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The advent of novel opto-genetics technology allows the recording of brain activity with a reso-
lution never seen before. The characterisation of these very large data sets offers new challenges
as well as unique theory-testing opportunities. Here we discuss whether the spacial and temporal
correlation of the collective activity of thousands of neurons are tangled as predicted by the theory of
critical phenomena. The analysis shows that both, the correlation length ξ and the correlation time
τ scale as predicted as a function of the system size. With some peculiarities that we discuss, the
analysis uncovers new evidence consistent with the view that the large scale brain cortical dynamics
corresponds to critical phenomena.

I. INTRODUCTION

The study of correlation functions is central to under-
standing critical phenomena throughout disciplines [1–4].
The correlations of an infinitely large system poised near
a critical point, will vanish at infinity as a power-law, i.e.
rather slowly. In other words, the entire system seems
to be correlated. Conversely, away from criticality, cor-
relations decay exponentially fast following closely the
(typically short range) interactions. If the system is crit-
ical but not infinite, the power law is altered by the finite
system size, but there is a characteristic dependence of
the correlations on system size, at criticality, which can
be exploited [2] to establish whether the system exhibits
critical correlations. This finite-size behaviour has also
been used as a proxy to determine if the brain exhibits
critical dynamics, including attempts at very large scale
[5–7] or on a relatively sub-sampled regime [8, 9].

Time correlations, although less studied in the biolog-
ical case, also have a characteristic behaviour at critical-
ity, known as dynamic scaling. Dynamic scaling means
that space and time correlations are intertwined. A ba-
sic statement of dynamic scaling is that the correlation
temporal scale (of a collective quantity) grows as a power
law of the correlation spatial scale.

In these notes we make an exhaustive exploration of
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correlations, both spatial and temporal, as a function
of size, analysing a large collection of neurons recorded
from mice visual cortex using opto-genetic techniques.
Our analysis computes correlations inside boxes of in-
creasing size W , based on our recent demonstration that
this approach is equivalent to changing the system size
L [10]. The robustness of spatial correlations were tested
by using three different methods: two for the connected
correlation function and the density correlation function.
We similarly study time correlations in boxes of different
sizes, as well as the relationship between characteristic
correlation lengths and times.

The paper is organized as follows: First the data is
described. After that, a subset of data is used to in-
troduce the correlation methods. Next, we describe the
main results starting with the finite-size dependence of
the spatial correlations and followed by the temporal cor-
relations. The two results are combined to asses the pres-
ence of dynamic scaling, i.e., the dependence of temporal
fluctuations on the correlation length. Finally, the corre-
lation matrix is analyzed in terms of the scale-invariance
of its eigenvalues spectra. The paper closes with a discus-
sion of the caveats and limitations as well as some future
work.
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II. METHODS

A. Experimental data

The data analyzed here correspond to results origi-
nally described by Stringer et al. [11] which are freely
available [12]. A detailed description of the imaging
methods as well as the animal protocols can be found
in the cited publication [11]. In brief, we analyze the
Ca2+ imaging data recorded in eleven planes of a small
region (approx. 1 mm2) of the visual cortex, while the
mouse is not receiving any particular visual stimula-
tion (it is watching a dark screen). The results cor-
respond to the analysis of nine data-sets from seven
mice, which for simplicity we labeled consecutively [20].
The field of view in each of the eleven planes spans a
range of x ∈ [4, 1010]µm and y ∈ [4, 1012]µm. The
neurons recorded are located, from the more super-
ficial to the deeper ones, at planes with coordinates
z = 70, 105, 140, 175, 210, 245, 280, 315, 350, 385, 420µm,
for planes 1 to 11 respectively.

To introduce the methods we will restrict ourselves
to the data sets recorded from mouse 4c. The animals
were awake, head-fixed but able to run freely over an air-
floating ball. They have received an implant with 3 to
4 mm cranial windows centred over their visual cortex.
The relevant data includes the position (x, y, z) of each
neuron, and its activity sampled at a rate of 30 Hz during
21055 frames. Recordings were performed using multi-
plane acquisition controlled by a resonance scanner, with
11 planes spaced 35 µm apart in depth. Neuronal activ-
ity data analysed here corresponds to the de-convolution
of the raw neuronal Ca2+ signal (called “Fsp signal” in
ref. [11]), hereafter denoted as S(t). In addition we an-
alyze the point process (PP) constructed from a suit-
able thresholding of the S(t) time series. Fig. 1 shows
a schematic of the animal setup (panel A) and examples
of the signal S(t) (panel B) and the derived point pro-
cesses (panel D). Illustrative examples of the distribution
of S(t) are given in panel C.

B. Correlation analysis

The exploration of the correlation properties is aimed
at establishing up to what extent the spatial and tem-
poral correlations are entangled, as in other systems ex-
hibiting critical dynamics. For that purpose suitable cor-
relation functions [4] in space and time need to be defined
and computed.

a. Spatial connected correlation function— At the
risk of being redundant, let us remark that the connected
correlation function (CCF) has different properties than
the (more usual) Pearson correlation function computed
between two or more variables. Formally, the (space-
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FIG. 1: Schematics of the experimental data. (A) Sketch of
the experimental setup: a head-fixed mouse is able to run on
a spherical treadmill while the brain activity is monitored via
a multiplane Ca2+ opto-genetic imaging. (B) Examples of the
S(t) signal time series.(C) Typical probability distribution of
the S(t) signal time series for nine neurons, after normaliza-
tion by its mean (µ). (D) Point process extracted from the
timing of the peaks of the S(t) signal.

averaged) CCF is

C(r) =
1

c0

∑
i,j uiujδ(r − rij)∑
i,j δ(r − rij)

(1)

where rij is the Euclidean distance between the given
pair of neurons, δ is a Dirac delta selecting the pairs
separated by a distance r, ui(t) = Si(t) − s̄(t), and

s̄(t) = 1
N

∑N
i Si(t), and Si(t) is the activity of neuron

i at time t. Notice that the mean s̄(t) (often, in this con-
text, called population mean) is subtracted from each
signal at each time step. In that way, any confound com-
mon to the two (or more) signals is canceled out. For
instance, an external drive to the entire neuronal popu-
lation under study can increase Pearson correlations for
all neuron pairs, but won’t be affecting the value of C(r)
in Eq. 1. Thus, C(r) in Eq. 1 describes the decay of
correlations in space between the remaining fluctuations
around the mean, often called residual correlations (Ref.
[4] discusses the properties of the CCF at length, as well
as the algorithms to compute it).

b. Spatial point process— The time series S(t) is
extracted via de-convolution of the Ca2+ fluorescence
recordings. In that sense, its values represent the proba-
bility of spikes being recorded at that particular area of
the field of view, within a given sampling interval. For
completeness, here we also consider a transformation of
S(t) into a point process (also called point field). The
idea is to determine possible effects of different signal-to-
noise ratios by selecting only the most significant neu-
ronal events to compute correlations. In short, we define

Pi(t) =

{
0 if Si(t) = 0,

1 if Si(t) > 0,
(2)
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i.e. P (t) is 1 if the neuron has fired during the observation
window, and 0 otherwise. The we compute the CCF
using the same definition Eq. (1) with P (t) in place of
S(t), which we denote by CP (t).

c. Spatial counting statistics— In addition to the
previous two ways of measuring correlations, we consider
a counting statistic approach. We calculate at each time
step t the density G(r) of spiking neurons (i.e., points)
falling inside a thin shell of radius r centered on a spiking
neuron. After proper normalization, this counting statis-
tic is equivalent to Cp(r) since both are defined for the
same point process. G(r) is computed according to

G(r) =
ρN

ρa(t)Na(t)

∑
i,j

Pi(t)Pj(t)δ(r − rij)
δ(r − rij)

, (3)

where N , ρ are respectively the total number and average
density of neurons, and Na(t), ρa(t) the same quantities
for active neurons at time t, i.e. such that Pi(t) = 1. The
overline indicates average over all time frames. In other
words, G(r) is the ratio of active pairs over total pairs at
distance r, normalised to obtain 1 when both populations
correspond to uncorrelated Poisson processes.

d. Box scaling and correlation length— The correla-
tion length is an indicative measure of the spatial extent
of correlations. There are several possible procedures
to obtain in practice a correlation length from an ex-
perimental space correlation function, but the important
point is that when trying to establish whether correla-
tions are scale-free one needs to study the dependence
of the experimental correlation scale with system size,
or with observation scale [10]. In our case it is clearly
impossible to consider systems of different size, so we
use the box-scaling procedure, measuring the correlation
functions within a spatial observation window, or box, of
linear size W (and averaging over all possible boxes). We
use the notation C(r,W ), Cp(r,W ), G(r,W ) to indicate
the correlation functions restricted to a box. In this case
it is convenient to define, for the S(t) signal, a length
ξ0(W ) such that C(ξ0,W ) = 0, because ξ0(W ) will grow
linearly with W if the system is scale free [3, 4, 10]. Sim-
ilarly, for the P (t) signal we use CP (ξ0P ,W ) = 0 and
G(ξ0G,W ) = 1 for the spatial counting case.

Fig. 2 shows examples of the three approaches (for
mouse 4c). The top row illustrates the functions (for
a single plane) from which the ξ0 are extracted. The top
left panel corresponds to the connected correlation func-
tion vs. distance r for different box sizes computed from
the S(t) signals, where the arrow denotes ξ0 for W = 200,
as an example. The top centre panel shows the connected
correlation function for the point process, and the top
right panel the results for the density function G(r). Re-
sults from all planes in this mouse are condensed in the
bottom row. Shown are the scaling of the correlation
length ξ0 with box size W for each of the eleven planes
using each of the three approaches. To prevent a possi-
ble bias given by the inhomogeneous distribution of the
neurons’ spatial locations the boxing of the sample was

performed over 9 different rotations of the box grid rela-
tive to the field of view.

e. Time correlations— Time correlation functions
are a measure of how correlations in a time series decrease
as one compares two signals measured at increasing time
intervals. To assess how time and space correlations are
intertwined, one studies the time correlations of spatially
extended quantities. We define

SWµ (t) =
∑
i∈Wµ

Si(t), (4)

where the sum includes all neurons that belong to the µ-
th box of the space grid of size W . The connected time
correlation is then

C(c)(t,W ) =
1

NW

∑
µ

1

T − t

T−t∑
t′=0

δSWµ (t′)δSWµ (t′ + t),

(5)

where δSWµ (t) = SWµ (t)− (1/T )
∑T
t′=0 S

W
µ (t′) and NW is

the number of boxes of side W .
From the decay of each time correlation function one

can extract a characteristic time scale, or correlation time
τ . Rather than using a threshold, we found the spectral
relaxation time of [13] is less prone to noisy fluctuations.
It is given as the solution of∫ ∞

0

dt

t

C(c)(t)

C(c)(t = 0)
sin

(
t

τ

)
=
π

4
, (6)

(see SI for the rationale behind this definition).
An example of the correlation functions C(c)(t,W ) and

associated correlation times for one mouse is shown in
Fig. 3.

III. RESULTS

a. Spatial correlations— From the three measures
of correlation it follows that the more correlated a pair
of neurons is, the closer in space the members of the pair
tend to be. This observation is not entirely trivial, since
the fact that neurons can develop very long axons (up to
several hundred times the size of the neuron’ soma) makes
it possible that the interaction develop with many non-
local contacts in a way that allows direct transmission of
information to extremely far away neurons, making the
Euclidean distance irrelevant. On the other hand, it is
clear that developing a longer axon carries a larger energy
cost, so that the Euclidean distance should play a role,
even if indirect, after all. In fact the three correlations
C(r), Cp(r) and G(r) show clearly that this is the case.
Additional support for distance decay of correlations is
obtained through the reverse procedure of picking the
pairs within a range of a given value of correlation and
computing their average distance. The results of these
computations are fully consistent with the correlations
already commented (see examples of these calculations
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FIG. 2: Examples of correlation and density functions (top panels) as a function of distance for plane 4 of mouse4c and
different box sizes. The bottom panels show the correlation length extracted for all planes from the three approaches: connected
correlation function CCFr (left), connected correlation function computed from the point process CCFp (center), and density
function G(r) (right). Results are an average over 9 rotations of the box grid relative to the field of view.
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FIG. 3: Correlation time analysis. (A) Examples of the time
correlation functions computed from the activity in on plane
as a function of box size W . (B) Correlation time τ as a
function of box size W for all planes (data from mouse 4c,
the functions in panel A correspond to plane 5).

in the SI). Thus, each of the strategies used here confirm
that there is a distance dependence of the correlations.
This is in contrast with the interpretation of the Pearson
pair correlation results for the same data given in ref. [11].

We proceed now to measure the spatial scale of the
correlation decay, i.e. the correlation length (from now
on we focus on C(r) since the other correlation functions
yield similar results). We compute C(r;W ) and ξ0(W ),
given by C(ξ0(W );W ) = 0, on boxes of side W ranging
from 100µm to 1 mm for each plane of each mouse (ξ0 vs.
W averaged over all planes is shown for all mice in Fig. 4,
similar results are obtained when combining all planes
in a single 3-d dataset, see SI). We find that ξ0 grows
linearly with W : this observation is crucial, because it
implies that the system is scale free [3, 4], i.e. that the
correlation length is larger than the system size, with
the consequence that the scale for decorrelation is given
by the system size, or by the observation window W . If
there was a correlation scale smaller than the system size
one would have logarithmic, rather than linear, growth
of ξ0, which is not what we observe (Fig. 4, inset).

b. Time correlations— In physical systems near
criticality, the dynamical behaviour displays specific
characteristics alongside the scale-free properties of the
static correlations. To asses to what extent the phe-
nomenology of neuronal systems can be described with
a formalism similar to that of equilibrium critical sys-
tems, we study time correlations of single neurons and
of the collective signal SW (t) in the same boxes we used
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FIG. 4: Size-dependence of correlation length and correlation
time. (A) Characteristic correlation length ξ0 vs. box size W ,
averaged over all planes for each mouse. Windows smaller
than W ≈ 300µm yield values of ξ0 less than the soma size
and are therefore excluded. The curves are compatible with
a linear growth of ξ0 with W . This is evidence that the cor-
relations of neuronal activity fluctuations are scale-free. (A,
inset) Same data in a semi-logarithmic plot: note the steeper
increase of ξ0 for larger W indicating that their relation is
not logarithmic. (B) Correlation time τ for the SW (t) vs box
size W for each mouse. Correlation functions were averaged
over all boxes in the grid and over 9 rotations of the grid rela-
tive to the field of view, then the correlation time is averaged
over all planes. (B, inset) Correlation time of a single neuron
versus its own mean activity (spikes per second). Plotted is
τ averaged in the corresponding activity bin of width 10 s−1,
obtained using all neurons from all mice and planes.

for the space correlations. For each mouse and plane we
computed C(c)(W, t) and extracted a correlation time as
described in Methods. We have observed that the corre-
lation time of a single neuron, τ0 (Fig. 4, inset of panel
B) grows with the neuron’s activity (firing rate per unit
time). This effect is an artifact of the deconvolution pro-
cedure. Since the aim of the computation in boxes is to
gauge how τ is affected by the collective behaviour of the
interacting neurons, we have subtracted τ0 from the val-
ues of correlation time obtained from the box signal (this
was done plane by plane). All correlation times reported
are subject to this subtraction.

The correlation time (averaged over planes) is shown in
Fig. 4B. Since we have shown that the correlation length
is proportional to W (Fig. 4A), this is equivalent to plot-
ting τ vs. correlation length apart from an irrelevant nu-
merical factor. The plot shows that τ grows with corre-
lation length as expected in a critical system. Unlike ξo
vs. W , the growth of τ is expected to be a (super-linear)
power law, τ ∼ W z, with z called the dynamic critical
exponent. Here we observe a very good power law in
some cases (like mice 6 and 7, with z ≈ 1.3), but in other
cases the curves deviate downwards from the power law
at high W . The details of the τ vs W curves remain to

be better understood, in particular given the possibility
that the critical power law is altered by arousal changes
typical of this experimental model data set, which may
be causing a dynamical meandering around the critical
point similar to what has been described in earlier exper-
iments [14, 15].

Another characteristic of critical dynamics is the scal-
ing of the correlation function itself. On changing the
observation scale (in our case, W ) one expects that, to-
gether with the characteristic time, the shape of the cor-
relation change. However, if the observation scale is
changed so that the ratio of the observation scale to the
correlation length is fixed, dynamic scaling states that
the shape of the (normalised) correlation decay will stay
the same, and only the decay scale (i.e. τ) should change
(in other words, when plotted against t/τ all correlation
functions should look the same). Since we have argued
that, the system being scale free, the effective correla-
tion length is proportional to W , the time correlations at
different box sizes are effectively computed at fixed ob-
servation/correlation scale ratio, and they should scale
with t/τ . The results in Fig. 5 show that this is actually
the case, although in some other cases the collapse of the
functions is less satisfactory (see SI).

c. Scale invariance of Eigenvalues— Systems
which, like the present one, exhibit scale-free correla-
tions are expected to show similar invariance also in the
eigenvalues of their covariance matrix. This is worth
discussing in this context, because it is frequent in the
related literature to find remarks like “the first two or
three principal components suffice to explain more than
90% of the variance”. It may well be that the common
explanation behind such observations is a mathematical
truism, that necessarily follows from the fact that the
system is critical. Consider Fig. 6, which depicts the full
correlation matrix for all planes of one mouse combined
together with the eigenvalues λi of several subsets of
neurons of different sizes. The eigenvalues are sorted
and plotted against their rank in a double logarithmic
plot that makes it clear that the magnitude of the
eigenvalues decreases as a (negative) power of its rank
up to a rank of about half the matrix size. The sum of
the first few terms of a power-law series make up for a
sizeable fraction of the total sum, so that a scale-free
distribution of the covariance eigenvalues can explain
the common observation that the first few principal
components explain most of the variance of the cortical
population’ activity. Interestingly, the λ vs. rank curves
scale when plotted against the relative rank (Fig. 6
panel B). This finite-size scaling property can be seen as
another manifestation of the lack of an intrinsic scale for
correlations: the magnitude of the largest eigenvalue is
given by the system size. Also, the other apparent scale,
namely the rank at which the power law is cut-offed, is
also set by system size.
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FIG. 5: Dynamic scaling of time correlations (A) Normalised

time correlation function, C(t,W ) = C(c)(t,W )/C(c)(0,W ),
see Eq. 5, vs. time for different observation boxes (computed
averaging over all boxes and 9 rotations as in Figs. 2 and 3.
(B) Same data plotted vs. the scaling variable t/τ . The col-
lapse shows that all correlations decay with the same shape,
with only the time scale changing for different W . Data are
for mouse 7, plane 5.

.

IV. CONCLUSIONS

We have analysed the space and time correlations of a
population of about ten thousand neurons in a region of
the mouse visual cortex. We have observed clear indica-
tion that pairs of neurons tend to decorrelate the further
apart in space they are. That the Euclidean distance
is a relevant variable affecting the degree of correlation
comes as a conclusion of four different ways of measur-
ing correlations in space. Moreover, we have seen that
the characteristic spatial scale of correlation decay scales
linearly with the (spatial) observation window W . This
is evidence that the correlation decay is scale-free: the
only spatial scale is that which is imposed on the system
from the outside, i.e. the size of the observation box, or
eventually the size of the system itself. A scale-free de-
cay is long range, in the sense that it is described by a
power law rather than by an exponential. So, although
correlations do decay with distance, they do so rather
slowly. This new evidence confirm previous studies find-
ing scale-free correlations, and thus suggesting that the

FIG. 6: Finite-size scaling of the covariance eigenvalues. (A)
Schematic view of the covariance matrix of all neurons for
mouse 7, all planes combined (shown in black are pairs with
Pearson correlation greater than 1/2. The numbers and the
dotted lines indicate the plane boundaries. Square subsets of
this matrix of size using the first 1, 2 . . . 5 planes are diago-
nalised to obtain the eigenvalues plotted on the right panel.
The size of the largest subset (5295 neurons) is chosen to stay
far from the degenerate case where there are more variables
that time points, leading to a spurious linear dependence of
the set of variables (a total of 10473 time points are available
for this mouse). (B) Eigenvalues vs. rank (double logarithmic)
for different matrix size. The raw eigenvalue vs. rank curves
(inset) can be scaled by plotting them against the relative
rank (rank/matrix size), as shown in the main plot.

resting brain is at or near a critical point.

The main novelty of this study is that we have com-
puted the concomitant time correlations, using the same
idea of a varying observation scale. In this way we have
explored how correlations in time and space are related.
We found that the correlation time τ grows for larger ob-
servation scales, much like the spatial correlation scale.
The relation between τ and W is not linear. According to
dynamic scaling, it is expected to be a power law, which
we find for some mice. The details of this curve and the
reason for its departure from a power law in some cases
remain to be elucidated, but the important point here is
that correlation length and time are closely related, and
that the fact that neuron activity is strongly correlated
is influencing the collective dynamics, similar to what
happens in thermodynamic critical systems.

We have also found that time correlations at different
W scale with t/τ , i.e. that the decay is identical apart
from a time rescaling. This is in agreement with the ex-
pectations of dynamic scaling, but only if the correlation
and observation lengths scale together. This is further ev-
idence for scale-free correlations, because it means that
the correlation scale has changed on changing the ob-
servation box in absence of any other alteration of the
system, which can only happen if the only correlation
scale is the observation scale, i.e. the system is scale free.

The uncovered behavior of the time correlations may
be relevant to provide an alternative mechanistic expla-
nation for the heterogeneity of the so-called “temporal
receptive fields of integration” which is established by
examining the autocorrelation function of spike-counts
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at rest [16, 17]. The current interpretation of slow auto-
correlation decay in a given neuron is that such neuron is
involved in integrating information across long periods of
time and viceversa. This view has been used to support
the idea that in the cortex there is a hierarchy of tempo-
ral receptive fields [18], including areas with long decay
times which correspond to cognitive tasks requiring long
integration of information across time, such as decision
making and working memory [19]. Since dynamic scal-
ing specifically predicts slower decay for larger cortical
networks at criticality, it would be interesting to explore
if/how this hierarchy corresponds simply to a hierarchy
of sizes of the corresponding networks.

Finally, we have shown that finite-size scaling also ap-
plies to the eigenvalues of the covariance matrix, a fact
that is another manifestation of scale invariance in cor-
relations, and that may explain the frequent observation
that a few principal components account for most of the

variance in cortical networks data. In summary, the com-
bined evidence of spatial correlations, temporal correla-
tions and the eigenvalue analysis builds a stronger case
in support of the view that the ongoing brain dynamics
is critical or near-critical.
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Appendix A: Computation of the correlation time
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FIG. 7: Average pair distance as a function of the Pearson
correlation for all mouses and planes.

To compute the correlation time we use the defini-
tion obtained from ρ̃(ω), the Fourier transform of ρ(t) =
C(t)/C(t = 0). Normalization of ρ(t) implies that
1 = ρ(0) =

∫∞
−∞

dω
2π ρ̃(ω). Then a characteristic frequency

ω0 (and a characteristic time τ0 = 1/ω0) can be defined
such that half of the spectrum of ρ̃(ω) is contained in
ω ∈ [−ω0, ω0] [13], i.e.∫ ω0

−ω0

dω

2π
ρ̃(ω) =

1

2
. (A1)

This definition of can be expressed directly in the time
domain writing

1

2
=

∫ ω0

−ω0

dω

2π

∫ ∞
−∞

dt ρ(t)eiωt = 2

∫ ∞
0

dtρ(t)

∫ ω0

−ω0

dω

2π
eiωt

=
2

π

∫ ∞
0

dt ρ(t)
sinω0t

t
,

(A2)

where we have used the fact that ρ(t) is even. Then the
correlation time is defined by∫ ∞

0

dt

t
ρ(t) sin

(
t

τ0

)
=
π

4
. (A3)

It can be seen that if ρ(t) = f(t/τ), then τ0 is propor-
tional to τ (it suffices to change the integration variable
to u = t/τ in the integral above). An advantage of this
definition is that it copes well with the case when inertial
effects are important and manifest in (damped) oscilla-
tions of the correlation function

Appendix B: Correlation and distance

The correlation functions studied in the main text pro-
ceed by choosing a pair of neurons within a given dis-

tance and computing their correlation at a single time
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FIG. 8: Time correlation function Eq. 5 vs. time for different
observation boxes. In this example the dynamic scaling of
C(t,W ) is only apparent for small values of t, but not for
values larger than 1–2 s. (A) (same format as for Figure 5 in
main text) shows the un-normalized C(t) and (B) corresponds
to the same data plotted vs. the scaling variable t/τ . Data
are for mouse 6, plane 2.

frame. This procedure finds that correlations are smaller
for larger distances. An alternative procedure, that leads
to the same conclusion, is shown in Fig. 7. For each
mouse’s dataset, one starts by computing the Pearson
correlation for all pairs. After that, correlations are
binned (bin width= .01). Finally for the pairs within
each bin, their average correlations and their respective
average Euclidean distances are computed.

Appendix C: Time correlation function

In some datasets we noted that C(t,W ) only collapses
for small values of t but not for longer ones. An exam-
ple of this disagreement is presented in Fig. 8. With the
present data, we can only provide probable reasons. The
first is related with non-stationarity conditions linked
with the fact that the data is obtained while the ani-
mal executes at will bursts of wheel running. This alone
may affect the entire correlation structure of the brain.
The second factor may simply be the changes in arousal,
which in these experiments was monitored by changes
in the mice pupil diameter. The role both possibilities
deserves to be explored in further work.
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