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We analyze the angular momentum distribution of electrons near threshold in atomic ionization by short
laser pulses. The radial fanlike pattern in the two-dimensional momentum distribution observed in experiments
is controlled by the dominance of a few angular momenta of the order l0. We find a semiclassical expression
for l0 strongly dependent on the quiver amplitude of the detached electron but independent of the atomic
species. The value of l0 can be also related to the minimum number of absorbed photons needed to reach the
threshold. The strongly peaked sub-Poissonian angular distribution precludes a description by a stochastic
random walk model in angular momentum.
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I. INTRODUCTION

As increasingly shorter laser pulses �fs� have become
available, the interaction of few-cycle pulses with matter has
attracted considerable interest. Rudenko et al. �1� and Maha-
rjan et al. �2� presented fully two-dimensional momentum
maps in cylindrical coordinates �kz ,k�� for laser-ionized elec-
trons for different rare gases, displaying a complex pattern.
While at high momenta remnants of above threshold ioniza-
tion �ATI� peaks are visible, near threshold a radial pattern
with a shape of a bouquet has been both experimentally ob-
served and theoretically calculated �3–7�. The origin of near-
threshold structures has only recently been semiclassically
explained in terms of a classical angular momentum �L� dis-
tribution sharply peaked near the quantum number l0 �4�.
Such distribution in the near-threshold continuum results
from the interplay between the laser and the Coulomb fields
�5�. The role of the Coulomb potential on the momentum
spectrum is reflected in the focusing effect �8� and the strong
laser field also influences the tunneling rate �9�. If, in addi-
tion, a multitude of paths reaching all emission angles and
having nearly the same angular momentum L near l0 exists,
an interference pattern in complete analogy to generalized
Ramsauer-Townsend �GRT� diffraction oscillations in
electron-atom �or ion� scattering develops �4�. Clearly, un-
derlying this semiclassical argument is the assumption that l0
is large and well defined only within the residual quantum
uncertainty. Such an analysis implies that the appearance of
the interference pattern is “universal” in the sense that it is
largely independent of the atomic core potential. More re-
cently, the relation between l0 and the minimum number N of
absorbed photons to reach the continuum was empirically
found �6� and explained in terms of a biased random walk
model.

In the present work we extend the study of ionization of
hydrogen atoms by short laser pulses performed in Ref. �4�
to rare gas atoms. We present results of momentum distribu-
tion of emitted electrons by solving the time dependent
Schrödinger equation �TDSE� and analyze the near-threshold

structures for different atomic species of the target. We also
have performed classical-trajectory Monte Carlo calculations
�10� incorporating the tunneling �CTMC-T� through the po-
tential barrier stemming from both nonperturbative Coulomb
and laser field interactions. We find, indeed, that the peaked
angular momentum distribution and the resulting electron
emission pattern are only weakly dependent on the atomic
species. We confirm the empirical relation between l0 and N
and provide a microscopic and quantitative explanation in
terms of the properties of interfering classical trajectories of
electrons in the presence of both the Coulomb and the laser
fields. Atomic units are used throughout.

II. METHOD

The Hamiltonian of an atom interacting with a linearly
polarized laser field within the single electron approximation
is

H =
p�2

2
+ V�r� + r� · F� �t� , �1�

where p� and r� are the momentum and position of the elec-
tron, respectively, V�r� is the atomic central potential, and

F� �t� is the time dependent external field. The laser pulse is
chosen to be of the form

F� �t� = F0 cos2��t

�
�cos��t + �CE�ẑ; − �/2 � t � �/2,

�2�

and zero elsewhere. In Eq. �2�, � is the laser carrier fre-
quency, �CE is the carrier-envelope phase, � is the total pulse
duration, F0 the peak field, and ẑ is the polarization direction.

Different techniques to solve the time-dependent
Schrödinger equation �TDSE� �9,11–16� have been em-
ployed. Approximation methods include semiclassical ap-
proaches �17–19�, the �Coulomb-�Volkov approximation
�5,20,21�, and the CTMC-T method �10,22�. In order to nu-
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merically solve the TDSE we employ the generalized pseu-
dospectral method �23–25�. This method combines a discreti-
zation of the radial coordinate optimized for the Coulomb
singularity with quadrature methods to allow stable long-
time evolution using a split-operator method. Both the un-
bound as well as the bound parts of the wave function ���t��
can be accurately represented. The calculation of the 2D mo-
mentum distribution requires projection of the wave function
���� /2�� after the conclusion of the pulse onto outgoing con-
tinuum functions �11,26,27�

dP

dk�
=

1

4�k	
l

ei�l�k��2l + 1Pl�cos 	��k,l����/2��	2
. �3�

In Eq. �3�, �l�k� is the momentum-dependent atomic phase
shift, 	 is the angle between the electron momentum k� and
the polarization direction of the laser field ẑ. Pl is the Leg-
endre polynomial of degree l, and the partial wave �k , l� is the
eigenstate of the atomic Hamiltonian with positive eigenen-
ergy E=k2 /2 and orbital quantum number l. The atom is
initially in its ground state. Due to the cylindrical symmetry
for a linearly polarized laser field, the projection of the an-
gular momentum onto the polarization axis is a constant of
motion �i.e., the magnetic quantum number m=0�. The dis-
tortion of the momentum distribution due to long-range
final-state Coulomb interactions is fully accounted for in Eq.
�3�.

In order to delineate the classical properties of the strong-
field ionization, we also employ a classical trajectory Monte
Carlo method including tunnel effects �CTMC-T� �10,22�.
The CTMC-T method excludes, because of its classical na-
ture, any true multiphoton absorption process. We choose the
microcanonical ensemble �28� to represent the initial ground
state restricting the projection of the angular momentum L to
the quantization axis, i.e., �Lz��0.5. The distribution in L
will be discussed in Sec. IV. We let the initial ensemble
evolve in time in the presence of the laser pulse by numeri-
cally integrating the classical equations of motion. The elec-
tron is allowed to tunnel through the potential barrier when-
ever it reaches the outer turning point, where pz=0 and
zF�t�
0, with a tunneling probability given by the WKB
approximation �29�. At that moment the electron trajectory
bifurcates: It either tunnels through the potential barrier or
continues inside the potential barrier �for details see �30��.
The bifurcation procedure is repeated at each encounter with
the outer turning point until the end of the pulse for a given
set of initial conditions. We note that since the WKB formula
is strictly valid only for one-dimensional systems, applica-
tion to the 3D problem requires the choice of an appropriate
tunneling path. We choose for the evaluation of tunneling
probability the path across the barrier which maximizes the
tunneling probability on the energy manifold. Hamilton’s
equations of motion must be integrated well beyond t=� /2 in
order to properly account for Coulomb final-state interac-
tions on a classical level. From the classical trajectory distri-
butions, ionization probabilities as well as probability distri-
butions for the angular momenta of the ejected electron are
determined.

III. SEMICLASSICAL ESTIMATES

The range of dominant angular momenta l0 can be deter-
mined semiclassically in the tunneling regime. According to
the CTMC-T calculations, a typical electron trajectory after
tunneling shows a quiver motion along the polarization of
the laser field superimposed on a drift motion following a
Kepler hyperbola with the same final momentum �4�. The
Kepler trajectory corresponds to the electronic motion under
the effect of the atomic potential in the absence of the exter-
nal electric field. To be precise, the emitted electron follows
a Kepler hyperbola only for the case of a pure Coulombic
potential i.e., V�r�=−ZT /r, where ZT is the charge of the
remaining ionic nucleus. The departure of rare gas atomic
potentials from the pure Coulomb potential is confined to a
small region near the nucleus �of about a few atomic units�.
For this reason, only small deviations from the Kepler tra-
jectories can take place. If the classical angular momentum
distribution dP /dL is sharply peaked near l0, and small con-
tributions in Eq. �3� are neglected, it can be easily seen that
the corresponding quantum ionization probability is expected
to be proportional to dP /dk� 
�Pl0

�cos 	��2 giving rise to a
fan-shaped emission pattern with l0 nodal lines. When the
angular momentum distribution is somewhat broader encom-
passing a band of l states with width �l, this pattern will be
distorted but still visible as long as �l is considerably smaller
than l0. The latter follows from the semiclassical limit of the
Legendre polynomials, Pl0

�cos 	��cos�l0	�.
Semiclassically, the oscillatory pattern results from inter-

fering trajectories released at different times �near different
extrema of the laser field� reaching the same asymptotic
branch of the Kepler hyperbola. The number of quiver oscil-
lations along the Kepler orbit reaching the same asymptote is
not unique, thus allowing for path interferences. As the an-
gular momentum of the Kepler hyperbola is identical to that
of the asymptotic angular momentum L of the laser-driven
electron, we can identify the pericenter of the hyperbola �31�
with the quiver amplitude, �= ��ZT

2 + �kL�2−ZT� /k2, with �
=F0 /�2 and ZT the asymptotic charge of the atomic poten-
tial. This identification results in a simple and fit-parameter
free relation between the classical angular momentum L and
quiver amplitude �,

L�k� = �2ZT� + �2k2�1/2. �4�

When we consider electrons with zero final kinetic energy �at
threshold�, Eq. �4� reduces to

L0 = L�0� = �2ZT��1/2. �5�

Identifying the classical angular momentum with the orbital
angular momentum quantum number, i.e., L� l+1 /2, the
number of quantum interference minima in the angular dis-
tribution near threshold can be predicted. The simple classi-
cal formula �Eq. �5�� predicts a “universal” L0 value irrespec-
tive of the atomic species provided that the long range
Coulomb force dominates. Only the net charge ZT and the
quiver amplitude enters. Two limitations of Eqs. �4� and �5�
should be emphasized: �i� the classical expression does not
consider discrete parity selection rules that may favor even
or odd l0; and moreover, �ii� L0 is a real number while l0 is
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restricted to integers. Therefore, Eq. �5� can be expected to
be valid within the quantum “binning” of classical angular
momenta L0
1. In the semiclassical limit L
 l�1, discrete-
ness becomes negligible.

Recently, an empirical relation between the dominant l0
and the minimum number N of photons needed for ionization
was established �6�. Such a description involves explicitly a
multiphoton absorption picture. This model involves a dis-
crete walk in angular momentum space. A similar random
walk model for the production of high l states has been pre-
viously proposed for multiple charged-particle scattering in
ion-solid collisions �32�. Underlying such a model is a Pois-
sonian random process described by a Fokker-Planck equa-
tion. Accordingly, l0 can be associated with either the peak
value or, alternatively, the first moment of the resulting dis-
tribution function pl after N photons have been absorbed.

It is now instructive to combine a multiphoton analysis
with the semiclassical description of the angular momentum
distribution. The only dependence of the dominant angular
momentum at threshold on the minimum number of ab-
sorbed photons to reach the continuum, N, results from con-
servation of energy,

EN − E0 = N� − Up, �6�

where Up= �F0 /2��2 is the ponderomotive energy, and E0 is
the energy of the initial atomic state �the ground state in our
case�. For electrons at threshold, the minimum energy trans-
fer required for ionization vanishes, i.e., EN=0, and, there-
fore, the following relation between �, F0, E0, and N

0 = N� − � F0

2�
�2

+ E0 �7�

is obtained. The cubic equation in � �Eq. �7�� has only one
real root �0, which is given in terms of F0, E0, and N by

�0�F0,E0,N� =
1

6N
�− 2E0 +

4E0
2

A1/3 + A1/3� �8a�

with

A = 27N2F0
2 + 8E0

3 + 3�3NF0
�27N2F0

2 + 16E0
2. �8b�

Inserting Eq. �8a� into the quiver amplitude �
=F0 / ��0�F0 ,E0 ,N��2, and the latter into the expression for
the classically dominant angular momentum �Eq. �5��, we
arrive in turn at

L0�F0,E0,N� =
�2ZTF0�1/2

�0�F0,E0,N�
. �9�

Equation �9� provides a fit-parameter–free analytical expres-
sion for the dominant angular momentum L0 as a function of
the minimum number of photons N needed to reach the con-
tinuum. In Eq. �9� the angular momentum L0 depends, in
addition to N, also on the laser field strength F0 and the
initial state energy E0. Note that apart from E0, the properties
of the atomic species do not enter.

IV. RESULTS

In Fig. 1 we show the two-dimensional momentum distri-
bution, d2P

dk�dkz
=2�k�� dP

dk�
�, for photoionization of atomic hy-

drogen �Fig. 1�a�� and argon �Fig. 1�b��. For the case of
atomic argon, as we investigate single ionization processes,
we reduce the multi-electron to a single active electron prob-
lem, i.e. only one electron is treated explicitly, while the rest
of the electrons remain frozen. For this purpose we use a
model potential in order to describe the interaction between
the active electron with the rest of the ionic core. We chose
the potential proposed by Muller �33� in Eq. �1� as it yields
to the experimental binding energies of the ground and ex-
cited states of the Ar atom. The Keldysh parameter is defined
as �=�Ip /2Up, where Ip is the ionization potential of the
atom and Up=F0

2 /4�2 the ponderomotive energy. Resonant
and nonresonant ionization has been thoroughly investigated
from both the experimental and theoretical point of view for
the case of Ar for infrared pulses in Ref. �16�. We consider in
the following few cycle pulses, where Fourier broadening
suppresses resonant excitation �34�. Note also that for the
parameters of Fig. 1, the Keldysh parameter is low ��
=0.76 and 0.82 for hydrogen and argon� favoring nonreso-
nant tunnel ionization. One point to be noticed in Fig. 1 is
the similarity of the doubly differential momentum distribu-
tions for the two different atomic targets �hydrogen and ar-
gon�. Both frames in Fig. 1 display complex interference
patterns characterized by a transition from a ring-shaped pat-
tern at larger k=�kz

2+k�
2 with circular nodal lines to a very

different pattern of pronounced radial nodal lines for small k
near threshold. The ring pattern is reminiscent of ATI peaks
of the multiphoton regime ���1� and the bouquet-shaped
radial nodal line develops inside the first ATI ring. The 2D
momentum distributions in the transition regime ��
1� ex-
hibit evidences of both multiphoton transitions �at high k�
and tunneling ionization �at low k�.

In order to analyze the origin of the near-threshold pattern
in more detail, we determine the distribution of contributing
partial waves pl within the first ATI ring, i.e., the partial
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FIG. 1. �Color online� Doubly differential momentum distribu-
tions in cylindrical coordinates �kz ,k�� of electrons in photodetach-
ment from �a� H and �b� Ar. The parameters of the laser field are
�CE=0, �=0.057, F0=0.075, and �=882 �in a.u.�.
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ionization probability with orbital quantum number l up to
the first minimum in the momentum � �4�,

pl = �
0

�

kdk��k,l������2. �10�

The value of � can either be obtained graphically from the
distribution of emitted electrons �Fig. 1� or numerically from
the midpoint energy between first and second ATI in the
continuum, i.e., �2 /2= �EN+EN+1� /2, where EN is given by
Eq. �6�. In our case ��0.3 and 0.2 for the case of hydrogen
and argon, respectively.

In Fig. 2 we show the partial-wave distributions obtained
from the TDSE calculations where we have used the pre-
scription L= l+1 /2. We can observe in Fig. 2 that the partial-
wave distributions near threshold peak at l0=7 for both hy-
drogen and argon cases. This is in excellent agreement to the
prediction for L=6.8 from Eq. �4�, which is the lower limit
of the predicted L range shown in both Figs. 2�a� and 2�b�.
The upper limits of the range correspond to the value L���
calculated through Eq. �4�. The pl distribution exhibits a
quantitative similarity between the emission pattern for hy-
drogen and argon more clearly than the qualitative resem-
blance of the doubly differential momentum distribution. For
the case of hydrogen the number of minima in the angular
distribution �Fig. 1�a�� is equal to the value of the dominant
angular momentum, i.e., l0=7 �L0=7.5�. In turn, for the case
of argon �Fig. 1�b�� the angular distribution corresponds pre-
dominantly to the coherent sum of two Legendre polynomi-

als of degree 6 and 7 resulting in a slight blurring of the
nodal lines.

In order to highlight the underlying classical dynamics,
we include in Fig. 2 results of the CTMC-T calculations for
both hydrogen and argon. The continuous quasiclassical an-
gular momentum distribution dP /dL reproduces the discrete
TDSE pl distributions very well for hydrogen and argon
within the limits of quantum discreteness. We employ for
both hydrogen and argon the same initial microcanonical en-
semble with L unrestricted. The latter is not unambiguous for
Ar �ground state configuration 2p6�. We have verified that the
unrestricted ensemble reproduces, apart from discrete multi-
photon peaks, the quantum photoelectron spectrum remark-
ably well �Fig. 3�. A simulation restricting L to 1�L�2
shows poor agreement with the quantum spectra and pro-
vides independent support for the unrestricted microcanoni-
cal ensemble. Not only the position of the maximum in pl but
also the narrow width of the distribution is accounted for by
the CTMC-T �Fig. 2�. This is an indication that in this regime
the atomic ionization is dominated by a tunneling process, in
line with a Keldysh parameter smaller than one for both hy-
drogen and argon cases.

The width of the l-distribution can also be used to test the
random walk model for the angular momentum distribution.
The peak �or most probable� value l0 ��1� is in this context
viewed as the result of a sequence of a large number of
randomly angular momentum changing photoabsorption pro-
cesses �6� assuming a stochastic uncorrelated multiphoton
process. In the present case of multiphoton absorption, one
electron with orbital quantum number l can absorb a photon
and consequently undergoes a transition l→ l+1 with a prob-
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ability p+ or a transition l→ l−1 with a probability p−, ac-
cording to the dipole coupling. It is well known that single
photonabsorption leads to a preference of populating higher
angular momentum states in excitation processes. This cor-
responds to a biased random walk. A total number of N
=17 and 18 photons is needed to reach the continuum for the
cases of Fig. 2�a� in hydrogen and Fig. 2�b� in argon, respec-
tively. Therefore, according to the selection rule �l= 
1,
and considering that the ground state for hydrogen is an s
state and for argon a p state, only odd partial waves are
populated, as shown in Figs. 2�a� and 2�b�. For the first mo-
ment, reasonable agreement with the TDSE result can be
found by choosing suitable values for p+ and p−. Indeed,
choosing p+=2 /3 and p−=1 /3 the peak position l0 can be
well reproduced �Fig. 2�. However, in a Poissonian random
walk process, the first and second moments, or equivalently,
the peak position l0 and the width � of the angular momen-
tum distribution are interrelated and both are proportional to
N �the number of steps of the random walk�. Consequently,
we find a broad pl distribution �Fig. 2� at variance with both
the TDSE and the quasiclassical CTMC-T results. The latter
clearly shows the sub-Poissonian nature of the interaction
process proper of the tunneling regime for Keldysh param-
eters near unity.

In Fig. 4 we plot the dominant angular momenta L0= l0
+1 /2 of different exact TDSE calculations �3,4,6,7,11,16� as
a function of the quiver amplitude � for different atomic
species �H, Ar, Ne, He, and Xe� and compare them to our
semiclassical prediction for L �Eq. �4�� where we include
also the uncertainty of the classical description due to the
quantum discreteness �L
1� discussed above as the shaded
area. Very good agreement is observed. The similarity of the
dominant angular momenta for the different atomic species
confirms the minor influence of the details of the core poten-
tial on the emission distribution. Only the asymptotic charge
ZT is relevant since after tunneling the continuum electron

propagates at large distances from the nucleus where the
combined laser and asymptotic Coulomb fields determine the
trajectory. Note that in the energy regime considered rescat-
tering is not important.

The dependence of the dominant angular momentum on
the minimum number of photons to reach the continuum for
two different values of the peak electric field, i.e., F0=0.03
and 0.1 �Eq. �9�� is displayed in Fig. 5 for both hydrogen and
argon. We compare to results of the TDSE calculations of
Fig. 4 for hydrogen and argon, which were performed for
laser fields between the values: F0=0.03 and 0.1. The agree-
ment is, overall, very good. Note, however, that such a semi-
classical estimate is expected to break down when only few
�of order unity� photons are needed for ionization.

V. CONCLUSIONS

In conclusion, for photoionization of atoms by few-cycle
laser pulses, we have shown that doubly differential momen-
tum distributions near threshold exhibit a radial nodal struc-
ture that results from peaked partial wave distribution pl near
a particular angular momentum l0. We prove that for the
Keldysh parameters used here ���1� the narrow angular
momentum distribution near threshold is the result of a tun-
neling process at variance with a broad Poissonian distribu-
tion resulting from a Poissonian random walk model. The
narrow angular distribution is governed by predominantly
one �or very few� partial waves, dP /d cos 	��Pl0

�cos 	��2.
This relation is reminiscent of generalized Ramsauer-
Townsend diffraction oscillations �35�. As in the case of
electron-ion scattering theory, it results from the existence of
interfering paths under the influence of two competing
forces, which are in the present case the atomic Coulomb
potential and the electric field of the laser. We find that the
dominant angular momentum near threshold depends
strongly on the laser frequency and peak field but not on the
atomic species. Within a semiclassical description we have
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derived an analytic expression for the dominant angular mo-
mentum of slow electrons, which depends only on the quiver
amplitude, or equivalently, on the ionization potential, the
laser field amplitude, and the number of photons required for
ionization and is largely independent of the atomic species of
the target. This universal expression predicts the dominant
angular momentum L0 in excellent agreement with TDSE
calculations for a variety of atomic targets.
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