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One of the most surprising mechanisms to explain the symmetry breaking

phenomenon linked to pattern formation is known as Turing instabilities.

These patterns are self-organising spatial structures resulting from the

interaction of at least two diffusive species in specific conditions. The

ideas of Turing have been used extensively in the specialised literature

both to explain developmental patterns, as well as synthetic biology

design. In the present work we study a previously proposed

morphogenetic synthetic circuit consisting of two genes controlled by

the same regulatory system. The spatial homogeneous version of this

simple model presents a rich phase diagram, since it has a saddle-node

bifurcation, spirals and limit cycle. Linear stability analysis and numerical

simulations of the complete model allow us to determine the conditions for

the development of Turing patterns, as well as transient patterns. We found

that the parameter region where Turing patterns are found is much smaller

than the region where transient patterns occur. We observed that the

temporal evolution towards Turing patterns can present one or two

different length scales, depending on the initial conditions. Further, we

found a parameter region where the persistence time of the transient

patterns depends on the distance between the parameters values on

which the system is operating and the boundary of Turing patterns. This

persistence time has a singularity at a critical distance that gives place to

metastable patterns. To the best of our knowledge, transient and metastable

patterns associated with Turing instabilities have not been previously

reported in morphogenetic models.
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1 Introduction

Pattern formation in morphogenetic system is one of the central problems in

developmental biology. One of the best-known mechanism of autonomous pattern

formation is the Turing instability. This symmetry breaking mechanism was

introduced in 1952 by Alan Turing in the context of models for morphogenesis [1].

The basic idea is that Turing instability arises from the coupling between diffusion and

reaction which can destabilize spatially homogenous equilibrium and lead to the

formation of patterns. The minimum biological system able to present Turing
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instabilities consists in only two interacting diffusible

components: an activator with a slow diffusion rate and an

inhibitor with a fast diffusion rate [2].

There is a large body of literature focused on the mechanism

proposed by Turing to explain the patterns of self-organization

during the animal development [3–11]. However, the

identification of the molecular agents driving Turing patterns

remains an unsolved issue in most cases.

Thanks to recent progress in synthetic genetic circuit

engineering, several researchers have embarked on the

implementation of Turing ideas on cell culture [12–17]. To

engineer such biological systems, one needs to know the

mandatory properties and genetic circuit that support the

biological patterning process. It is well known that two key

factors underlying the Turing model are the differential

diffusion between activator and inhibitor, and also the non-

linearity in the reactive terms. In addition, it has been shown that

the latter can be as important as the differential diffusion [18, 19].

In this sense, a Turing model has been proposed where the

activator and inhibitor are under the control of the same

promoter, a simplification that can be exploited in the design

of synthetic morphogenetic circuits. This biological

simplification allows a mathematical analysis which has

highlighted the role of cooperative regulation as source of

non-linearity [18]. However, beyond this contribution, the

single-promoter model has not been explored to its full

potential in either theoretical or experimental studies. In this

paper we present a deep theoretical analysis of this simple model

and report that it has a rich phase diagram that include: saddle-

node, limit cycles and Turing patterns. We also observe transient

patterns, driven by Turing instability, which hereafter will be

referred to as transient Turing patterns. Previous reports about

transient Turing patterns have been done in the context of closed

systems, when chemical species are being consumed [20–22] and

for noise-driven stochastic patterns in a multicellular

cyanobacterial organism [23]. Moreover, out of the reaction-

diffusion context, transient Turing patterns have been reported

in a neural field model of working memory [24]. Except for the

last case, the reaction-diffusion systems associated with transient

Turing patterns are composed by several species, which posses

the additional challenge to derive analytical predictions or to

associate a phase diagram to study them. On the other hand, the

present model can be associated with biological systems [25, 26]

and the analysis of the associated reaction-diffusion equations are

feasible for some values of the Hill exponent of regulatory

function. The present results show that in this model the

transient patterns are due to the presence of a saddle node

which have associated spatial modes with no-null

amplification rate. Patterns initiated around this steady state

can experiment a transition to Turing pattern associated with a

stable steady state, or disappear. The existence of transient

patterns brings with it the question of their persistence. This

question is especially important given that in the biological

context Turing patterns are associated with spatial

distributions of molecules that induce morphogenetic

processes whose time scales must be finely orchestrated.

Interestingly, we observe that the persistence time of the

transient patterns suffers a critical transition when parameters

values approaches at a critical distance of the boundary that

separate Turing stable patterns. This critical distance defines a

region for metastable patterns, where the spatial pattern remains

stable over large time scales while no disturbances operate.

Metastable transient patterns have been previously reported in

the context of 1D reaction-diffusion systems [27, 28]. To the best

of our knowledge, metastable Turing patterns are a novel feature

as far as morphogenetic models are concerned, because are

related to unstable nodes, which have not been considered in

previous studies on Turing instability.

2 The morphogenetic model

The minimum biological system able to present Turing

instabilities consists of two interacting diffusible proteins,

named morphogens. In the case of the model considered here,

the self-activating morphogen A also activates the morphogen H,

which in turn inhibits both morphogens (see the sketch in

Figure 1A). The activator and the inhibitor morphogens are

coupled through the regulatory functions associated with the

genes that encode them. The regulatory functions describe

mathematically how the protein synthesis rate depends on the

concentration of activators and inhibitors. A morphogenetic

model was recently introduced which considers that both

morphogens are regulated by the same promoter [18]. That

means that regulatory functions that control the synthesis rate

of both morphogens will be the same. Thus, in this case, the

temporal evolution of the system is described by a couple of

reaction-diffusion equations of the form.

za

zt
� Da∇

2a + ρaf a, h( ) − μaa (1)
zh

zt
� Dh∇

2h + ρhf a, h( ) − μhh, (2)

Where a (x, t) and h (x, t) denote the concentration of the

activator A and the inhibitor H, respectively, as a function of

spatial position and time. The last term on the right hand side of

each equation describes the degradation process and was

assumed to be linear. The function f corresponds to the

regulatory function that controls the expression of both

activator and inhibitor. As in the previous study [18], we

consider a sigmoidal regulatory function where activator and

inhibitor compete for the same regulatory site in the form:

f a, h( ) � anH

1 + h/kh( )nH + a/ka( )nH , (3)
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where nH is the Hill exponent that describes the steepness of the

sigmoidal function (considered equal for both activator and

inhibitor), while ka and kh are related to the effective dissociation

constant for the activator and inhibitor, respectively. However, non-

competitive regulatory function can also be used [29, 30]. At this

point it is convenient to introduce dimensionless variables for time t̂,

position x̂, and the concentrations â and ĥ as follow:

x̂ � x
������
μa/Dh

√
, t̂ � tμa, â � a/ka, ĥ � h/kh.

To simplify the notation we introduced the abbreviations d = Da/

Dh, μ = μh/μa, ra � ρak
n−1
a /μa and rh � ρhk

n
a/(μakh). Thus, Eqs. 1,

2 can be rewritten as:

zâ

zt
� d∇2â + F â, ĥ( ), (4)

zĥ

zt
� ∇2ĥ + G â, ĥ( ). (5)

Where.

F â, ĥ( ) � raf â, ĥ( ) − â, (6)
G â, ĥ( ) � rhf â, ĥ( ) − μĥ. (7)

Next, we carried out a detailed mathematical analysis of local

stability of this dimensionless model for the case without

diffusion. After that, we presented the Turing-instability

conditions. From now on we will write new variables without the

FIGURE 1
Bifurcation diagram and nullclines, (A) Schematic representation of the two-component system, A is the activator morphogene (activates both
reactants), H is the inhibitormorphogene (inhibits both reactants). (B) Bifurcation diagram showing the behavior of concentrations a (blue) and h (red)
as a function of μ, with ra=10 and rh=5. The trivial fixed point S0=(0,0) is present for all μ values. The saddle-node bifurcation atμ= μc ≈0.10marks the
emergence of two new fixed points (S1 and S2). Continuous and dashed curves represent respectively regions of stable and unstable steady state
solutions. Black vertical dashed lines refer to μc and the stability of steady-state S2, indicating regions of unstable node (white area, where TrA <0,
detA >0 and Δ >0), unstable spiral (green area, where TrA <0, detA >0 and Δ <0) and stable spiral (yellow area, where TrA >0, detA >0 and Δ <0). For
μ = μ2 the system displays a limit cycle (TrA =0 and detA >0). For visualisation in the phase diagram, see horizontal line in Supplementary Figure S1B.
(C) Black and grey curves represent F andG functions (nullclines) for the parameters value (μ, ra, rh)=(0.24,10,5) (S2 is an unstable spiral). (D)Nullclines
for the parameters value (μ, ra, rh)=(1,10,5) (S2 is a stable node). Red points represent fixed points.
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hat in order to simplify the notation. The Hill exponent on the

regulatory function f is usually associated with the number of

regulatory sites in the promoter, but as a consequence of the

finite free energy involved in the interaction between regulators

molecules [31, 32], the exponent is not an integer number. Despite

that, hereafter we set nH = 2 for mathematical convenience since it

allows the derivation of analytical expressions which will help to

obtain the results on the next Section.

3 Results

3.1 Stability analysis for the non-spatial
model

In order to determine the general conditions for diffusion-

driven instabilities, it is necessary to study the temporal evolution

of the diffusion-less system:

za

zt
� F a, h( ), (8)

zh

zt
� G a, h( ). (9)

The homogeneous steady states S = (ass, hss) system of (Eqs. 8,

9) are the positive solutions of equations F (ass, hss) = 0 andG (ass,

hss) = 0. The system can present up to three fixed points: the

trivial solution S0 = (0, 0), and two non-trivial solutions,

identified as S1 = (a1, h1) and S2 = (a2, h2) with.

a1 �
μ2r3a − μra

����������������
μ2r4a − 4 μ2r2a + r2h( )√

2 μ2r2a + r2h( ) , h1 � a1
rh
μra

, (10)

a2 �
μ2r3a + μra

����������������
μ2r4a − 4 μ2r2a + r2h( )√

2 μ2r2a + r2h( ) , h2 � a2
rh
μra

. (11)

The non-trivial steady-states, S1 and S2, are real in a parameter

region defined by

μ2r4a − 4 μ2r2a + r2h( )> 0. (12)

Hence, μ2c r
4
a − 4(μ2c r2a + r2h) � 0 defines a surface in the parameter

space where a saddle-node bifurcation is found. In that way, for

fixed values of ra and rh, it is possible to define a critical value

for μ

μc �
2rh
ra

�����
1

r2a − 4

√
with ra > 2. (13)

For μ > μc the three steady-states are real, while for μ < μc only the

trivial one is found. For μ = μc the two non-trivial solutions merge

together (see Figure 1B). Similarly, we can obtain analytical

expressions for critical values of ra and rh as a function of the

remaining parameters.

In Figure 1B it is possible to appreciate the activator and

inhibitor concentrations as a function of μ for the three steady

states, when ra and rh are kept as constants. Note that μ = μc is a

saddle-node bifurcation and the non-trivial stead-states S1 and S2
are present only for μ > μc. Similarly, Supplementary Figure S1A

shows a and h as a function of rh keeping constants μ and ra.

Supplementary Figure S1B depicts a stability phase diagram for

S2 in the plane μ-rh with ra = 10, where the different regions of

stability are indicated by colors. Horizontal dashed line shows the

section of the parameter region explored in Figure 1B (ra = 10

and rh = 5), with dots indicating the dashed lines of Figure 1B.

Vertical dashed line shows the section of the parameter region

explored in Supplementary Figure S1A.

Typical phase planes can be seen in Figures 1C,D, for

different values of μ. Note that increasing μ brings S0 and S1
closer together, as it can also be seen in Figure 1B.

Linearising the system about the steady-states S = (ass, hss) it

is possible to determine the stability of each state S. Therefore, we

define

v � a − ass
h − hss

( ). (14)

For the case of |v| small, it is possible to approximate Eqs. 8 and

9 as

zv
zt

� Av, A � Fa Fh

Ga Gh
( )

ass,hss

(15)

where A is the Jacobian matrix, with Fa � zF
za, Fh � zF

zh, Ga � zG
za

and Gh � zG
zh. Where the partial derivatives of F and G are

evaluated at the steady-state S = (ass, hss) under consideration.

For each steady state, the eigenvalues are given by

λ1,2 � 1
2

TrA ±
��
Δ

√[ ], (16)

with Δ � (TrA)2 − 4detA. Following Routh–Hurwitz criterion, a

fixed point is linearly stable if the real part of the eigenvalues of

the associated Jacobian matrix A are negative. According to Eq.

16 this is guaranteed if

TrA< 0 and detA> 0. (17)

The trivial steady-state S0 is always a stable node, whereas S1
is an unstable saddle-point for the parameter region delimited by

the inequality (Eq. 12). S2 has a more intricate behaviour, as it is

discussed below.

The stability of S2 depends on the values of ra, rh and μ, as

shown in Figure 2A. As it can be seen, the region where S2 is

stable becomes smaller as the inhibitor production rate rh
increases. On the other hand, this region rises with the

activator production rate ra and the relative degradation rate

μ. We observe that a and h concentrations in S2 can present

oscillations, which can be stable or unstable (see Figure 2B).

Interestingly, in the region of unstable spirals (where TrA > 0 and

Δ < 0), oscillations drive the system to the trivial steady-state S0
(see Figure 2C and the phase-plane of Figure 1C). Otherwise,
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when TrA < 0 (with Δ < 0) the stable spirals around S2 are

damped until the system reaches the stable steady-state (see

Supplementary Figure S1C). On the boundary of unstable and

stable spirals, when Reλ = 0 and Imλ ≠ 0 (TrA = 0 and detA > 0),

a stable limit circle is found, as shown in Supplementary Figure

S1D. The rich behaviour of the system around S2 can also be seen

in the μ-rh phase diagram of Supplementary Figure S1B: four

regions indicate when S2 is an unstable node, unstable spiral,

stable spiral or stable node. Besides, the saddle-node bifurcation

line and the limit-circle line are shown.

In Figure 1B the stability of S2 for increasing μ is presented: it

changes from an unstable node to unstable and stable

oscillations. In the phase-plane of Figure 1C, S2 is an unstable

spiral while for Figure 1D it is a stable node. The stability of S2 as

a function of rh is shown in Supplementary Figure S1A. In this

case, greater values of rh lead the system towards instability. The

points μ = μc and rh = rhc shown respectively in Figure 1B and

Supplementary Figure S1A, where S1 = S2, are saddle points.

3.2 Conditions for Turing patterns

As it was mentioned in the previous section, the fixed point S2 is

stable in a region of the parameter space. The addition of diffusive

terms to the system of (Eqs. 8, 9) can destabilise the spatially

homogeneous equilibrium and lead to the formation of patterns,

known as Turing patterns. To obtain the mathematical conditions

for Turing instability let us consider a one-dimensional version of

Eq. 15, that includes the diffusive process,

zv
zt

� A v +D
z2v
zx2

, D � d 0
0 1

( ), (18)

FIGURE 2
Stability and instability of the fixed point S2. (A) Yellow volume delimits, in the parameters space (μ, ra, rh), the region where the steady state S2 is
stable. (B) The green region corresponds to the values of the parameters where the system develops a spiral source behaviour in the steady state S2
(see panel C), while in the yellow region there is a spiral sink behaviour at S2. Only at the interface of these two regions does the system exhibit a limit
cycle. (C) Example illustrating of unstable oscillatory behaviour for a and h, as function of time, for (μ, ra, rh)=(0.24,10,5), the amplitudes increase
until they reach the stable trivial fixed point S0.
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and the boundary conditions. We are interested in the zero-flux

boundary condition, i.e., that morphogens cannot diffuse beyond

the boundaries [0,L]. This implies that the wave number k of

solutions of Eq. 18 takes discrete values kn = nπ/L, with n = 0, 1, 2,

. . .. As usual, the steady solution S is perturbed with

δn(x, t) � (δa, δh)e(ωt−iknx). Substituting v � δn(x, t) in Eq. 18

we obtain

ωδn � Aδn −Dk2nδn. (19)

The perturbation δn(x, t) can be different from zero (non-trivial

solution), if and only if

det ωI − A +Dk2n( ) � 0. (20)

Therefore, for the stable homogeneous state to

become unstable upon perturbation δn it is required that

Re(ω) > 0. This is fulfilled if any of the conditions below are

satisfied

Tr A − k2nD( )> 0 (21)
det A − k2nD( )< 0 (22)

As (Eq. 21) is never true for a stable fixed point, the only

necessary condition is (Eq. 22). Taking into account that

detA > 0 on stable fixed point, condition (Eq. 22) implies in

Fa + d Gh > 0. (23)

The condition for a non-trivial solution Eq. 20 leads to the

relation of the eigenvalues as function of the wave number k,

knows as dispersion relation

ω± k( ) � −α k( ) ±
������������
α k( )2 − 4β k( )

√
2

, (24)

where α(k) and β(k) are functions of k2 and given by

α k( ) � d + 1( )k2 − TrA, (25)
β k( ) � d k4 − Fa + d Gh( )k2 + det A, (26)

where the partial derivatives of F and G are evaluated at the

steady-state S under consideration. In the following we will

consider only the dispersion relation ω+ because ω− is negative

in the parameter region of interest.

Furthermore, we are looking for positive k2 such that β(k) < 0

for some nonzero k. Thus it is necessary that the minimum of β

be negative. By differentiating with respect to k2 we obtain that

the minimum of β is at k2min � (Fa + d Gh)/2d, and the condition
for β negative can be written as:

Fa + d Gh( )2 > 4d detA. (27)

Thus, the necessary and sufficient conditions for Turing

instability can be summarised by the conditions for the

existence of a stable homogeneous state in the absence of

diffusion (Eq. 17), and conditions (Eq. 23) and (Eq. 27). These

four conditions determine that the system will develop Turing

patterns when a stable fixed point is disturbed by a

perturbation with a certain wave number.

Figure 3A depicts the region of the parameter space

spanned by parameters μ, ra and rh where the reaction-

diffusion system of (Eqs. 8, 9) satisfies the conditions for

Turing instabilities for d = 0.01. However, we observe that

some perturbations can also propagate even when the fixed

point in question is unstable, given rise in this case to

transient patterns, or transitions between spatial patterns

with different wave numbers. To analyse this aspect lets us

remark that the temporal evolution of a spatial perturbation

is dominated by the value of the wave number associated with

the largest amplification rate, i.e., k value which maximises

ω+(k). This wave number, denoted here by kmax, is related to

FIGURE 3
3Dparameters space. (A)Blue volumedelimits, in the space spannedbyparameters (μ, ra, rh), the regionwhere the four Turing conditions are verified for
steady state S2. (B) Red volume delimits, in the space spanned by parameters (μ, ra, rh), the region where k2>0 and ω >0 for the steady state S1.
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the size of the emergent pattern, and the characteristic

pattern size is given by π/kmax. Note that spatial patterns

will be developed when k2max and ω+(kmax) are positive. In

fact, these conditions are implicit in the derivation of Turing

conditions (Eq. 23) and (Eq. 27). Therefore, referring to the

stable fixed point S2, the parameter region where k2max and

ω+(kmax) are positive is the same that the region where the

four Turing conditions are verified, and will be denoted by R2

(Figure 3A). On the other hand, the parameter region where

k2max and ω+(kmax) are positive for the unstable saddle-point
S1, gives a finite region showed in Figure 3B, and will be called

R1. In region of overlap between R1 and R2, there are two

characteristic pattern sizes related to the unstable and stable

fixed points S1 and S2, respectively. Depending on the initial

conditions, unidirectional transitions between spatial

patterns with different wave numbers are expected.

Furthermore, in the region of R1 that extends beyond of

R2, we expect to observe transient patterns related to the

unstable fixed point S1. In the next subsection we will

exemplify these possibilities by numerical simulations

considering a diffusion rate value of d = 0.01 in all cases.

For the sake of simplifying the notation, hereafter, the

expression ω+(kmax) computed over steady state Si will be

denoted by ω(Si).

FIGURE 4
Different spatial scales. (A) 2D phase diagram shows the parameters region where the system presents stable Turing patterns (blue area) and
unstable or transient Turing patterns (red area) for ra=6.0. Black dots correspond to different triplet of parameters values (μ, ra, rh) where numerical
simulationwere performed:P1=(1.0,6,10),P2=(1.2,6,10) in the Turing pattern region,P3=(1.5,6,10),P4=(3.0,6,10) in the transient Turingpattern region, and
P5=(5.0,6,10) in the region for uniform distributions. (B) 1-D numerical simulations showing the temporal evolution of activator concentration
distribution a for parameters value P2 with two different initial conditions. Top (bottom) panel corresponds to the temporal evolutionwhen fixed point S1
(S2) is perturbed by a small perturbation at x =40, note the different spatial scales of patterns on the panels. The temporal evolution of a for parameters
values P1, P3 and P5 are shown in Supplementary Figure S2. (C) 1-D numerical simulations showing the temporal evolution of a for parameters values P3
(top panel) and P4 (bottom panel) when the same fixed point S1 is perturbed at x = 40. (D) Red and blue surfaces correspond to ω-value as function of μ
and rh associatedwith fixed points S1 and S2, respectively. (E) k

2-values as functionofμ and rh associatedwith S1 (red surface) and S2 (blue surface). In both
panels D and E, ra =6.0, and the red and blue dots indicate ω and k2 values for P1, P2, P3 and P4 in each case.
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3.3 Stable and transient Turing patterns

To illustrate some features of stable and transient Turing

patterns, we perform 1D simulations of the reaction-diffusion

equations at different values of the parameters μ, ra and rh. In

Figure 4A we superpose Figures 3A,B on the plane spanned by

parameters μ and rh for ra = 6. In this way, we identify the

region where stable Turing patterns are found (overlap

between R1 and R2, light blue); and the region where only

transient patterns are observed (R2, red). Black points in the

plane correspond to parameter values used in different

numerical simulations. Figure 4B depicts the Turing

patterns developed by the activator, for parameters (μ, ra,

rh) = (1, 6, 10). In both simulations the spatial perturbation is

the same, ∝ exp [ − (x − 40)2/0.25], however the simulations

differ in the initial spatial distribution to be perturbed. The top

panel of Figure 4B corresponds to a perturbation of

homogeneous distribution associated with the fixed point

S1 (saddle node), while the bottom panel corresponds to a

perturbation of homogeneous distribution associated with the

stable fixed point S2. In the first case the system develops

quickly a central pattern, with small wave number. Over time,

the ridges split in two, increasing the wave number of the

pattern. These splits evidence the transition to a stable Turing

pattern with the same wave number as that observed in the

bottom panel. We also see in Figure 4B that the amplification

FIGURE 5
Different time scales. (A) 2D phase diagram shows the parameters region where the system presents stable Turing patterns (narrow blue area)
and unstable or transient Turing patterns (blue area) for ra =2.5. Black dots correspond to different triplet of parameters values (μ, ra, rh) where
numerical simulation were performed: P1=(3.9,2.5,7), in the Turing pattern region, P2=(4.1,2.5,7) and P3=(5.0,2.5,7) in the transient Turing pattern
region. The crosses indicate parameters values used on Figure 6. (B) 1-D numerical simulations showing the temporal evolution of activator
concentration distribution a for parameters value P1 with two different initial conditions. Top (bottom) panel corresponds to the temporal evolution
when fixed point S1 (S2) is perturbed by a small perturbation at x =40, note the different timescales on the panels. (C) 1-D numerical simulations
showing the temporal evolution of a for parameters values P2 (top panel) and P3 (bottom panel) when the same fixed point S1 is perturbed at x =40,
note the different timescales on the panels. (D) Red and blue surfaces correspond to ω-value as function of μ and rh (ra =2.5) associated with fixed
points S1 and S2, respectively. (E) k

2-values as function of μ and rh associated with S1 (red surface) and S2 (blue surface). Red and blue dots indicate k2

values for P1, P2 and P3 in each case.

Frontiers in Physics frontiersin.org08

Guisoni and Diambra 10.3389/fphy.2022.927152

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.927152


rate of the perturbation of S2 is lower than in the case where S1
is perturbed.

We also perform numerical simulations in the region of

transient patterns for μ = 1.5 and 3.0 (top and bottom panels of

Figure 4C), when a small perturbation is applied on fixed point

S1. In these cases the system makes a transition to a stable

homogeneous distribution associated with state S2. These

transitions occur in a spatially heterogeneous manner, as long

as ω(S1) and k2max computed over S1 are positive. One can also

note in Figure 4C that the decay times to homogeneous state S2 in

top panel is lower than in bottom panel. This aspect will be

discussed in the next section. Illustrative simulations,

corresponding to the points μ = 1.2 and 5.0, showed in the

parameter space Figure 4A, can be appreciated in Supplementary

Figure S2. Figure 4D shows ω as function of μ and rhwith ra = 6.0,

computed for steady states S1 (red sheet) and S2 (blue sheet).

Similarly, Figure 4E depicts k2max for these steady states, for the

same parameters. The points/bars at μ = 1.0, 1.2, 1.5 and

3.0 indicate the values at which numerical simulations were

performed. For all cases, we can see that ω(S1)≥ω(S2).
Further, ω(S2) can present positive and negative values, while

ω(S1) is always positive. Thus, only simulations for μ = 1.0 and

1.2 fall in the region of stable Turing patterns, since ω(S2) > 0 is

required. Transient Turing patterns are observed for μ = 1.5 and

3.0, i.e., when ω(S1)> 0 and ω(S2)< 0 (red region of Figure 4A).

In addition, we can also note in Figure 4E that

k2max(S1)≤ k2max(S2), indicating that the characteristic size of

the initial pattern is greater than that one related to the stable

Turing pattern, which agrees with the simulations shown in

panels of Figure 4B.

3.4 Metastable spatial patterns

In an effort to further understand the transient patterns

exhibited by our model, Figure 5 depicts analyses and

simulations for ra = 2.5 where there is a narrow region for

Turing instabilities (light blue region) and a large region for

transient Turing patterns (red region). In this case, the k2max is

highly folded and the predicted wave number values associated

with S1 and S2 are very close. However, the rate ω(S1) has a higher

dynamic range than in the case shown in Figure 4. Figure 5B

depicts numerical simulations in the region of stable Turing

patterns, near the stable-transient patterns interface (P1 = (3.9,

2.5, 7)). Patterning is reached quickly when the unstable fixed

point S1 is perturbed (top panel of Figure 5B), while a very long

transient is observed when the same perturbation is applied to the

stable steady state S2 (bottom panel). Figure 5C depicts numerical

FIGURE 6
Persistence time. (A–E) These panels depict the temporal evolution of a, when the uniform distribution associated with fixed point S1 is
perturbed at x =40, for different values of the parameters (μ, ra, rh)=(4.89,2.5,7) (A) (4.9, 2.5,7) (B) (5.1,2.5,7) (C) (5.5,2.5,7) (D) and (5.1,2.5,6) (E). These
parameters values were indicated by crosses on 5A. (F) Raster-plot of persistence time τ and distance b for the numerical simulations (A–E) and also
P3=(5.0,2.5,7) depicted in bottom panel of 5C. Blue line corresponds to the rational function A+ B/(b − bc), where the value of parameters were
obtained by nonlinear fitting (A =92.1, B =7.2 and bc =0.85). Letters a-e indicated the corresponding panel.
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simulations for P2 = (4.1, 2.5, 7) (top panel) and P3 = (5, 2.5, 7)

(bottom panel), both in the region of transient Turing patterns,

when a small perturbation is applied on homogeneous

distribution at S1. In the first case, the system develops a

spatial pattern that does not end on the course of simulation,

while the bottom panel shows a short-lived pattern that finishes

in the homogeneous distribution associated with the steady state

S2. The time to reach the patterns showed in Figures 5B,C, and

also their sizes, are in agreement with the functions ω and k2 (see

Figures 5D,E). However, they do not provide information on

what determines the duration of the transient patterns.

Regarding the pattern on Figure 5C, we hypothesise that

when the parameter values approach to the boundary between

regions of stable and transient Turing patterns (blue line in

Figure 5A), the resulting transient patterns would be associated

with larger half-lives. Let us define the persistence time of a

transient pattern, τ, as the duration of the central ridge, that is

before it merges with the neighbours ones; and b as the Euclidean

distance from actual parameters value to the boundary between

regions of stable and transient Turing patterns. Following our

ansatz, we compute the persistence time τ on several transient

patterns, depicted on panels A–E of Figure 6, obtained for ra =

2.5, and different values of rh and μ. Also, Figure 6F depicts the

persistence time as function of the distance b. Interestingly, the

plot suggests that near Turing-patterns boundary the persistence

time exhibits a singularity at bc. This means that, in this region of

the parameters space (ra = 2.5 and rh ≈ 7.0), a system operating

with parameters value corresponding to b smaller than bc will

present patterns with infinite persistence time, i.e. metastable

patterns. This is the case of the top panel of Figure 5C. This could

be a particular characteristic of this region, since no metastable

patterns were observed in the parameter region

FIGURE 7
Turing patterns in 2D. (A) Parameter region where stable Turing patterns (blue) and unstable Turing patterns (red) can be found, for ra =10. Black
dot corresponds to (μ, ra, rh)=(0.25,10,5)= P1, in the stable Turing pattern region. (B) Snapshots from space-temporal 2D simulations showing
activator concentration pattern for parameters value P1 at different time t. These panels corresponds to the casewhen fixed point S2 is perturbed by a
small perturbation at the centre of the field. (C) Snapshots from space-temporal 2D simulations showing a for the same parameters value, when
uniform distribution associated to fixed point S1 is perturbed by the same perturbation. The region considered is 40×40 with periodic conditions.
Animated Movies associated to these simulations are available as Supplementary Movies S1 and S2.
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studied in Figure 4 (ra = 6), where transient patterns were also

observed.

These results suggest the existence of a new interface

separating two types of transients Turing patterns

associated to S1: those with finite τ and the metastable

patterns. Although establishing the mechanisms that

determine this interface is beyond the scope of this work,

we believe that the morphogenetic model proposed by

Diambra et al. could be suitable for such study. To the best

of our knowledge, transient and metastable patterns arising

from Turing instability mechanism have not been previously

reported.

3.5 Turing patterns in 2D

As noticed in the previous subsections, the trajectory of

the system upon perturbation depends on whether the system

is initially on state S1 or S2, however the final states after a

transient are the same (as shown in Figure 4B, Figure 5B). We

wonder if this also happens in two dimensions. And to answer

this question we performed numerical simulations of Eqs. 4

and 5 in a 2D region Ω = [0, 40] × [0, 40] with periodic

boundary conditions. In order to solve the equations, we

discretized space and time using NDSolve routine in

Mathematica 12.1, in which we take Δx = Δy = 0.01. The

temporal step size used is adaptative so that the estimated

error in the numerical solution is lower than 10–6. We

consider the same perturbation exp[−((x − 20)6 +
(y − 20)6))/1.5] at the centre of Ω applied to two different

initial conditions: 1) uniform distributions of a and h, at

concentrations fixed by steady point S2; and 2) in a similar

fashion but considering the steady point S1. The parameters

value used in this numerical experiment are (μ, ra, rh) = (0.25,

10, 5) which fall in the region of stable Turing patterns (blue

region in Figure 7A). Figure 7B depicts the density plots of a

at different times when the stable steady point S2 is perturbed.

In this case the perturbation propagates from the centre,

forming radial stripes (Supplementary Movie S1B). On the

other hand, when the initial condition corresponds to the

steady point S1, the system develops a pattern based on spots

with splitting dynamics. In this case, the initial perturbation

first divides in four spots, each of which in turn splits

tangentially into two other spots. Each of the resulting

eight spots split again, but now in radial manner. The

spots are distributed in a circular shape with the same

radius as the circular bands of the previous case

(Supplementary Movie S2). The stripes (spots) stabilise

after formation (splitting) and the activity concentrate at

expanding Frontier. Although the characteristic sizes are

preserved, the resulting 2D patterns are different

depending on whether the initial condition is close to S1 or S2.

4 Discussion and conclusion

In this paper we have analysed a two-gen reaction–diffusion

system that operates under only one regulatory function, as

previously proposed by [18]. The non-diffusive model

presents three fixed points. One of them corresponds to the

trivial solution and is referred to as S0, while the other two non-

trivial solutions, identified as S1 and S2, are originated in a saddle-

node bifurcation. We obtain analytically that the saddle-node

bifurcation defines a surface in the 3D parameter space. The

trivial solution S0 is a stable node and S1 is an unstable saddle-

point for all the parameter region studied. On the other hand, S2
is stable for a certain region of the parameter space and when

perturbed can also present oscillations and a stable limit circle. In

the region of unstable spirals of S2, oscillations drive the system to

the trivial steady-state S0, while stable spirals are damped until

the perturbed system reaches S2.

To derive the Turing-instability conditions, one requires an

stable homogeneous steady state, like S2, to guarantee that

instabilities will be solely spatially dependent. However,

diffusion-driven patterns can also raise up from an unstable

steady state, like S1. In fact, by linearizing the spatial version of

the model around these steady states we found that both points

have associated a dispersion relation where ω > 0 and k > 0,

indicating the presence of a spatial patterns. We denote the

parameter region where S1 has ω > 0 and k > 0 as R1. Similarly, in

R2 the steady state S2 has ω > 0 and k > 0. We observe that R1 is

greater than R2 and R2 is included in R1.

The final state of the system, when a small spatial

perturbation is applied to S1 or S2 fixed points, depends on

where the parameters value falls relative to R1 or R2. As expected,

we observe that a spatial perturbation of the S2 state, for

parameters values belong to R2, leads to stable Turing

patterns. On the other hand, if S2 is perturbed for parameters

values outside R2, no pattern will be developed. When S1 is

perturbed for parameter values that are in the intersection region

of R1 and R2, then a spatially heterogeneous transition to stable

Turing patterns with sizes typical of the S2 state develops. In this

sense we have seen examples where the initial peaks with typical

size of the state S1 split. But if the values of the parameters fall

outside R2 and inside R1, the system develops in the face of

disturbance a transient spatial pattern whose typical size is

predicted by the dispersion relation in S1. In the region of the

parameter space with low ra-value, the system can present

transitory patterns, as well as metastable patterns. In the

former case, we observed that the persistence time of these

transitory patterns is related to the distance between the value

of the system parameters and the boundary between regions of

stable and transient Turing patterns. We found that this

dependence has a singularity which delimits a new boundary

between metastable patterns and transient patterns with finite

time life. However, the present analysis did not allow to
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determines the boundary, in the parameters space, separating

metastable patterns and short transients.

Furthermore, in the synthetic patterning endeavour is

critical the range of kinetic parameters, Hill coefficient and

diffusion ratio between activator and inhibitor, that support

Turing patterns development [18]. Consequently, alternatives

to reduce the requirement for differential diffusion are always

welcomed. The present results show that transient patterns

can expand the parameter space for an initial breaking-

symmetry. These initial patterns, although transient, could

induce other gene regulatory circuits able to stabilise

patterning but without breaking-symmetry ability. In this

manner, transient patterns could play a role in

developmental biology as breaking-symmetry triggers

rather than to be responsible for the whole patterning

process. We believe that the current findings open the door

to further theoretical studies which can offer new insights into

the nature of patterning mechanisms in developmental

biology.
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