
Ecology, 90(8), 2009, pp. 2039–2046
� 2009 by the Ecological Society of America

Evaluating multiple determinants of the structure
of plant–animal mutualistic networks
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Abstract. The structure of mutualistic networks is likely to result from the simultaneous
influence of neutrality and the constraints imposed by complementarity in species phenotypes,
phenologies, spatial distributions, phylogenetic relationships, and sampling artifacts. We
develop a conceptual and methodological framework to evaluate the relative contributions of
these potential determinants. Applying this approach to the analysis of a plant–pollinator
network, we show that information on relative abundance and phenology suffices to predict
several aggregate network properties (connectance, nestedness, interaction evenness, and
interaction asymmetry). However, such information falls short of predicting the detailed
network structure (the frequency of pairwise interactions), leaving a large amount of variation
unexplained. Taken together, our results suggest that both relative species abundance and
complementarity in spatiotemporal distribution contribute substantially to generate observed
network patters, but that this information is by no means sufficient to predict the occurrence
and frequency of pairwise interactions. Future studies could use our methodological
framework to evaluate the generality of our findings in a representative sample of study
systems with contrasting ecological conditions.

Key words: forbidden links; Monte Desert, Mendoza, Argentina; neutrality; phenotypic complemen-
tarity; phylogenetic signal; plant–pollinator network; pollination; Villavicencio network.

INTRODUCTION

There is growing interest in the study of networks of

interacting plant and animal mutualists. This interest

stems from the realization that considering the commu-

nity context is important to understand the ecological

and evolutionary implications of mutualistic interac-

tions (Strauss and Irwin 2004). Studies of mutualistic

networks have uncovered some apparently general

structural properties, such as the skewed distribution

of links per species (many species with few links and few

species with many links; Jordano et al. 2003, Vázquez

and Aizen 2003), the nested organization of the

interaction matrix (Bascompte et al. 2003), and the

frequent occurrence of asymmetric interactions (Váz-

quez and Aizen 2004, Bascompte et al. 2006).

Recent discussion about the potential ecological and

evolutionary determinants of these structural patterns

has centered on the relative importance of neutrality vs.

the so-called ‘‘forbidden links.’’ The neutrality hypoth-

esis posits that network patterns result from the fact that

individuals interact randomly, so that abundant species

interact more frequently and with more species than rare

species (Dupont et al. 2003, Ollerton et al. 2003,

Vázquez et al. 2007). The forbidden links hypothesis

posits that network patterns result from constraints to

interactions imposed by the complementarity in species

phenotypes, phenologies, spatial distributions, and

phylogenetic relationships (Jordano et al. 2003, Rezende

et al. 2007, Santamarı́a and Rodrı́guez-Gironés 2007,

Stang et al. 2007). For example, two species cannot

interact if their phenologies do not overlap, regardless of

what their abundance alone predicts.

Available evidence suggests that both neutrality and

forbidden links contribute to some extent to determine

network structure (Bascompte and Jordano 2007, Váz-

quez et al. 2009). For example, Vázquez et al. (2007) have

shown that relative species abundance partly (but not

entirely) explains the observed asymmetry in the strength

of pairwise interactions, whereas Stang et al. (2007)

showed that information on both abundance and

morphological traits of plants and pollinators are needed

to predict asymmetry and nestedness in binary networks.

Several recent studies have also shown that phenologies

and interannual dynamics of plant and animal species

influence network structure (Basilio et al. 2006,Alarcón et

al. 2008, Olesen et al. 2008, Petanidou et al. 2008). In a

similar vein, a recent simulation study has shown that the

degree of mixing resulting from the spatial aggregation of

plant individuals and the scale of animal movement

decisions has strong influences on network structure

(Morales and Vázquez 2008). The key unanswered
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question is how important each of these processes is in

determining network structure. Here we develop a

conceptual and methodological framework to answer

this question and apply it to investigate the determinants

of a plant–pollinator network.

Consider a mutualistic network depicted as an interac-

tionmatrixYwith I rows and J columns corresponding to

the plant and animal species in the network, respectively,

and a positive integer in cell yij representing the number of

interactions recorded between plant i and animal j. This

matrix is a function of multiple interaction probability

matrices of the same size as Y, determined by relative

species abundance (N), temporal (T) and spatial overlap

(S), and phenotypic traits of interacting species (K). The

effects of these factors on Y can be constrained by the

phylogenetic relationships amongplants (Pp) and animals

(Pa) (Rezende et al. 2007). In addition, detection

probabilities of interactions resulting from sampling

effects (E) can also influence the observed network

(Blüthgen et al. 2008). Thus,

Y ¼ f ðN;T; S;K;Pp;Pa;EÞ: ð1Þ

Below we use this conceptual framework to evaluate

the contribution of abundance, spatial and temporal

overlap, and phylogenetic relatedness among species on

the structure of a plant–pollinator network. Specifically,

we address the following questions: (1) To what extent do

relative abundance and spatiotemporal overlap predict

aggregate network statistics (connectance, nestedness,

interaction strength evenness, and the distribution of

interaction strength asymmetries)? (2) To what extent do

these factors predict pairwise interaction frequencies in

the interaction matrix? (3) Is there any detectable phylo-

genetic signal in the interaction matrix, suggesting that

the influence of abundance and spatiotemporal overlap

on network structure could have resulted from phyloge-

netic constraints imposed by the phylogenetic relation-

ships among plants and among animals?

MATERIALS AND METHODS

Study system.—Data come from a plant–pollinator

network from the Monte Desert at Villavicencio Nature

Reserve (328320 S, 688570 W, 1270 m above sea level),

Mendoza, Argentina. We worked in four 1-ha plots,

separated by 1–2 km. Predominant vegetation is a tall

shrubland dominated by Larrea divaricata, Zuccagnia

punctata, Prosopis flexuosa, Condalia microphylla, Acan-

tholippia seriphoides, and Opuntia sulphurea (Roig 1972;

see Plate 1). We give only a summarized description of

field methods here; further details can be found in the

original publication describing the network (Chacoff et

al. 2009).

Plant–pollinator interactions.—Flower visiting insects

were observed on plant species in weekly surveys in two

consecutive flowering seasons (2006 and 2007) between

September and January (2006) or December (2007). We

attempted to sample plant–pollinator interactions in the

whole community as comprehensively as possible,

recording interactions between 41 plant species and 97

insect species. With these data we constructed a

quantitative plant–pollinator interaction matrix Y ¼
[yij], with rows corresponding to plant species and

columns to pollinator species; cell entries yij are integers

representing the number of flowers of plant species i

visited by pollinator species j (Fig. 1a). This is the

network we want to predict.

Species abundance.—Plant abundance was assessed in

weekly surveys along five fixed 503 2 m transects in the

four sites, where we recorded the number of individuals

of each entomophilous species and, for a subset of

individuals, the number of flowers per individual. We

also collected three fresh flowers from ten individuals of

each species to estimate the number of pollen grains

produced per flower. We attempted to obtain nectar

from flowers, but we failed for most plant species; flowers

in this system usually have very small standing volumes

of nectar. With these data we estimated the density of

individuals, density of flowers (density of individuals 3

flowers per individual), and density of pollen (density of

individuals 3 flowers per individual 3 pollen grains per

flower) for each species at each site. Arguably, density of

flowers is the most appropriate measure of abundance

from the flower visitors’ perspective: it is a better estimate

of resource abundance than density of individual plants

(because there is high variation among plant species in

the mean number of flowers per individual) and focuses

on the flower as the resource unit for both pollen and

nectar. However, because different studies use different

measures of abundance, we considered the three mea-

sures to evaluate how the choice of a particular measure

affects our results.

Because flowers of most species usually last less than a

week, and because we were interested in an overall

measure of abundance, we summed density across weeks

and sites to obtain an overall estimate of abundance of

each species. Thus, a plant species could be abundant

because it produced many flowers in a short period or

because it produced few flowers over a long period.

These two forms of abundance were then distinguished

by incorporating temporal and spatial structure in our

network model, as described below (see Spatial and

temporal overlap).

Insect abundance was defined as the total number of

visits made by a particular insect species to any plant

species (that is, the column sumof the interactionmatrix),

as done in previous studies (see, e.g., Vázquez et al. 2007).

Spatial and temporal overlap.—To quantify spatial and

temporal overlap of plant and pollinator species, we first

compiled matrices of temporal and spatial occurrences,

with species in rows and date or site in columns, and cells

with ones for presences and zeros for absences. We thus

had one temporal and one spatial occurrence matrix for

plants,Ot
p andOs

p, and one of each for animals,Ot
a andOs

a.

We then used matrix multiplication to calculate spatial

and temporal overlap matrices between plants and
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animals, S ¼ Os
pOs

a
0 and T ¼ Ot

pOt
a
0, where the prime

symbol indicates the transpose of a matrix or vector.

Calculation of interaction probabilities.—We calculat-

ed interaction probability matrices expected under the

assumptions that interactions were determined solely by

relative species abundances, temporal overlap and spatial

overlap. For relative abundance, interaction probability

betweenaplant species i andapollinator species j is simply

the product of their relative abundances. In matrix

notation, the interaction probability matrix expected

from relative abundances is N¼ npn 0
a. For temporal and

spatial overlap, we used overlap matrices T and S

normalized so that their elements added up to one, so as

to transform them into probabilities. (For simplicity, we

call these normalized matrices T and S hereafter.) Thus,

the greater the temporal or spatial overlap of two species,

the greater their probability of interaction; specieswith no

temporal or spatial overlap had zero probability of

interaction. We also calculated combined probabilities

as the element-wisemultiplication ofmatricesN,T, andS,

again normalizing the resulting matrices so that their

elements added up to one. These combined matrices

represent the expected probability under the joint

influence of more than one of these factors. For example,

NS denotes the combined abundance–spatial-overlap

probability matrix, and represents the interaction prob-

abilities expected if species interact proportionally to their

abundances given that they co-occur at a particular site.

Thus, we had seven probability matrices with all possible

combinations of relative abundance and temporal and

spatial overlap: N, T, S, NT, NS, TS, and NTS. In

addition, we defined an eighth probabilitymatrix inwhich

all pairwise interactions had the same probability 1/IJ of

occurrence, where I and J are the numbers of plant and

animal species in the network; this probability matrix,

termed ‘‘Null’’ (see Figs. 2 and 3), is taken as a benchmark

null model for comparison with the other seven proba-

bility matrices.

Analysis of aggregate network statistics.—We consid-

ered four aggregate network statistics frequently used in

the analysis of plant–animal mutualistic networks:

connectance, nestedness, interaction evenness, and

FIG. 1. Plant–pollinator interaction matrices. (a) Observed plant–pollinator matrix in the Monte Desert of Villavicencio Nature
Reserve (Mendoza, Argentina). (b) Interaction matrix resulting from one iteration of the randomization algorithm, using the NT
probability matrix (resulting from all possible combinations of abundance N and temporal overlap T) to assign interactions. In
each matrix, rows represent pollinator species, columns represent plant species, and circle diameter of a matrix element yij is
proportional to the square root of the number of interactions between pollinator i and plant j.
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interaction asymmetry. Connectance is the proportion
of realized interspecific links, defined as C ¼ L/(IJ ),

where L is the number of nonzero entries in the binary

interaction network and I and J are, as above, the

numbers of plant and animal species in the network.
Nestedness is the tendency of specialized species to

interact with a subset of the interaction partners of more

generalized species or, more precisely, the degree of

symmetry in the distribution of unexpected absences and

presences on each side of the boundary line defining
perfect nestedness (Almeida-Neto et al. 2007). Thus, a

nestedness value of 1 represents complete lack of

symmetry (perfect nestedness), while a value of 0

represents the highest symmetry in the distribution of
unexpected presences and absences, with absolute

randomness falling somewhere in between 0 and 1.

Nestedness was calculated with the BINMATNEST

algorithm proposed by Rodrı́gues-Gironés and Santa-
marı́a (2006), implemented in the bipartite package

(Dormann et al. 2008) of R statistical software (R

Development Core Team 2007); the BINMATNEST

algorithm overcomes several limitations of the widely

used nestedness temperature calculator developed by
Atmar and Patterson (1993). Following Tylianakis et al.

(2007), interaction evenness was defined as Shannon’s

index, H¼ pij log2pij/log2 F, where F is the total number

of plant–pollinator interactions in the matrix (see Eq. 2)
and pij is the proportion of those interactions involving

plant i and pollinator j. An uneven network is one with

high skewness in the distribution of interaction frequen-

cies. Interaction asymmetry for a given species was

defined as

Ai ¼

X

j

dij

ki

where ki is the degree of species i (i.e., the number of

species with which i interacts) and dij is a measure of the

symmetry of the strength of the pairwise interaction

between i and j (Vázquez et al. 2007); as in previous

publications, we used interaction frequency as a

surrogate of interaction strength (see Vázquez et al.

2005, 2007, Bascompte et al. 2006).

We used a randomization algorithm implemented in

R (see Supplement) to evaluate to what extent interac-

tion probabilities derived from relative abundance and

spatial and temporal overlap of species occurrences

predicted the observed aggregate network statistics. The

algorithm assigned the total number of interactions

originally observed in the interaction matrix according

to the seven probability matrices defined by all possible

combinations of abundance and temporal and spatial

overlap (see Interaction probabilities), with the only

constraint that each species received at least one

interaction.

Likelihood analysis of pairwise interaction probabili-

ties.—We used a likelihood approach to evaluate the

ability of abundance, temporal overlap and spatial

overlap to predict the detailed structure of the interac-

tion matrix. Consider the observed interaction matrix Y

and a probability matrix X, whose entries xij are the

probabilities of occurrence for each pairwise interaction;

we want to evaluate whether those probabilities match

the observed frequencies of interaction. This evaluation

can be done by calculating the likelihood of probability

matrix X given the data (Y). We assumed that the

pairwise probability of interaction between a plant i and

a pollinator j followed a multinomial distribution. Thus,

the likelihood of probability matrix l given the data is

Ll ¼
F!

YI

i¼1

YJ

j¼1

yi; j!

YI

i¼1

YJ

j¼1

x
yij

ijl ð2Þ

FIG. 2. Comparison between aggregate network statistics observed in the Villavicencio network (Monte Desert at Villavicencio
Nature Reserve, Mendoza, Argentina) and those predicted by the probability matrices. In each panel, the vertical line represents the
observed value of an aggregate statistic, and the circles represent the value of the statistic expected from each probability matrix,
with error bars indicating 95% confidence intervals. Results are shown for the seven probability matrices resulting from all possible
combinations of abundance (N), temporal overlap (T), and spatial overlap (S), and for the null probability matrix with
homogeneous interaction probabilities across all pairwise interactions (Null).
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where F is the total number of observed interactions

(i.e., the sum of the elements of matrix Y), and I and J

are the total number of animals and plants in Y,

respectively. We calculated this likelihood using function

dmultinomin the stats package of R. We then calculated

Akaike’s Information Criterion as AICl ¼ Ll � 2kl,

where kl is the number of parameters involved in

generating probability matrix l. For ease of comparison,

we used the differential AIC, DAIC, which is the AIC

for probability matrix l minus the AIC for the best

fitting probability matrix, which by definition has DAIC

¼ 0. The number of parameters was defined as the

number of factors contributing to generate a particular

probability matrix; thus, matrix N has one parameter,

TS has two, and NTS has three.

Phylogenetic analysis.—Ideally, we would like to

incorporate phylogenetic effects into our conceptual

framework, constructing a phylogenetic probability

matrix as we did with abundance, temporal overlap

and spatial overlap. Regrettably, incorporation of

phylogenetic effects was not possible because we found

no way of predicting pairwise interactions from the

plant and pollinator phylogenies alone, without refer-

ence to the observed interaction matrix. Alternatively,

we evaluated the strength of the phylogenetic signal of

the two phylogenies on the interaction matrix with the

method developed by Ives and Godray (2006): a linear

model approach to fit the phylogenetic variance–

covariance matrix to the interaction matrix. Using this

method we calculated the independent signals of the

plant (dp) and animal (da) phylogenies and the strength

of the signal of both phylogenies combined (from all the

data, MSEd; Appendix).

RESULTS

Aggregate network statistics.—No probability matrix

predicted connectance and interaction evenness values

whose confidence intervals included observed values of

these statistics (Fig. 2a, c). However, predictions from

probability matrices NTS, NT, NS, and N were

extremely close to observed connectance and interaction

evenness. Observed nestedness was included within the

randomization confidence intervals of the same four

probability matrices (Fig. 2b). A similar result was

observed for interaction asymmetry for pollinators (Fig.

2e), but not for plants (Fig. 2d). In the latter case,

observed average asymmetry was close to zero (pre-

dominantly symmetric interactions) and similar to that

predicted by the null model that assumes that all species

have the same probability of interaction. Highly

negative asymmetry in pollinators and high symmetry

for plants matches previous results for other interaction

networks (Vázquez et al. 2007). Thus, with the exception

of asymmetry for plants, information on abundance and

temporal overlap suffices to simulate interaction net-

works whose aggregate structure resembles very closely

FIG. 3. Likelihood analysis of pairwise interaction proba-
bilities. Results are shown for three abundance measures (see
Methods): (a) density of individuals, (b) density of flowers, and
(c) density of pollen. Each panel shows the DAIC values
corresponding to each of the seven probability matrices
resulting from all possible combinations of abundance (N),
temporal overlap (T), and spatial overlap (S). The DAIC value
for a null probability matrix with homogenous interaction
probability across all pairwise interactions (Null) and the
observed interaction matrix fitted to itself (Y) are also shown
for comparison.
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the structure of the observed matrix Y. This result was

the same regardless of the measure of abundance used

(i.e., density of individuals, individuals 3 flowers or

individuals 3 flowers 3 pollen; result not shown).

Frequency of pairwise interactions.—Taking density of

flowers as our measure of plant abundance (which, as

explained above, is arguably the most appropriate

measure), the combined probability matrix NT had the

lowest DAIC value, with a difference with the next best-

fitting probability matrix TS of 156, and several orders

of magnitude with the null model (Fig. 3b). However,

this best-fitting probability model was also orders of

magnitude worse than the perfect fit obtained by fitting

the interaction matrix to itself. These results suggest that

abundance and temporal overlap are useful to predict

part of the detailed structure of the interaction matrix,

but that we are far from an accurate prediction, with

much unexplained variation.

The latter conclusion can be visualized by comparing

the observed interaction matrix (Fig. 1a) with an

example of a matrix resulting from the randomization

procedure with the NT probability matrix (Fig. 1b). For

example, although the two randomized matrices look

roughly similar to the observed matrix in terms of

connectance and nestedness, it is obvious that the most

frequently observed interactions are not those predicted

to occur most frequently by NT. Thus, although

knowledge of abundance and phenology allows us to

predict aggregate network properties with high accura-

cy, we do rather poorly at predicting the detailed oc-

currence of pairwise interactions.

Unlike results for aggregate network statistics, using a

different measure of abundance affects our ability to

predict pairwise interactions (Fig. 3a, c): NT is now in

sixth place, doing particularly badly when abundance is

measured as density of pollen, almost as badly as the

null model. Notice that because matrices not including

abundance are the same between Fig. 3a, b, c, results

can be directly compared, indicating that the NT
probability matrix when abundance is measured as

density of flowers provides the overall best fit.

Phylogenetic signal.—The independent phylogenetic

signal of the insect phylogeny was weak (da ¼ 0.067)

and its confidence interval overlapped zero (95%

confidence limits: [0, 0.286]). The independent plant

phylogenetic signal was stronger (dp ¼ 0.327) and did

not overlap zero (95% confidence limits: [0.189, 0.532]).

The overall strength of the phylogenetic signal for the

linear model fitted to the actual data (MSEd ¼ 250.05)

was much closer to that found under the assumption of

no phylogenetic covariances (the ‘‘star’’ phylogeny:

MSEstar ¼ 269.29) than for the assumption of

maximum phylogenetic signal (Brownian motion evo-

lution: MSEb ¼ 420.61). Taken together, these results

suggest that only phylogenetic relationships among

plants, not insects, impose some structure on the

interaction matrix Y, but that the overall phylogenetic

signal is extremely weak.

DISCUSSION

We have developed a conceptual and methodological

framework to evaluate the simultaneous contributions

of neutrality, forbidden links and sampling effects on the

structure of mutualistic networks. We have used this

framework to evaluate the influence of relative abun-

dance (neutrality) and spatiotemporal overlap on a

pollination network. Although we have not included

information on phenotypic trait matching and sampling

effects, if available this type of information can be easily

incorporated to our conceptual and methodological

framework. For example, Stang et al. (2006, 2007, 2009)

have derived interaction probabilities based on rules of

phenotypic matching between plants and nectar-feeding

flower visitors. From such information it would be

straightforward to derive a probability matrix to evalu-

ate the relative contribution of phenotypic matching to

the structure of the interaction matrix. Similarly, if

detection probabilities of particular interactions could

be estimated, then a detection probability matrix E

could be incorporated into our framework (our implicit

assumption above has been that all interactions have a

detection probability of one).

One issue we have not been able to solve is how to

incorporate phylogenetic information into our frame-

work. This limitation stems from the difficulty of

predicting interaction probabilities based on the inde-

pendent plant and animal phylogenies, with no reference

to the observed interaction matrix. Current methods for

the detection of a phylogenetic signal in interaction

networks (Ives and Godfray 2006) use a linear model

approach, fitting the phylogenetic variance–covariance

matrix to the interaction matrix, and there is currently

no way of deriving an expected probability matrix based

on the independent phylogenies alone. We hope our

efforts can stimulate others to work out a solution to

this crucial problem.

Using our conceptual and methodological framework,

we have shown that interaction probabilities derived

from abundance and temporal overlap predict very

closely the aggregate properties of a plant–pollinator

network. In contrast, our likelihood analysis shows that

information on abundance and spatiotemporal distribu-

tion falls short of predicting the detailed network struc-

ture, leaving a large amount of variation unexplained.

Thus, although information on abundance and spatio-

temporal overlap allowed us to construct networks with

the same aggregate features of real-world networks, we

failed resoundingly when attempting to delve into the

details of pairwise species interactions, which is arguably

the ecologically and evolutionarily relevant scale of

analysis. Taken together, our results suggest that both

relative species abundance and complementarity in

spatiotemporal distribution contribute substantially to

generate observed network patterns, but that this

information is by no means sufficient to predict the

detailed structure of the interaction network.
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Of course, the above results for the Villavicencio

network are by no means a general evaluation of the

relative contribution of neutrality and forbidden links

to the structure of mutualistic networks. Only future

studies applying our (or a similar) approach to multiple

data sets will allow such general evaluation. Unfortu-

nately, most data sets available to date do not include

the sort of detailed information needed for this

comparison. Clearly, further progress in the under-

standing of the determinants of network patterns

requires spatiotemporally explicit data sets with de-

tailed natural history information that may allow

deriving sensible rules of phenotypic complementarity.

We believe this goal will be facilitated if research efforts

are focused on a sample of representative study systems

with contrasting ecological conditions throughout the

world.
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R functions used for the analysis (Ecological Archives E090-141-S1).

DIEGO P. VÁZQUEZ ET AL.2046 Ecology, Vol. 90, No. 8
R

ep
or

ts


