodio et al., 2016;

Gleichgerrcht, Roca, Manes, & Torralva, 2011; Ihnen et al., 2013;

Torralva et al., 2009). The IFSwas created on the basis of clinical

experience, integrating the most sensitive and specific tasks to

detect executive dysfunction in dementia (Custodio et al., 2016;

Gleichgerrcht et al., 2011; Torralva et al., 2009), has been vali-

dated in other neuropsychiatric disorders (Baez et al., 2014,

2019; Bruno et al., 2015; Custodio et al., 2016; Fiorentino et al.,

2013a, 2013b; Gleichgerrcht et al., 2011), and proved useful in

both young and old healthy subjects (Fittipaldi et al., 2020;

Garcı́a-Cordero et al., 2017; Sierra Sanjurjo et al., 2019). The IFS

cut-off is 18, with a sensitivity of .90 and a specificity of .86 to

detect executive dysfunction (Ihnen et al., 2013). All IFS subtests

exhibit high sensitivity by themselves (Moreira, Lima, &

Vicente, 2014; Torralva et al., 2009).

WM is measured through the following subtests with a

maximum 12 points:

� Backwards digit span. This task captures the capacity to

temporarily hold acoustic information in mind via

phonological storage and an articulatory rehearsal mech-

anism (Baddeley, 2007; Hodges, 1994; Wechsler, 1987).

Participants are required to repeat a progressively length-

ening string of digits in reverse order (up to seven digits).

Each length includes two trials and successful perfor-

mance in at least one of them is necessary to move for-

ward, with a maximum of six points.
� Spatial working memory. It evaluates the ability to main-

tain in mind and manipulate visuo-spatial information to

use in the task at hand (Baddeley, 2007; Wechsler, 1987).

Participants are presented with a sequence of finger

movements over four cubes, which are required to repro-

duce in reverse order. In total, four sequences are pre-

sented, and one point is given for each correctly performed.

The maximum score is four points.

� Verbal working memory. This subtest also tracks phono-

logical WM (as backwards digit span), but with a less

demanding cognitive load since the series is highly over-

learned for most individuals (Hodges, 1994; Torralva et al.,

2009). Participants are asked to list the months of the year

in inverse order (starting with December). The maximum

score for perfect performance is two (one error being

penalized with one point, and two or more errors corre-

sponding to zero points).

M.Inh (i.e., the capacity to cancel an intended movement)

is measured through the following tasks with a maximum of

nine points:

� Motor programming. This subtest is sensible to inhibition

deficits, which may be observed as perseveration (i.e.,

inappropriate repetition) of movements (Dubois et al.,

2000). It consists of performing the Luria series “fist, edge,

palm” six times after copying the examiner three times.

The score is three points for a performance without errors,

two points if at least three consecutive series are correct,

one point if three series can be copied, and zero points

otherwise.

� Conflicting instructions. This subtest captures the ability to

obey a verbal command while inhibiting automatic imita-

tion of the examiner's movements (Dubois et al., 2000).

Participants are instructed to hit the table once or twice

when the examiner hits it twice or once, respectively across

a series. Three points are given for error-free performance,

two pointswhen one or two errors are committed, one point

for more than two errors, and zero points otherwise.

� Go-No Go. This subtest measures the capacity to inhibit a

motor response that was previously given to a similar

stimulus (Drewe, 1975; Dubois et al., 2000). The instruction

is to hit the table once or do nothing when the examiner

hits it once or twice, respectively, in a series. The task is

https://doi.org/10.1016/j.cortex.2021.08.015
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applied immediately after conflict instructions, with iden-

tical scoring.

V.Inh (i.e., the capacity to inhibit a verbal response) is

assessed through the following task, with a maximum of six

points:

� Modified version of the Hayling test. This subtest evaluates

the capacity to override highly overlearned and expected

verbal responses to behave in a contextually adequate

manner (Burgess & Shallice, 1997). Participants are pre-

sented with three sentences whose last word is missing

and are asked to complete them with a syntactically cor-

rect but semantically incorrect word as quickly as possible.

Sentences are constructed to strongly constrain what the

individual should say (e.g., “An eye for an eye and a tooth

for a…”). The maximum score for each sentence is two

points. If the participant completes the sentence with a

semantically related word, only one point is given. Using

the exactly expected word corresponds to zero points.

Abs.C ismeasured in the IFS through the following subtest,

with a maximum of three points:

� Proverb interpretation task. This task is usually employed

to assess abstract thought (Dubois et al., 2000; Lezak, 1983).

Three proverbs are given to the participant, who is required

to explain their meaning. One point is given for each

proverb correctly explained, .5 points are awarded if an

example is given, and zero points are awarded in all other

scenarios. For example, the English version of the IFS in-

cludes the following proverb: “A bird in the hand is worth

two in the bush”. The participant would obtain one point if

they were able to explain its abstract meaning; “it is better

to be content with what you have than risk losing it by

trying to get something better”. Alternatively, the partici-

pant would get one half of a point if theywere to provide an

example such as “you shouldn't spend your savings in the

lottery for the uncertain possibility of winning a high sum

of money”, because it denotes some degree of abstraction.

Finally, they would get zero points if they were to provide a

literal response (e.g., “it is better to catch one bird than see

two in the bush”). This scoring follows standard recom-

mendations (Murphy et al., 2013).
2.3. MRI acquisition

Structural MRI recordings were obtained from bvFTD patients

(n ¼ 29) and their paired controls (n ¼ 24) eSee demographics

in Table 1. Image acquisition and analysis are reported

following the practical guide of the Organization for Human

BrainMapping (Nichols et al., 2017; Poldrack et al., 2017). Using

a 1.5 T Phillips Intera scanner with a standard head coil (8

channels), we acquired T1-weighted anatomical 3D spin echo

sequences parallel to the plane connecting the anterior and

posterior commissures, covering the whole brain. The

following parameters were used: 196 slices, TR ¼ 7489 msec,
TE ¼ 3420 msec, flip angle ¼ 8�, matrix size ¼ 256 � 240, voxel

size ¼ 1 � 1 � 1 mm3, total scan duration ¼ 7 min.

2.4. Statistical analyses

2.4.1. Confirmatory factorial analysis
CFA was implemented to compare the fit of a multidimen-

sional and a bifactormodel from the observed IFS scores in the

sample of 370 participants. The multidimensional model was

composed of four components (WM, M.Inh, V.Inh, Abs.C),

assuming functional differentiation with associations be-

tween them. The bifactor model included the same compo-

nents as independent constructs nested in a CF. After

removing the components' shared variance in the CF, they are

no longer related but explained as individual manifestations

of a general domain ability.

Data analyses were performed in RStudio (R Core Team,

2020; RStudio Team, 2020), using various packages (Epskamp,

2019; Jorgensen et al., 2020; Rosseel, 2012; Wickham et al.,

2019). CFA models were plotted using Unyx (Von Oertzen

et al., 2015). Because the data were not normally distributed,

we used maximum likelihood estimation with robust (Huber-

White) standard errors. Full information maximum likelihood

estimation method was implemented to handle missing data

(.008% of the total measures). Goodness-of-fit of each model to

the data was evaluated via global model fit indices that adjust

for nonnormality: the Yuan-Bentler correction factor for the

chi-square statistics (YB c2), the robust comparative fit index

(the robust CFI (Savalei, 2018)), and the robust rootmean square

error approximation (the robust RMSEA (Savalei, 2018)). For

model selection, we used the Akaike's Information Criterion

(AIC). To discriminate between models, we used the AIC dif-

ferences (DAIC) between themodel with the smallest value and

the other candidatemodels in the set. Differences between zero

and two suggest little support to distinguish between models,

from four to seven indicate less support for the model with the

higher value, and a difference >10 suggest no support for the

model with the higher value (Burnham & Anderson, 2002). The

fixed variance method of identification was used in all models

(Putnick & Bornstein, 2016).

The YB c2 exams the exact-fit hypothesis that there is no

difference between the model-implied covariance matrix and

the population covariance matrix. A non-significant p-value

(p � .05) brings support to the exact-fit hypothesis. The robust

RMSEA is an absolute fit index where a value of zero supports

the exact-fit hypothesis (values > .08 considered as poor fit,

values in the range of .05e.08 considered as adequate fit, and

values � .05 supporting the close-fit hypothesis (Browne &

Cudeck, 1993)). The robust CFI assesses how the specified

model improves fit over the null model (values > .95 consid-

ered as an acceptable fit, and values > .97 considered as

excellent fit (Schermelleh-Engel et al., 2003). The AIC index

has been formally proposed for the comparison of either

nested or non-nested models of different complexity (those

with the lowest values presenting a better fit (Burnham &

Anderson, 2002)).

Due to the wide range of age of our participants (range¼ 18

- 89, median ¼ 47) and expected age-related differences in the

https://doi.org/10.1016/j.cortex.2021.08.015
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factors underlying the IFS, we dichotomized this variable into

young and old adults (young � 47, n ¼ 187; older > 47, n ¼ 183).

This procedure is typical in this type of datamodeling (Cheung

& Rensvold, 2002; Little, 2013). To show that differences across

age are due to differences in the factors underlying the IFS

scores rather than differences related to unknown variables,

we tested the IFS measurement invariance. This means that

the factor structure and observed factor loadings and inter-

cept values (i.e., the mean of the measured variables) are

equal across age groups (i.e., scalar invariance model). Evi-

dence for the latter model suggests that: (1) the latent vari-

ables have a common factorial structure across age groups; (2)

age group differences in the factormeans are unbiased; and (3)

observed intercepts and factor loadings are directly related to

the factor means (Kline, 2016). Details and criteria for testing

measurement invariance are given in SupplementaryMaterial

1.

We computed predicted factor scores of the IFS from the

partial multidimensional and bifactor models to examine

performance and correlations with grey matter volume in the

group of bvFTD patients and its paired controls. Factor scores

represent the prediction made by the model for each partici-

pant in each EFs component, as deviation units from themean

of the young group (0 ± 1). Lower scores represent lower pre-

dicted performance, and higher scores represent higher pre-

dicted performance.

2.4.2. Analysis of behavioral data
We compared the performance of bvFTD patients (n ¼ 29) and

their paired controls (n ¼ 24) in the IFS scores predicted by the

multidimensional and bifactor models (WM, M.Inh, V.Inh,

Abs.C, CF) and those observed using ManneWhitney U tests

(since data were non-normally distributed). To consider re-

sults as significant, the a level was set at p < .05. Effect size for

each comparison was estimated by the Cohen's d, calculated

with 5000 bootstrap resamples, using the package DABESTR

for R (Ho, Tumkaya, Aryal, Choi, & Claridge-Chang, 2019).

2.4.3. MRI data
2.4.3.1. IMAGES PREPROCESSING. T1-weighted images were pro-

cessed using the Dartel Toolbox on SPM 12 running in MAT-

LAB following validated VBM procedures (Ashburner &

Friston, 2000). Preprocessing steps included segmentation

into grey matter, white matter, and cerebrospinal fluid. Those

images were used to estimate the total intracranial volume.

Then, to improve between-subject alignment, a template

based on grey and white matter segmentations was created

for the complete data set (default parameters) (Ashburner,

2007). This template was used to affine transformation into

MNI space to all individual greymatter images. Finally, images

were modulated by Jacobian determinants and smoothed

with a kernel of 12 mm.

2.4.3.2. VOXEL-BASED MORPHOMETRY ANALYSIS. The atrophy

pattern of bvFTD patients was calculated by comparing their

grey matter maps with those of their paired controls, via two-

sample t-tests (SPM module) (Supplementary Table 1 and

Supplementary Figure 1). Then, we performed whole-brain

multiple regression analyses (SPM module) to identify grey

matter associations with scores predicted by CFA models and
those observed. These analyses were made for the bvFTD

group in tandem with its paired controls (n ¼ 53) to increase

behavioral variance, sample size, and statistical power

(O'Callaghan et al., 2016; Sollberger et al., 2009). Total intra-

cranial volume and a dummy variable codifying the group to

which the participant belonged were included as nuisance

covariates. The inclusion of these covariates reduces the

inter-variability in head size (Pell et al., 2008) and the atrophy

effect (Alkharusi, 2012).

To control for multiple comparisons, the statistical

threshold was set at p < .05 at the cluster level with a voxel-

level threshold of p < .001. The minimum cluster size (k) to

consider results as significant was set using AlphaSim

correction (Rest v1.8 software) (Song et al., 2011), which ap-

pliesMonte Carlo simulations. The following parameters were

used: individual voxel p ¼ .005; rmm ¼ 1; simulations ¼ 1000.

This approach is commonly used in VBM analysis (e.g., Peng

et al., 2018; Tas et al., 2018; Zhang et al., 2013) to control for

spurious findings while avoiding false negatives that could

result when applying more conservative corrections such as

FWE (Lieberman & Cunningham, 2009). Localization was

derived from the Automated Anatomical Labeling Atlas

(Tzourio-Mazoyer et al., 2002).
3. Results

3.1. Confirmatory factorial analysis

Measurement invariance revealed that the multidimensional

model was not fully scalar invariant. Thus, we computed the

partial scalar multidimensional model (from here on, multi-

dimensional model). See Supplementary Material 1 and

Supplementary Table 2 for details. In this model, the observed

intercepts of verbal WM, the first trial of the modified Hayling

test, and the third trial of the proverb interpretation task were

freed across age. The goodness-of-fit indices indicated that

the exact-fit hypothesis cannot be rejected (YB

c2(109)¼ 112.880, p¼ .38); the robust RMSEA indicated a close fit

of the model to data (robust RMSEA ¼ .014, 90% CI ¼ .0e.042).

Similarly, the robust CFI showed an excellent fit to data

(robust CFI ¼ .996).

Tests of measurement invariance for the bifactor model

indicated that the scalar invariance hypothesis was not sup-

ported. Thus, in the partial scalar bifactor model (from here on,

bifactor model), the intercepts of the conflicting instruction

task and the third trial of the proverb interpretation task were

freely estimated in both age groups (see Supplementary

Material 1 and Supplementary Table 2). The bifactor model

fitted the data well, as evidenced by the fit indices (YB

c2(108) ¼ 115.522, p ¼ .29; robust RMSEA ¼ .02, 90% CI ¼ .0e.044;

robust CFI ¼ .993). Although the multidimensional model ap-

pears to provide the best account of data (AIC ¼ 8134.8), no

strong goodness-of-fit measures distinguish it from the

bifactor model (AIC ¼ 8138.7; DAIC ¼ 3.93).

Fig. 1A displays the standardized estimates of the multi-

dimensional model with the symbols representing the types

of variables, parameters, and relationships. All factor loadings

were in the range of .42 and .81 and statistically significant,

indicating that measured variables were directly influenced

https://doi.org/10.1016/j.cortex.2021.08.015
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Fig. 1 e Standardized version of factorial models (partially scalar). A. Multidimensional model. B. Bifactor model. The legend

displays the symbols representing the types of variables, parameters, and relationships. For identification of both models,

factor means were fixed to zero in the young group (“Y”) and freely estimated for the old group (“O”). These estimated factor

means are expressed as standard deviation units. For example, the factor mean for WM indicates that the old group's
performance was .55 SD lower than the young group (p < .001). Numbers in red denote significant age differences in the

factor means (p < .05). In these models, factor variances/covariances, factor means, and residual variances were freely

estimated. For simplicity of the figure, the model does not show residual variances and, in the case of bifactor model,

neither observed intercepts. Abs.C: abstraction capacity; BDS: backwards digit span; CF: common factor; CI: conflicting

instructions; GNG: Go-No Go; IC1: verbal inhibitory control, 1st trial; IC2: verbal inhibitory control, 2nd trial; IC3: verbal

inhibitory control, 3rd trial, M.Inh: motor inhibition; MP: motor programming; SWM: spatial working memory; O: old, PI1:

proverb interpretation, 1st trial; PI2: proverb interpretation, 2nd trial; PI3: proverb interpretation, 3rd trial; V.Inh: verbal

inhibition; VWM: verbal working memory; WM: working memory; Y: young.
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by each specific factor. In the multidimensional and bifactor

models, all factor means were fixed to zero in the young group

(“Y”) and freely estimated for the old group (“O”; see the pa-

rameters above the triangles pointing to each factor). Thus,

factor means for WM (values provided above the triangles

pointing to the WM factor) indicate that the old group's per-

formance was .55 standard deviations lower than the young

group (p < .001). Similarly, relative to the young group, the old

group performed worse in M.Inh (O ¼ �.51, p < .01) and in

V.Inh (O ¼ �.25, p < .05). In Abs.C, age groups showed no dif-

ferences in performance (O ¼ �.17; p > .05). Correlations be-

tween latent variables were similar in both groups, in the

range of .39 and .80. In the bifactor model (Fig. 1B), except for

verbal WM task (p ¼ .11), factor loadings were statistically

significant (p < .05), evidencing that measured variables were

directly influenced by the common and specific factors. The

model reveals that age differences for the latent variables

were statistically significant in M.Inh (O ¼ �1.41, p ¼ .04) and

marginally significant in WM (O ¼ �3.39, p ¼ .06) and V.Inh

(O ¼ �1.33, p ¼ .09).

3.2. IFS performance

Descriptive statistics (mean, median, SD and range) of factor

and observed IFS scores as well as between-group compari-

sons' results (bvFTD patients vs paired controls) are summa-

rized in Table 2.

On average, healthy controls reached the IFS cut-off for

normal executive functioning (� 18 (Ihnen et al., 2013)). A 22%

of them showed values below the cut-off, as expected and

usually reported in Latin American samples, probably

explained by educational level (controls with IFS < 18:

Meducation ¼ 7.5, SDeducation ¼ 3.3, controls with IFS � 18:

Meducation ¼ 13.4, SDeducation ¼ 4.4; U ¼ 9.4, p < .001) and po-

tential differences in fluid intelligence. As occurs with many

other EFs batteries from other regions (Diamond, 2013;

Duncan, 2013; Julayanont & Ruthirago, 2018; Roca et al., 2010;

Vigliecca & Baez, 2015; Wray et al., 2020) the IFS performance

is not resistant to educational level and fluid intelligence (Roca

et al., 2010) eSee Discussion section. Indeed, there was a

positive correlation (r¼ .7, p< .001) between IFS total score and

years of education in the healthy controls' sample. Low

educational level could also explain poorer IFS performance in

the full healthy controls' sample (Mage ¼ 44.1, SDage ¼ 16.7)

than in the sub-group of older paired controls (Mage ¼ 69.2,

SDage ¼ 7.47), as revealed by a significant difference in years of

education between non-paired (n ¼ 317; Meducation ¼ 11.7,

SDeducation ¼ 4.8) and paired (n ¼ 24, Meducation ¼ 15.2,

SDeducation ¼ 3.5) controls (U ¼ 3.7, p < .001).

As expected (Harciarek & Cosentino, 2013; Johnen &

Bertoux, 2019; Rascovsky et al., 2011), bvFTD patients

showed executive decline (Table 2). Notably, patients' perfor-
mance was highly variable, suggesting different degree of

executive impairment, as previously reported (Baez et al.,

2019; Beeldman et al., 2018; Kamath et al., 2019).

3.2.1. Multidimensional model's predicted scores
We found significant differences between groups in all EFs

components as estimated by the multidimensional model,

with bvFTD patients performing worse than controls (WM:
U ¼ 5.60 p < .001, Cohen's d ¼ 1.91; M.Inh: U ¼ 4.90, p < .001,

Cohen's d ¼ 1.47, V.Inh: U ¼ 5.69, p < .001, Cohen's d ¼ 1.91,

Abs.C: U ¼ 5.87, p < .001, Cohen's d ¼ 2.47). Effect sizes were

higher for these scores in comparison to those estimated by

the bifactor model (Table 2 and Fig. 2, left panel).

3.2.2. Bifactor model's predicted scores
Significant differences between bvFTD patients and controls

were found for V.Inh (U ¼ 2.16, p < .05, Cohen's d ¼ .55), Abs.C

(U¼ 2.90, p < .05, Cohen's d¼ .84), and the CF (U¼ 5.82, p < .001,

Cohen's d ¼ 2.37), with patients performing worse than con-

trols. In contrast, no significant differences were found for

WM and M.Inh. Effect sizes were lower for these scores in

comparison to those estimated by the multidimensional

model (Table 2 and Fig. 2, right panel).

3.2.3. Observed scores
Compared to controls, bvFTD patients presented lower IFS

observed scores in all EFs components. Effect sizes were lower

than those of the multidimensional model, but higher than

those of the bifactor model (Table 2 and Supplementary

Figure 2).

3.3. VBM results

3.3.1. Grey matter correlates of multidimensional model's
predicted scores
Higher WM scores were related with greater grey matter vol-

ume of the right dorsolateral, medial and orbitofrontal cortex

(p < .05, AlphaSim cluster-corrected, k ¼ 107 voxels). Superior

M.Inh scores were related with higher volume in the right

orbitofrontal cortex, in addition to the left parietal Rolandic

operculum (p < .05, AlphaSim cluster-corrected, k ¼ 114 vox-

els). Higher V.Inh scores were related with increased grey

matter volume in the right medial and orbitofrontal cortex/

gyrus rectus, and the bilateral anterior insula (p < .05, Alpha-

Sim cluster-corrected, k¼ 116 voxels). Finally, higher scores in

Abs.C were associated with more grey matter volume in the

right medial and orbitofrontal cortex, the bilateral insula, the

left Rolandic operculum, the bilateral mid/posterior cingulate

gyri and precuneus, and the left (para)hippocampal/amygdala

complex (p < .05, AlphaSim cluster-corrected, k ¼ 123 voxels).

See Fig. 3 and Supplementary Table 3 for further details.

3.3.2. Grey matter correlates of bifactor model's predicted
scores
Higher CF scores were associated with increased grey matter

volume in the right medial and orbitofrontal cortex/gyrus

rectus, and the bilateral insula (p < .05, AlphaSim cluster-

corrected, k ¼ 111 voxels) eSee Fig. 3 and Supplementary

Table 3 for further details. In contrast, no significant grey

matter correlates were found for the individual EFs' compo-

nents as estimated by the bifactor model (p < .05, AlphaSim

cluster-corrected, k for WM ¼ 119 voxels, k for M.Inh ¼ 123

voxels, k for V.Inh ¼ 126 voxels, and k for Abs.C ¼ 148 voxels).

3.3.3. Grey matter correlates of observed scores
Observed IFS scores presented less specific brain volume

correlates (Supplementary Table 3 and Supplementary

Figure 3). No significant grey matter associations were
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Table 2 e Participants performance on the IFS.

Healthy controls
(full sample)
(n ¼ 341)

bvFTD
(n ¼ 29)

Paired controls
(n ¼ 24)

bvFTD versus
paired controls

(Cohen's d)

Stats

Multidimensional model WM �.05 (�.09) [.81]

{-1.62e1.75}

�1.22 (�1.04) [1.06]

{-3.39e.17}

.40 (.34) [.47]

{-.66e1.25}

�1.91 U ¼ 5.58 p < .001

M.Inh �.04 (.17) [.75]

{-2.81e1.00}

�2.09 (�1.86) [1.94]

{-6.37e.35}

.26 (.39) [.64]

{-1.96e.93}

�1.47 U ¼ 4.90 p < .001

V.Inh .13 (.19) [.76]

{-2.15e1.32}

�1.11 (�.83) [1.24]

{-3.04e.73}

.76 (.83) [.34]

{-.13e1.32}

�1.91 U ¼ 5.69 p < .001

Abs.C .15 (.09) [.91]

{-1.36e1.58}

�.61 (�.62) [.91]

{-1.35e1.01}

1.16 (1.24) [.36]

{-.02e1.58}

�2.47 U ¼ 5.80 p < .001

Bifactor model WM �.37 (�.11) [.92]

{-1.50e1.43}

�1.23 (�1.25) [.09]

{-2.03e1.17}

�1.23 (�1.23) [.10]

{-1.40e1.03}

.05 U ¼ .13 p ¼ .89

M.Inh �.37 (�.11) [.92]

{-5.29e1.04}

�2.04 (�1.54) [1.75]

{-5.83e.40}

�1.39 (�1.18) [.86]

{-4.72e.48}

�.46 U ¼ 1.10 p ¼ .27

V.Inh �.33 (�.27) [.76]

{-3.29e1.32}

�1.31 (�1.41) [.81]

{-2.85e.14}

�.91 (�.89) [.55]

{-1.92e.29}

�.56 U ¼ 2.29 p ¼ .02

Abs.C .37 (.26) [.88]

{-1.56e2.40}

�.54 (�.42) [.78]

{-1.94e.84}

�.04 (.02) [.36]

{-1.30e.46}

�.81 U ¼ 2.77 p ¼ .006

CF .37 (.26) [.88]

{-1.56e2.40}

�.53 (�.18) [1.32]

{-3.02e1.11}

1.53 (1.53) [.49]

{.56e2.39}

�2.00 U ¼ 5.82 p < .001

Observed scores WM 7.36 (8.0) [2.24]

{0e12}

5.83 (6.0) [2.45]

{1e10}

8.58 (8.0) [1.59]

{6e12}

�1.31 U ¼ 4.09 p < .001

M.Inh 8.09 (6.0) [1.47]

{0e9}

5.86 (6.0) [2.67]

{0e9}

8.42 (9.0) [1.21]

{4e9}

�1.19 U ¼ 3.88 p < .001

V.Inh 4.28 (1.48) [1.31]

{0e6}

2.31 (2) [2.00]

{0e6}

5.12 (5.0) [.74]

{3e6}

�1.80 U ¼ 4.81 p < .001

Abs.C 1.55 (1.0) [1.13]

{0e3}

.95 (1.0) [.97]

{0e3}

2.77 (3.0) [.42]

{1.5e3}

�2.37 U ¼ 5.57 p < .001

Total 21.28 (22.0) [4.68]

{12e30}

14.95 (16.5) [6.68]

{1e23}

24.90 (25.0) [2.33]

{20e29}

�1.95 U ¼ 5.68 p < .001

Descriptive statistics are presented asmean (median) [SD] {range}. Factor scores represent the prediction made by themodel for each participant

in each EF component, as deviation units from the mean of the young group (0 ± 1). Lower scores represent lower predicted performance, and

higher scores represent higher predicted performance. Statistical comparisonwasmade throughMann-Witney U tests. In bold: results reaching

the statistical threshold (p < .05). Abs.C: abstraction capacity; bvFTD: behavioral variant frontotemporal dementia; CF: common factor; M.Inh:

motor inhibition; V.Inh: verbal inhibition; WM: working memory.

Fig. 2 e BvFTD patients and controls performance in predicted factor scores for each executive component tapped by the IFS.

Estimation plots show Cohen's d between groups calculated with 5000 bootstrap resamples. Statistical comparisons were

performed through Mann-Witney U tests. Abs.C: abstraction capacity; bvFTD: behavioral variant frontotemporal dementia;

CF: common factor; M.Inh: motor inhibition; V.Inh: verbal inhibition;WM: workingmemory. *: p < .05; ***: p < .001; ns: non-

significant.
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Fig. 3 e VBM results. A. Brain volume correlates of multidimensional model's factor scores. Higher scores in EFs components

were mainly associated with larger grey matter volume of prefrontal regions, as well as posterior and medial-temporal

areas in the case of Abs.C. B. Greymatter correlates of bifactor model's factor scores. Higher scores in the CF were associated

with prefrontal and insular regions. No significant correlations were found for individual EFs components. See details in

Supplementary Table 3. Images are displayed in neurological convention. The statistical threshold was set at p < .05,

AlphaSim cluster-corrected. The numbers represent the slices coordinates in the sagittal plane. Abs.C: abstraction capacity;

CF: common factor; M.Inh: motor inhibition; V.Inh: verbal inhibition; WM: working memory.
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obtained for WM (p < .05, AlphaSim cluster-corrected, k ¼ 113

voxels). Higher M.Inh and V.Inh scores were related to higher

volume in the left Rolandic operculum and the left posterior

temporal gyrus, respectively (p < .05, AlphaSim cluster-

corrected, k for M.Inh ¼ 113 voxels, k for V.Inh ¼ 115).

Finally, higher Abs.C scores were associated with higher grey

matter volume in the bilateral Rolandic operculum, the left

hippocampus and amygdala, and the left mid/posterior

cingulate gyrus (p < .05, AlphaSim cluster-corrected, k ¼ 125

voxels).
4. Discussion

To our knowledge, this is the first work in examining the

latent organization of EFs in both neurotypicals and in a

neurodegeneration model of EFs. CFA was used to test the

multidimensional and bifactor models of EFs. The multidi-

mensional model featured four EFs components including

WM, M.Inh, V.Inh and Abs.C as separate but correlated con-

structs. In the bifactor model, components were independent

(i.e., unrelated) and their shared variance was captured by a

CF, implying a general-domain ability underlying all EFs.

Although both factorial models fit the data well, the multidi-

mensional model was more sensitive to detect bvFTD's EFs

impairments and unique neuroanatomical correlates for EFs,

in comparison with both the bifactor model and the observed

scores. Thus, the converging behavioral and neuroanatomical

evidence supports an undelayingmultidimensional structure.

Our framework offers novel insights to better understand the
latent structure of EFs, which has been traditionally studied

through performance measures.

The CFA in healthy participants evidenced that all fit

indices (YB c2, robust RMSEA, CI, and robust CFI) provided

support for both models. While the multidimensional model

appeared to provide a better account of behavioral data,

goodness-of-fitmeasures did not provide a clear advantage for

any model. This result confirms that, at a behavioral level,

both models would work similarly (Friedman & Miyake, 2017;

Karr et al., 2018; Miyake et al., 2000).

The bvFTD group showed impaired performance in all EFs

components as predicted by the multidimensional model.

This is consistent with the neuropsychological profile of this

condition, characterized by impairments in an extended

range of EFs (Harciarek & Cosentino, 2013; Johnen & Bertoux,

2019). A similar pattern of alterations was found for IFS

observed scores, although with lower effect sizes (arguably

due to the effect of task impurity). In contrast, the bifactor

model only showed moderate impairments in patients in the

CF, V.Inh, and Abs.C, with preserved performance in WM and

M.Inh. Notably, effect sizes were lower than those obtained

for the multidimensional model and observed scores, and,

except for the CF, data from the bifactor model presented a

very similar distribution across groups. Taken together, bvFTD

behavioral results suggest more accurate predictions and

sensitivity for themultidimensionalmodel to detect executive

dysfunction reflecting the selective involvement of the

ventromedial PFC (Broe et al., 2003) in a very specific way.

VBM results for the multidimensional model revealed

common grey matter correlates of EFs components. Higher

https://doi.org/10.1016/j.cortex.2021.08.015
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scores in all components were associated with higher volume

in the critical frontal EFs hubs (ventromedial/orbitofrontal

cortex). Although these regions seem crucial for response in-

hibition (Aron et al., 2004; Collette et al., 2005; Stuss, 2011),

they are also involved in other EFs (Fuster, 2019), and behav-

ioral regulation (Stuss, 2011). Evidence from patients suggests

that the integrity of the ventromedial/orbitofrontal cortex is

critical for any complex executive task (Fuster, 2019), being

these regions the earliest structures affected by the neuronal

degeneration in bvFTD (Hodges& Piguet, 2018; Kril & Halliday,

2004).

Regarding specific EFs correlates of VBM's multidimen-

sional model, the better WM the larger the dorsolateral pre-

frontal cortex, confirming robust evidence (D'Esposito et al.,

1998, 2000; Smolker et al., 2015; Wager & Smith, 2003). This

result was right-lateralized. Previous evidence on brain le-

sions and healthy subjects has shown a lateralization effect

on the dorsolateral prefrontal cortex in WM tasks, with the

right and left hemispheres processing preferentially spatial

and auditory-verbal material, respectively (D'Esposito et al.,

1998; Jonides et al., 1993; Smith & Jonides, 1998; van Asselen

et al., 2006). Since the WM component of the IFS involves

both modalities, we would have expected a bilateral dorso-

lateral prefrontal pattern. However, there is evidence that the

lateralization effects can change in the elderly (Jonides et al.,

2000; Reuter-Lorenz et al., 2000), and in those with cerebral

dysfunctions (Chiaravalloti et al., 2005; Walter et al., 2003). On

the other hand, in contrast to brain lesion literature showing a

critical involvement of posterior areas, such as the left angular

gyrus (Warrington & Shallice, 1969), in WM, our results were

circumscribed to frontal hubs. This may be explained by

preserved posterior gray matter in our patients

(Supplementary Table 1 and Supplementary Figure 1). Addi-

tionally, posterior regions are suggested to have a more

generic role in EFs, specifically in processing low-level infor-

mation that is shared across domains (Collette et al., 2005).

Thus, CFA might have eliminated the variance associated

with their function. Other VBM studies also failed to show

associations between EFs and non-frontal areas (Smolker

et al., 2015, 2018).

M.Inh presented a unique association with a cluster in the

left parietal Rolandic operculum, putatively related to the

sensorimotor aspects of this task (Eickhoff et al., 2010). Not

surprisingly, V.Inh presented a positive correlation with the

right ventromedial/orbitofrontal cortex, which has been pre-

viously referred to as the neural substrate of the Hayling test

ethe paradigm used in the IFS (Cipolotti et al., 2016; Robinson

et al., 2015; Volle et al., 2012). Higher V.Inh was also associated

with greater volume in the bilateral anterior insular cortex.

Despite this region not being traditionally associatedwith EFs,

several studies reveal its role in verbal response suppression

tasks esimilar to the Hayling test (De Zubicaray, Zelaya,

Andrew, Williams, & Bullmore, 2000; Ruscheweyh, Deppe,

Lohmann, et al., 2013)e, as well as in inhibitory failure

(Ramautar et al., 2006), and in other higher-order cognitive

aspects of language production (Oh, Duerden, & Pang, 2014).

The anterior insula is the key node of the salience network for

the facilitation of error monitoring and task control (Eckert

et al., 2009; Menon & Uddin, 2010; Ruscheweyh, Deppe,

Lohmann, et al., 2013). In this line, previous evidence has
linked the insular damage with executive impairments in

bvFTD (Baez et al., 2019). Taken together, these results suggest

the insula might have a role in language-based inhibition

tasks.

Finally, Abs.C was associated with a widespread grey

matter pattern, comprising an extended prefrontal cluster as

previously reported (Dumontheil, 2014; Murphy et al., 2013;

Nee et al., 2014; Urbanski et al., 2016) but also including other

temporo-posterior regions (Bohrn, Altmann, Lubrich,

Menninghaus, & Jacobs, 2012). These last regions would be

related to cognitive demands required by the proverb inter-

pretation task used to assess Abs.C. The task relies on the

medial temporal lobe's long-term verbal memory involve-

ment, which is putatively left-lateralized (Kaiser et al., 2013;

McDonald, Delis, Kramer, Tecoma, & Iragui, 2008). Further-

more, proverb interpretation engages perspective-taking

abilities (associated with medial frontal and posterior areas

(Amodio & Frith, 2006; Saxe, 2006)) to decode meaning, while

inhibiting literal responses (right ventromedial/orbitofrontal

cortex). In brief, the multidimensional model presented

common and unique neural signatures previously associated

with the specific EFs components.

The bifactor model presented a positive association of the

CF and ventromedial/orbitofrontal cortex volume (the main

hubs of the multidimensional model) together with the

bilateral insula. As discussed above, these regions encom-

pass general purpose roles in EFs (Eckert et al., 2009; Fuster,

2019; Menon & Uddin, 2010; Stuss, 2011). Consistently, a

previous work on latent variables also revealed a similar

association (Smolker et al., 2015), however, no associations

for individual EFs components were found using bifactor

scores. These findings extend previous evidence of shared

neuroanatomical bases among EFs and suggest a sensitivity

loss of the individual components when their common

variance is extracted.

Finally, the grey matter correlates of observed IFS scores

were scant. Remarkably, no prefrontal involvement was

detected in any component, possibly due to the effect of

contaminating variables in performance (task impurity). Pre-

vious research has already pointed to difficulties and contra-

dictions in brain results fromobserved (i.e., contaminated) EFs

scores (Smolker et al., 2018; Weise et al., 2019; Yuan & Raz,

2014). Thus, our findings further reinforce the advantages of

using CFA to characterize EFs constructs.

Taken together, while both the multidimensional and the

bifactor models presented a good fit to observed IFS data,

converging behavioral and neuroanatomical evidence from

bvFTD supports the multidimensional model. This is espe-

cially relevant for the clinical field, as it has been previously

suggested that EFs are fractionated in frontal patients

(Godefroy et al., 1999; Stuss, 2011; Tsuchida & Fellows, 2013).

The separability of EFs, however, should not be interpreted as

complete independence. The multidimensional model pre-

sented moderateehigh correlations among EFs components

(ranging from .39 to .80), alongside common neuroanatomical

hubs, suggesting a pattern of “unity and diversity” of EFs

(Friedman & Miyake, 2017). The nature of such unity of EFs,

namely whether it reflects general abilities (Obonsawin et al.,

2002), goal neglect (Duncan et al., 1997), or reasoning

(Salthouse, 2005) still remains to be determined.
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The controversy regarding the unity and diversity struc-

ture of EFs has been largely addressed using behavioral mea-

sures in healthy participants (e.g., Huizinga, Dolan, & van der

Molen, 2006; Miyake et al., 2000; Was, 2007), older adults (e.g.,

De Frias, Dixon, & Strauss, 2006; Hull, Martin, Beier, Lane, &

Hamilton, 2008; Martin, Barker, Gibson, & Robinson, 2021), as

well as in neurological (e.g., Robinson et al., 2012; Roca et al.,

2010; Tsuchida & Fellows, 2013) and psychiatric (e.g., Martin,

Mowry, Reutens, & Robinson, 2015) patients. Some works

tackled this issue using structural and functional imaging

(e.g., Collette et al., 2005; Fedorenko et al., 2013; Hedden &

Gabrieli, 2010; Niendam et al., 2012). Overall, these studies

support the differentiation of EFs across the lifespan. How-

ever, most of them rely on observed (i.e., contaminated) EFs

measures, raising controversies regarding the latent organi-

zation of the different dimensions (i.e., whether they depend

on a domain-general ability), and precluding specific brain-

behavior associations (e.g., Weise et al., 2019; Yuan & Raz,

2014). On the other hand, studies using CFA to alleviate the

problem of task impurity typically do not include brain mea-

sures. Moreover, the very few CFA studies that assess cortical

correlates (Ambrosini et al., 2019; Bettcher et al., 2016; Smolker

et al., 2015, 2018), do not test their hypotheses in patients. In

sum, our study is the first in integrating robust convergent

evidence from latent measures, structural imaging, and a

neurodegenerative lesion model to investigate the multidi-

mensional organization of EFs.

Results have relevant implications for neuropsychological

assessment. EFs impairments are present in most neurolog-

ical and psychiatric conditions (Huey et al., 2009; Snyder et al.,

2015; Stopford et al., 2012). However, the use of tasks' observed
scores is sometimes problematic to accurately detect such

deficits (e.g., to differentiate between types of dementia (Johns

et al., 2009)). While decades of research and many resources

have been invested to find specific tasks to solve this issue, the

field still lacks a clear answer. Thus, the incorporation of

factor scores as normative values in neuropsychological bat-

teries represents a promising avenue towards the develop-

ment of more sensitive EFs measures for diagnosis, detection

of daily life impairments, and assessment of treatment

outcomes.

Some limitations must be acknowledged. First, despite its

advantages, the IFS is not an exhaustive measure of EFs; it

does not include all EFs components (e.g., cognitive flexibility,

planning, organization) and does not account for processing

speed (i.e., reaction times). Second, given its screening nature,

a potential ceiling effect in healthy subjects cannot be ruled

out. Yet, the IFS taps into complex behaviors (e.g., M.Inh

domain is based on challenging handmovements that require

interference control while having implicit the capacities of

motor coordination and learning; Dubois et al., 2000) which

allows for the tracking of inter-individual differences. Indeed,

the IFS proved its utility in healthy young and old adults

(Fittipaldi et al., 2020; Garcı́a-Cordero et al., 2017; Sierra

Sanjurjo et al., 2019). Relatedly, EFs are impacted by multiple

factors, including education and fluid intelligence (Diamond,

2013; Duncan, 2013; Julayanont & Ruthirago, 2018; Roca

et al., 2010; Vigliecca & Baez, 2015; Wray et al., 2020). Simi-

larly, the IFS is sensitive to educational level (Ihnen et al., 2013;
Moreira et al., 2014; Sierra Sanjurjo et al., 2019), and fluid in-

telligence (Roca et al., 2010), which can produce floor effects.

Arguably, low-educated participants may present difficulties

in attending, comprehending and following instructions, lack

proper vocabulary (as required, for instance, in the proverb

interpretation task), and struggle in creating adequate stra-

tegies to solve complex tasks (Hawkins & Bender, 2002; Le

Carret et al., 2003; de Wachholz & Yassuda, 2011). This limi-

tation is not exclusive of the IFS but typical of other gold-

standard executive (Appollonio et al., 2005; Matioli et al.,

2008; Rodrigues et al., 2009) and cognitive (e.g., Crum,

Anthony, Bassett, & Folstein, 1993; Matı́as-Guiu et al., 2016;

Zhou et al., 2015) screening tests widely used to track acquired

deficits. In any case, future CFA works should more precisely

address the issue of ceiling and floor effects on EFs tasks.

Third, the Abs.C domain of the IFS is based on a single task

(proverb interpretation), with a short range of possible scores

(from 1 to 3). Low variability in this domain could impact VBM

associations in addition to task impurity. Fourth, although we

used a large sample for the construction of our models

(n ¼ 370), imaging analysis was performed only on a sub-

sample (n ¼ 53). Finally, the size of the bvFTD group was

moderate (n ¼ 29), but comparable or larger than that seen in

similar studies using VBM in this population (e.g., Baez et al.,

2019; Sheelakumari et al., 2020; Wilson et al., 2020). None-

theless, our results should be replicated with a larger, more

diverse pathological sample that includes other dysexecutive

syndromes.

In conclusion, the multidimensional model seems to be

more sensitive than the bifactor model and the observed

scores to detect neurocognitive dysfunction. This suggests

that EFs are better conceptualized as separate but related

components. Also, our results strengthen the construct val-

idity of the IFS across aging, highlighting its suitability for

further applications with latent variables in other studies. Its

robustness, alongside its brevity, low cost, easy application

and interpretation (Roebuck-Spencer et al., 2017), confers to

this battery several advantages over other alternatives. Thus,

our findings provide a new agenda for further theoretical and

clinical research regarding the conceptualization of EFs, the

utility of factor scores in neuropsychological assessment, and

the development of new evidence-based screenings for EFs

examination.
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