MATERIALS SCIENCE ENGINEERING EUROPEAN CONGRESS AND EXHIBITION ON ADVANCED MATERIALS AND PROCESSES **SEPTEMBER 26TH - 28TH, 2018** DARMSTADT, GERMANY CONGRESS PROGRAM

WWW.MSE-CONGRESS.DE

MSE2018

GERMAN MATERIALS SOCIETY

ENDORSED BY

Guest Country Argentina

Program Overview

	B05: Biomaterials Applications	C05: Small Scale and In Situ Mechanical Testing	C07: Orientation Image Microscopy: The Evolution. EBSD, TKD, PED-TEM, ECCI + correlation with APT	C09: Mechanical Processing and Deformation Induced Microstructural Evolution, Damage Mechanisms and Failure Characterization from Micro to Macro Imaging	F01: High-Temperature Functional Materials	F04: Functional Materials for Energy Applications	M03: Microstructure Evolution in Applied Materials: Process to Property	M05: Plasticity Across the Scales – From Microstructure Changes to Bulk Mechanical Behavior
<i>c</i>	Room: \$1/01 - A01	Room: \$1/01 - A03	Room: \$1/01 - A04	Room: \$1/01 - A02	Room: \$1/03 - 123	Room: \$1/03 - 223	Room: \$1/01 - A2	Room: \$1/01 - A4
Session	B05.3: Session 3	C05.3: Fatigue		C09.3: Session 3	F01.3: Metallic High- Temperature Materials	F04.3: Session 3	M03.3: Polymers and Miscellaneous	M05.3: Session 3
Session Chair(s)	V. Mourino	M. Sebastiani		J. Freudenberger	J. Hartmann	M. Acosta M. Hinterstein	D. Schneider	M. Stricker
16:30	Mechanically- and chemically-active nanostructured antibacterial surfaces fabricated by glan- cing angle sputter deposition <i>N. Ziegler</i>	An experimental and microstructural in- vestigation of biaxial Bauschinger effects in IF steel DC06 using in-situ neutron diffraction <i>M. Härtel</i>		Advancing materials by SPD-mediated lattice defect en- gineering <i>M. Zehetbauer</i>	High tempera- ture corrosion in waste-to-energy plants due to chlorine release through sulfa- tion reaction of alkali chlorides <i>S. Pentz</i>	Is ReO3 a mixed ionic-electronic con- ductor? A DFT study of defect formation and migration in a B(V)O3 perovskite-ty- pe oxide J. Parras	Keynote Lecture Shape memory effect in polymers containing small molecules F. Varnik	Keynote Lecture A direct look at how dislocations move A. Stukowski
16:45	Additive manufactu- ring of titanium-hy- drogel-hydroxyapatite hybrid constructs for regeneration of cranial bone defects <i>V. Bednarzig</i>	The role of room temperature grain coarsening on initiati- on of fatigue damage in thin metal films <i>O. Glushko</i>		Mechanical properties and deformation mechanisms in alloys Hastelloy X and Haynes 214 for honeycomb liners <i>S. Ulan Kyzy</i>	Microstructure evolu- tion in Ni-containing Co-Re-Cr alloys and its effect on alloy properties <i>K. Esleben</i>	Determining defect concentrations from voltage and partial pressure dependent chemical capacitance measurements <i>A. Schmid</i>		
17:00	Synthesis of polymeric hydrogel coatings with an atmospheric pressure plasma jet for biomedical applications <i>M. Levien</i>	Highlight Lecture Effect of sample size and grain boundaries on the dislocation structures and damage evolution: A micro-fatigue investigation J. Velayarce		Creep deformation mechanisms in SX Co-base superalloys: Compositional chan- ges at planar faults studied by means of TEM and APT <i>M. Lenz</i>	Finite Element Simulation of the elastic anisotropic material behaviour of coarse-grained nickel base superalloys <i>B. Engel</i>	Characterization and investigation of Fe:STO thin films prepared by pulsed laser deposition <i>M. Morgenbesser</i>	Numerical investigati- on of the pore evolu- tion in polycrystalline fibers J. Kundin	Atomistic simulations of the deformation behavior of thin film structures <i>A. Prakash</i>
17:15	Localized corrosion and cytotoxic effect of ASTM F745 in culture medium <i>R. Gregorutti</i>	Degradation of su- perelastic NiTi during uniaxial and multiaxial cyclic loading <i>H. Van Swygenhoven</i>		Microstructure Evolution of Niobium Rich Advanced Titanium Aluminide Alloy During Hot Compression B. Singh	Thermomechanical Induced Precipitation of Intermetallic Phase Particles in Ferritic Stainless Steels J. Pöpperlová	Oxygen isotope exchange on ceria: CO2 splitting in the temperature range between 300 and 900 °C D. Uxa	Thermal energy storage in cement pastes containing microencapsulated phase change materi- als: a microstructural model analysis A. Caggiano	Atomic-Level Proces- ses of Shear Band Nucleation in Metallic Glasses D. Sopu
17:30	A new method for obtaining magnetic Bioactive glass 4555® 3D scaffolds modified with nanoparticles of iron-loaded hydroxya- patite, characteriza- tion, and evaluation of its biocompatibility in different types of cells. <i>M. Dittler</i>	Small scale fatigue crack growth and fracture: a case study in the nickelbase superalloy CMSX-4 <i>P. Grünewald</i>		SFB-TR-103: Interdisciplinary Scale Bridging Material Science of Co- and Ni-based Single Crystal Superalloys <i>G. Eggeler</i>	Oxidation behaviour of roughing mill work rolls and effect on thermomechanical fatigue <i>K. Bläser</i>	Keynote Lecture lonic conductivity of acceptor doped sodium bismuth tita- nate (NBT): Influence of dopants, phase transitions and defect associates <i>S. Steiner</i>	Self-organization of nanostructured morphologies in phy- sical vapor deposited immiscible alloys <i>R. Raghavan</i>	Atomistic and me- soscale simulations of nanoindentation and nanoscratching of metals – A statistical approach to characte- rize discrete dislocati- on microstructures <i>N. Gunkelmann</i>
17:45	Novel strategy for im- munoprotective islet macroencapsulation <i>K. Skrzypek</i>	Dynamic Micro Testing Overcoming 5 Decades of Strain Rates <i>F. Huberth</i>		Oral Poster The Impact of Residu- al Stress on the Crack Growth Behavior in Martensitic Steels <i>A. Wildeis</i>			The Generation of Random Surfaces by Means of Additive Manufacturing with respect to Offset-Is- sues <i>K. Noack</i>	Investigation of size effects on the plastic zone properties at crack tip <i>R. Gatti</i>
17:48								
17:51								
17:54								
18:00				MSE Posto	er Session			

			I.	1		1	1	1
P01: Manipulation of Matter by Electric and Magnetic Fields	P02: Additive Manufacturing Technologies and Materials	P04: Nanocomposites and Nanolaminated Functional Coatings	P05: Advances in Atomic Layer Deposition Technologies: Conformal Thin Films and Hybrid Materials for Energy, Electronics and Health	P07: Joining	S05: Bulk Ultrafine- and Nano-Structured Materials	S06: Compositionally Complex Alloys – High Entropy Alloys	S07: Mechanical Behavior of Advanced Structural Materials	
Room: \$1/03 - 283	Room: S1/03 - 221	Room: S1/03 - 23	Room: S1/03 - 226	Room: S1/03 - 23	Room: S1/01 - A3	Room: S1/01 - A5	Room: S1/01 - A1	
P01.3: Session 3	P02.3: Processes		P05.3: Hybrid and Molecular Layer Deposition	P07.1: Session 1	S05.3: Thermal Effects and Magnetic Properties	S06.3: Microstructure	S07.3: Properties of SPD Materials and Nanocomposites	Sessio
R. Kirchheim	F. Lasagni		Y. Gönüllü	M. Säglitz	E. Bruder	B. Hallstedt	W. Skrotzki	Sessio Chair(
Highlight Lecture Reaction controlled field assisted sintering of ceramic nanocom- posites A. Ragulya	Printing Photo- polymers by Hot Lithography <i>B. Steyrer</i>		Keynote Lecture Hybrid Materials by Vapor Phase Infiltra- tion of Ceramics into Polymers <i>M. Knez</i>	Development of a high temperature resistant reactive filler alloy for brazing of SiC <i>M. Graffé</i>	Formation of ω phase in Ti-Fe alloys and its stability upon heating <i>M. Kriegel</i>	Microstructural properties of Al-con- taining refractory high entropy alloys for high temperature applications <i>H. Chen</i>	Keynote Lecture Incremental Feedings with High-Pressure Torsion (IF-HPT) and High-Pressure Sliding (IF-HPS) for Upsizing Sample Dimensions Z. Horita	16:30
Pattern Formation du- ring Current Sintering Experiments C. Gorynski	Additive manufactu- ring of Low Tempera- ture Co-fired Ceramic by DLP technology <i>E. Xuriguera</i>			Study of a diffusion couple of pure Fe/Ti A. Besnard	Magnetic Binary Supersaturated Solid Solutions processed by Severe Plastic Deformation <i>M. Stückler</i>	Effect of macroallo- ying on microstruc- ture and high tem- perature oxidation resistance of new refractory compositio- nally complex alloys <i>F. Müller</i>		16:45
Pattern formation du- ring current sintering – Simulation <i>L. Engelke</i>	Additive manufactu- ring of soft magnetic materials and components <i>D. Schuller</i>		Atomic/molecular layer deposition of azobenzene-cont- aining hybrid thin films with reversible photoresponsive behaviour <i>A. Khayyami</i>	Resistance Spot Welding of Aluminum-Steel Joints Using Modern Medium-Frequency Inverter Technique (MFDC) <i>M. Säglitz</i>	Highlight Lecture Influence of annea- ling on microstructure and mechanical properties of ultrafi- ne-grained Ti45Nb <i>A. Hohenwarter</i>	Introducing a chip based µ-bulk setup for microscopic heat treatment studies of compositionally complex single crystal superalloys <i>D. Kubacka</i>	Mechanical and Structural behavior of Cu/Fe Nanocom- posites produced by Accumulative Roll Bonding <i>M. Ghanem</i>	17:00
Field Assisted Sin- tering of Rare Earth Doped Ceria (REDC) <i>T. Mishra</i>	Experimental analysis of laser post-pro- cessing of additive manufactured metallic parts J. dos Santos Solheid		Search for Novel Inorganic-Organic Carboxylate Network Thin Film Structures by Atomic/Molecular Layer Deposition J. Penttinen	Joining aluminium with copper for applications in electro mobility J. Kaspar	Investigation of Phase Transformation and Grain Growth in Nanocrystalline Aus- tenitic Stainless Steels Produced by High Energy Mechanical Alloying H. Kotan	Trace elements influencing the lattice parameters in the Al10Co25Cr8Fe15Ni- 36Ti6 compositionally complex alloy A. Manzoni	Highlight Lecture Understanding plasticity of pearlitic nanolamellar structu- res through a simple material model J. Alkorta	17:15
Grain growth in elec- tric field: Influence of Defects, Space Char- ge and Atmosphere W. Rheinheimer	In Situ and Real-Time Quality Monitoring of AM/Laser Process T. Le Quang		Simultaneous enhan- cement of toughness and elimination of the UV sensitivity of Ke- vlar with a combined ALD/MPI process <i>I. Azpitarte</i>	Tailoring the thickness of intermetallic inter- facial nanolayers by temperature control of FSW in Al-Cu lap joints <i>R. Marstatt</i>	Recrystallisation in K-doped and pure cold rolled tungsten (W) sheets: As-rolled condition and isochronal annealings (1 h) <i>P. Lied</i>	Phase stability and solid solution strengthening in fcc high-entropy alloys investigated by a diffusion couple approach <i>T. Keil</i>	Highlight Lecture Interaction of Hydro- gen with SPD-induced Lattice Defects: Featu- res and Properties <i>M. Zehetbauer</i>	17:30
Improving efficiency and temperature distribution during field assisted sintering by advanced thermal insulation <i>M. Bram</i>	Oral Poster Shaping, debinding and sintering as a low cost additive manu- facturing method of solid metal Y. Thompson			Nano-soldering pseudo-composite material to decrease engine bearing failure <i>P. Olaru</i>	Structural analysis and magnetic pro- perties of Fe-Co-Ag and Fe-Co-Cu alloys processed by severe plastic deformation <i>A. Bachmaier</i>	Priority Programme (SPP2006) Compositi- onally Complex Alloys - High Entropy Alloys (CCA - HEA) U. Glatzel	Grain structure and mechanical properties of the commercially pure copper and Cu- Al hybrid materials processed by the High Pressure Torsion Extrusion	17:45
	Oral Poster Microstructure of Fe-Nd-B processed by selective laser melting U. Pflanz						D. Nugmanov	17:48
	Oral Poster Porous Structures De- veloped from Novel thermoplastic-ceramic Systems Via Fused Deposition <i>M. Camerucci</i>							17:51
	Oral Poster Additive production of 3D-structured, highly filled nano- particle-reinforced composite materials <i>L. Windisch</i>							17:54
			MSE Post	er Session				18:00

Frida	y, 28 th September 2018	Session Chair:
B04.3	: Biomateriomics	F. Nudelman
14:45	Highlight Lecture Tracking the Early Events of Mineral Formation during Coral Development T. Mass (Sp) ¹ ; A. Akiva ² ; M. Neder ¹ ; K. Kahil ³ ; R. Gavriel ⁴ ; I. Pinkas ³ ; G. Goobes ⁴ ¹ University of Haifa (Israel); ² Eindhoven University of Technology (Netherlands); ³ Weizmann Institute of . Rehovot (Israel); ⁴ Bar Ilan University, Ramat Gan (Israel)	Science,
15:00	Highlight Lecture Three-Dimensional Architecture and Surface Functionality of Coccolith Base Plates F. Nudelman (Sp) ¹ ¹ University of Edinburgh (United Kingdom)	
15:15	Highlight Lecture Osteoderms – A new nano-micro hierarchical biomineralized structure in vertebrates S. Bertazzo (Sp) ¹ ; A. Kirby ¹ ; F. Iacoviello ¹ ; P. Shearing ¹ ; A. Olivo ¹ ; S. Evans ¹ ; M. Moazen ¹ ¹ University College London (United Kingdom)	
15:30	Hidden substructures in sea shells as inspiration for modern materials C. Böhm (Sp) ¹ ; J. Harris ¹ ; S.E. Wolf ¹ ¹ Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) (Germany)	
15:45	Highlight Lecture Crystallographic gradients transform biominerals into functionally graded and toughened cer S. Wolf (Sp) ¹ ; J. Harris ¹ ; D. Wallis ² ; P. Zavattieri ³ ; B. Merle ¹ ; F. Marin ⁴ ¹ Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) (Germany); ² Utrecht University (Netherlands); ³ Purdue University, West Lafayette (United States); ⁴ Université de Bourgogne Franche-Comté, Dijon (Fra	ramics
16:00	Sea urchin spines: A brittle material without size effect on structural strength? C. Lauer (Sp) ¹ ; S. Mück ¹ ; G. Buck ¹ ; K. Klang ¹ ; C. Berthold ¹ ; K.G. Nickel ¹ ¹ University of Tübingen (Germany)	
16:15	Highlight Lecture Materials inspired from fossils and their relatives D. Kisailus (Sp) ¹ ¹ University of California, Riverside (United States)	

B05: Biomaterials Applications

Room: S1/01 - A01

This symposium will attract experts working in the broad field of biomedical applications of materials, including metals, ceramics, polymers and their composites. Presentations will include topics ranging from biomedical implants, coatings and surface treatment of biomaterials to novel biomaterial approaches for tissue engineering, regenerative medicine and drug delivery. Thus biomedical applications of both permanent and biodegradable materials will be considered in this symposium. Moreover advanced methods for the characterization and testing of biomaterials in in-vivo relevant conditions will be also considered, with emphasis in the tissue/biomaterial interface. Other topics will include innovative multifunctional bioactive coatings for biomedical devices, as well as tailored surface functionalization approaches for eliciting specific biological responses. Biomaterial based approaches to develop advanced scaffolds for tissue regeneration will be also covered in this symposium. New concepts directed at the development of multifunctional scaffolds (next generation scaffolds) will be presented, which can have a drug delivery or biomolecular signalling function thus providing enhanced support to cell attachment, growth and proliferation.

Symposium Organizers

Aldo R. Boccaccini - Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department of Materials Science and Engineering, Germany Viviana Mourino - University of Buenos Aires, Pharmaceutical Technology, Argentina Jonny Blaker - University of Manchester, School of Materials, United Kingdom Enrica Verne - Polytechnic of Turin, Department of Applied Science and Technology, Italy Klaus D. Jandt - Friedrich Schiller University Jena, Chair of Materials Science, Germany

Wednesday, 26 th September 20)18
--	-----

Wednesday, 26 th September 2018	Session Chair:
B05.1: Bioactive, Antibacterial Surfaces and Coatings	A. R. Boccaccini
10:45 Smart Reinvention of Drug Delivery Systems with Graphene	

I. Firkowska-Boden (Sp)¹; M. Arras²; K.D. Jandt¹; F. Dong³

¹Friedrich Schiller University Jena (Germany); ²Oak Ridge National Laboratory (United States); ³Guizhou University, Guiyang (China)

11:00	In vitro methods for the evaluation of antimicrobial surface des J. Sjollema (Sp) ¹ ; B.A. Zaat ² ; V. Fontaine ³ ; M. Ramstedt ⁴ ; K. Thevissen ⁵ ; R. ¹ University of Groningen (Netherlands); ² University of Amsterdam / Aca ³ Université Libre de Bruxelles (Belgium); ⁴ Umeå University (Sweden); ⁵ KU (Switzerland); ⁷ Beijing Jiaotong University (China); ⁸ University Medical C			
11:15	Development and characterization of bioactive and antibacteri M. Cazzola (Sp) ¹ ; S. Yamaguchi ² ; S. Ferraris ¹ ; M. Miola ¹ ; A. Cochis ³ ; I ¹ Politecnico di Torino (Italy); ² Chubu University, Kasugai (Japan); ³ Univ			
11:30	Synergic antibacterial coatings combining titanium nanocolum J. Garcia-Martin (Sp) ¹ ; M. Fernandez-Castro ² ; M.U. González ² ; T. Web ¹ Instituto de Micro y Nanotecnología, Tres Cantos (Spain); ² Spanish Na (Spain); ³ Northeastern University, Boston (United States); ⁴ Nano4energy			
11:45	Keynote Lecture Controlling Protein Adsorption through Nanostructured Polymo I. Firkowska-Boden (Sp) ¹ ; X. Zhang ¹ ; C. Helbing ¹ ; K.D. Jandt ¹ ¹ Friedrich Schiller University Jena (Germany)			
Wed	nesday, 26 th September 2018			
B05.2	: Scaffolds and Nanomaterials for Tissue Engineering			
14:30	Anti-microbial alginate gels with improved stability as a cell sca P. van Rijn (Sp) ¹ ¹ University of Groningen (Netherlands)			
14:45	New Ways in Nanomedicine Based on Biocompatible Porous Sil V. Sivakov (Sp) ¹ ; L. Osminkina ² ¹ Leibniz Institute of Photonic Technology, Jena (Germany); ² Moscow S			
15:00	Initial study on 3D printing of piezoelectric barium titanate cer C. Polley (Sp) ¹ ; T. Distler ² ; D. Rüffer ¹ ; R. Detsch ² ; A. R. Boccaccini ² ; H ¹ University of Rostock (Germany): ² Friedrich-Alexander-Universität Erl			
15:15	Drug-loaded polymer-based matrices manufactured by electrol G. Abraham (Sp) ¹ ; G. Rivero ¹ ¹ Universidad Nacional de Mar del Plata UNMdP (Argentina)			
15:30	The ESA effect as possible quantification method in nanopartic A. Renner (Sp) ¹ ; M. Schütz ¹ ; D. Moog ¹ ; T. Fischer ¹ ; S. Mathur ¹ ¹ University of Cologne (Germany)			
15:45	Novel Multifunctional Nanocomposite Scaffolds as Matrices for I A. R. Boccaccini (Sp) ¹ ; J.P. Cattalini ² ; R. Vidotto ² ; V. Mouriño ² ¹ Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) (Germany);			
Wed	nesday, 26 th September 2018			
16.20	Mechanically, and chemically active nanostructured antibacter			
10.50	sputter deposition N. Ziegler (Sp) ¹ ; C. Sengstock ² ; V. Mai ³ ; K. Tschulik ¹ ; M. Köller ² ; A. Li ¹ <i>Ruhr-Universität Bochum (Germany);</i> ² <i>University Hospital Bergmannsheil, Bo</i>			
16:45	Additive manufacturing of titanium-hydrogel-hydroxyapatite hybrid co V. Bednarzig (Sp) ¹ ; A. R. Boccaccini ¹ ; R. Detsch ¹ ¹ Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) (Germany)			
17:00	Synthesis of polymeric hydrogel coatings with an atmospheric pre M. Levien (Sp) ¹ ; I. Amin ¹ ; KD. Weltmann ¹ ; K. Fricke ¹ ¹ Leibniz Institute for Plasma Science and Technology INP, Greifswald (
17:15	Localized corrosion and cytotoxic effect of ASTM F745 in cultu R. Gregorutti (Sp) ¹ ; J. Grau ¹ ; D. Castrogiovanni ¹ ; J. Parisi ¹ ; C. Elsner ² ¹ CICPBA, La Plata (Argentina); ² CONICET (Argentina)			
17:30	A new method for obtaining magnetic Bioactive glass 4555® 3D s loaded hydroxyapatite, characterization, and evaluation of its bio M. Dittler (Sp) ¹ ; G. Frank ² ; I. Unalan ² ; A. Grünewald ² ; M. Gonzalez ¹ ; ¹ Universidad Nacional de la Plata (Argentina); ² Friedrich-Alexander-Un			
17:45	Novel strategy for immunoprotective islet macroencapsulation			

K. Skrzypek (Sp)¹; D. Stamatialis¹

¹University of Twente, Enschede (Netherlands)

al surface designs

. Thevissen⁵; R. Luginbuehl⁶; J. Li⁷; H.C. van der Mei⁸; H.J. Busscher⁸ nsterdam / Academic Medical Center (Netherlands); (Sweden); ⁵KU Leuven (Belgium); ⁶RMS Foundation, Bettlach rsity Medical Center Groningen (Netherlands)

d antibacterial surfaces for bone contact applications ¹; A. Cochis³; L. Rimondini³; S. Spriano¹; E. Vernè¹ i (Japan); ³Università del Piemonte Orientale, Novara (Italy)

n nanocolumns and tellurium nanorods nzález²; T. Webster³; W. Tien-Street³; D. Medina³; I. Fernandez⁴ in); ²Spanish National Research Council (CSIC), Tres Cantos); ⁴Nano4energy, Madrid (Spain)

ctured Polymeric Surfaces

Session Chair:

J. Blaker

ty as a cell scaffold and wound dressing material

ble Porous Silicon Nanostructures

ny); ²Moscow State University (Russia)

titanate ceramics for bone tissue engineering Boccaccini²; H. Seitz¹ Universität Erlangen-Nürnberg (FAU) (Germany)

ed by electrohydrodynamic processes

in nanoparticle modification

Matrices for Drug Delivery and Bone Tissue Engineering ouriño²

U) (Germany); ²University of Buenos Aires (Argentina)

Session Chair:

V. Mourino

ed antibacterial surfaces fabricated by glancing angle

A. Köller²; A. Ludwig¹ rgmannsheil, Bochum (Germany); ³Mathys Ltd Bettlach (Switzerland)

atite hybrid constructs for regeneration of cranial bone defects

mospheric pressure plasma jet for biomedical applications

P, Greifswald (Germany)

F745 in culture medium risi¹; C. Elsner²

ss 45S5® 3D scaffolds modified with nanoparticles of irontion of its biocompatibility in different types of cells M. Gonzalez¹; A. R. Boccaccini²

-Alexander-Universität Erlangen-Nürnberg (FAU) (Germany)

LOCALIZED CORROSION AND CYTOTOXIC EFFECT OF ASTM F745 IN CULTURE MEDIUM

R.W. Gregorutti ^a, J.E. Grau ^a, D. Castrogiovanni ^b, J. Parisi ^b, C.I. Elsner ^c

^a Laboratorio de Entrenamiento Multidisciplinario para la Investigación Tecnológica – LEMIT (CICPBA), Av. 52 s/n e/121 y 122, B1900AYB, La Plata, Argentina. e-mail: <u>metalurgia@lemit.gov.ar</u>

^b Instituto Multidisciplinario de Biología Celular – IMBICE (CICPBA-CONICET-CCT La Plata-UNLP), Calle 526 y Camino General Belgrano, B1906APO, La Plata, Argentina. e-mail: <u>cultivos@imbice.gov.ar</u>

^c Centro de Investigación y Desarrollo en Tecnología de Pinturas – CIDEPINT (CICPBA-CONICET-CCT La Plata-UNLP), Av. 52 s/n e/121 y 122, B1900AYB, La Plata, Argentina and Facultad de Ingeniería UNLP, Av. 1 esq 47, CP. B1900TAG, La Plata, Buenos Aires, Argentina.

e-mail: cielsner@ing.unlp.edu.ar

Abstract

Austenitic stainless steels (specification ASTM F138/139/745 are widely used for load bearing partial and total joint replacements, and post trauma reconstructive surgeries. These biomaterials contain Cr and Ni, which would cause different systemic-toxic reactions during the time that the device is implanted in the body. In particular, Ni is known as allergenic agent and has some carcinogenic potential.

To evaluate this behaviour, samples of ASTM 745 have been subjected to localized corrosion assays by cyclic polarization tests, using a cell culture medium (CCM) as an electrolyte. The CCM allow simulating in a more approximate way the conditions of the human body. In the present work, DMEM high glucose containing inorganic salts, vitamins, proteins, and supplemented with 10% inactivated fetal calf serum, 100 IU/mL penicillin and 100 μ g/mL streptomycin sulfate, was used as CCM. The aim was to release Cr and Ni ions to evaluate their possible cytotoxic effects.

Cytotoxicity was evaluates by Neutral red and MTT assays, using UMR-106 cell line. The bioassays were performed by triplicate and eight measurements were done in each case. The mean values from the 24 determinations were compared to negative and positive controls. The negative control is the culture medium not exposed to any toxic agent, while the positive control consists of the culture medium with a toxic agent (0.01% phenol) that causes a decrease in cell viability. The data were statistically analyzed by Student's t-test, considering a critical p-value < 0.05. For $p \ge 0.05$, the null hypothesis is valid and for p < 0.05, the null hypothesis is refused.

The obtained electrochemical results are shown in Figure 1. The fast current increase observed at potentials close to 0.800 V/Ref could be ascribed to the onset of localized corrosion. After that, the stainless steel showed high repassivation capacity, since the reverse scan ended at 0.600 V/Ref, with a short hysteresis loop.

Figure 1. Polarization curve of ASTM F745 in CCM.

The results of the bioassays are shown in Figure 2.

Figure 2. Cell viability in CCM exposed to ASTM F745 localized corrosion

Neutral Red assay, which evaluates lost in cell viability when a determined element or compound affects the integrity of the plasmatic membrane, did not show significant differences between the CCM and the negative control. The MTT assay assesses the mitochondrial metabolic activity. Although the behaviour was different with respect to the negative control, the cell viability was higher than 100%, with critical p-value < 0.01.

The comparison with the positive control indicated that the cell viability was considerably greater in both assays, the critical p-value being lower than 0.001.

According to these results, under the specified tests conditions of the present work, the CCM tested did not cause cytotoxic effects in UMR-106 cell line. The reason for this behavior could be related to the fact that the Cr and Ni released during the localized corrosion did not reach concentration levels detrimental to cell viability.