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Abstract The effects of temperature and interfacial elastic-
ity on nanostructured titanium dioxide (TiO2) microemul-
sions templated materials have been investigated. The aim
was to establish a simple and rapid selection of the best
experimental conditions for achieving some required mate-
rial property. TiO2 materials have been prepared through
reactive microemulsion precipitation. The effect of micro-
emulsion process parameters (temperature and oil phase
density) on the final material characteristics has been inves-
tigated. The titania nanopowders were characterized by X-
ray diffraction, Fourier transform infrared spectroscopy,
field emission scanning electron microscopy, and N2 ad-
sorption–desorption isotherms. The results obtained by dif-
ferent process conditions show that the nonpolar phase
density and temperature of microemulsions have a great
influence on the final characteristics of the obtained materi-
al. A reduction of the microemulsion oil density causes a
significant decrease in the particle agglomeration and an
augment of the material-specific surface area and pore vol-
ume. At the same time, rutile is favored over anatase phase.
The increase of template microemulsion temperature produ-
ces, in some systems, a morphology change from granular to
a bicontinuous structure.

Keywords Microemulsions . Templates . Titanium dioxide .
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Introduction

Nanomaterials have been attracting extensive attention
because of their unique and often improved mechanical,
electrical, optical, and chemical properties as compared
with conventional polycrystalline materials [1–4]. Titani-
um dioxide (TiO2) is a very useful semiconducting tran-
sition metal oxide and exhibits unique characteristics such
as low cost, easy handling, nontoxic, high gas sensitivity
and dielectric constant, resistance to photochemical and
chemical erosion, and chemical and photocatalyzing prop-
erties [5]. These advantages cause TiO2 materials to be
widely investigated for various applications in photocatal-
ysis, photovoltaic cells, photonic crystals, sensors, ultra-
violet blockers, smart surface coatings, pigments, and
paints [6–10]. To date, many efforts have been made to
prepare nanocrystalline TiO2. Numerous techniques in-
cluding plasma processes, sol–gel, synthesis in supercrit-
ical fluids, chemical precipitation methods, hydrothermal
crystallization, and chemical vapor deposition [11] have
been employed. These methods suffer the problem of
extreme reaction conditions.

Consequently, there is a strong social and economic
pressure that encourages the design of cheaper and more
sustainable materials, products, and processes [12]. The
self-assembly of relatively small molecules yielding new
nano-objects opens unforeseen and unique opportunities
for a variety of fields in science as well as for several
industries. A number of commercial products based on
nanostructures are already currently available for public
consumption [13]. For instance, architecturally complex
assemblies and tailored functionalized polymers have been
specifically employed in sensors, semiconductors, and phar-
maceuticals devices [14–16]. Mixtures of different mole-
cules which self-assemble in aqueous solution represent an
interesting alternative for the design of nanoparticles due to
its higher flexibility when compared to systems based on
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homogeneous molecules. The competition between electro-
static interactions favoring the mixing and hydrophobic,
promoting segregation, may result in modulated phases or
two-dimensional self-assembly. This has been suggested as
a tactic in different biological systems [17–20].

In this sense, reverse microemulsion synthesis of oxide
materials has been shown to be a very promising procedure
for obtaining ultrafine and nanometric particles with con-
trolled size and shape. The main idea behind this technique
is that by appropriate control of the synthesis parameters,
one can use these nanoreactors to generate tailor-made
products down to a nanoscale level with new and special
properties. Despite the several investigations that have been
carried out on this synthesis route in the last years [21–24],
the process control is not well established, probably due to
the complexity of the microemulsion employed in the par-
ticles’ development. The literature on this processing route
suffers from the lack of studies on the influence of micro-
emulsion parameters on the characteristics of the final syn-
thesized powder products.

The shape (and size) of the dispersed nanodroplet in a
microemulsion is mainly governed by the curvature free
energy and is determined by film elasticity [25–27]. The
elasticity of the film depends not only on the surfactant type
[28] and the thermodynamic conditions but also on the
nature of the oil phase [29].

In a previous work, we obtained silica-based materials
of different size and morphology by varying water-to-
surfactant microemulsion ratio. We found that granular ma-
terial became a bicontinuous system with the augment of
microemulsion water content. The effect of this parameter
on the material adsorption properties was also investigated
[23]. Here, we try to extend the above studies to evaluate the
effect of microemulsion temperature and oil phase density
on nanostructured TiO2 material properties. In this work, we
have used six different microemulsion systems to synthesize
nanostructured TiO2 materials. The variations of microe-
mulsion nonpolar phase and temperature were correlated
with the size, shape, and crystal structure of the obtained
materials.

Experimental

Materials and samples

Sodium bis(2-ethylhexyl) sulfosuccinate (Aerosol OT (AOT),
99 % Sigma), n-hexane (Merck, δ00.6548 gcm−3), n-heptane
(Merck, δ00.684 gcm−3), cyclohexane (Merck, δ00.776 gcm−3),
and TiCl4 (Carlo Erba, 99 %, δ01.722 gcm−3) were used
without further purification. For microemulsion preparation,
only triple-distilled water was used.

Microemulsion systems

Experiments were performed on water/AOT/alkane micro-
emulsion systems, for the alkanes n-hexane, n-heptane,
and cyclohexane. The composition of the microemulsion
is given here in terms of W0, the ratio of water to surfactant
molar concentrations, and S0, the ratio of oil to surfactant
molar concentration. Microemulsion systems of S0030 and
W0060 were prepared. In the AOT microemulsion system,
W0 essentially determines the radius of the water droplets
and S0 their concentration in the oil phase [30] (for a given
W0, the droplet concentration is proportional to 1/S0). As
the critical micellization concentration of AOT in both oil
and water is low compared with the concentration used
here, it can be assumed that all the surfactant molecules are
localized at the interface between water and oil [31]. The
microemulsions were prepared using the injection method,
by mixing an appropriate quantity of water with an AOT
solution in oil [32]. The resulting microemulsions were
placed in Teflon-stoppered test tubes and left to equilibrate
for 24 h at the desired temperature conditions (30 and 40 °C)
before used.

We worked within the boundaries of the L2 phase, where
the structure of the aggregates is spherical [33]. This droplet
structure has been found to be fairly insensitive to the
concentration of the droplets. Following the above proce-
dure, six different microemulsion systems were prepared: (I)
water/AOT/n-hexane, 30 °C; (II) water/AOT/n-heptane,
30 °C; (III) water/AOT/cyclohexane, 30 °C; (IV) water/
AOT/n-hexane, 40 °C; (V) water/AOT/n-heptane, 40 °C;
and (VI) water/AOT/cyclohexane, 40 °C.

Microemulsion-mediated hydrothermal synthesis of TiO2

samples

Titanium oxides structures (TiO2) were prepared using a
combination of a microemulsion-mediated hydrothermal
synthesis: 1.4 mL of TiCl4 was added to 15 mL of each of
the above-described microemulsion and left 3 days to react
following the reaction shown below:

TiCl4 þ 2H2O $ TiO2 þ 4HCl

Then, HCl and the nonpolar solvent were eliminated
by evaporation under vacuum. The resulting gel was left
for 24 h in an autoclave at 100 °C. The obtained materi-
als were filtered and washed with triple-distilled water
and left to dry at room temperature. Finally, it was
calcined for 7 h at 540 °C in an air flux. The obtained
materials were called MI, MII, MIII, MIV, MV, and MVI;
the suffixes correspond to the microemulsion system used
as template.
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Methods

Field emission scanning electron microscopy

Field emission scanning electron microscopy (FE-SEM)
was performed using a JEOL 35 CF (Tokyo, Japan).

X-ray powder diffraction

Powder X-ray diffraction (XRD) data were collected with a
Philips PW 1710 diffractometer with Cu-Kα radiation (l0
1.5418 Ǻ) and graphite monochromator operated at 45 kV,
30 mA, and 25 °C.

Fourier transform infrared spectroscopy spectroscopy

Fourier transform infrared spectroscopy (FT-IR) experi-
ments were done in a Nicolet FT-IR Nexus 470 Spectropho-
tometer. To avoid coadsorbed water, the samples were
dried under vacuum until constant weight was achieved
and diluted with KBr powder before the FT-IR spectra
were recorded.

Nitrogen adsorption–desorption isotherms

The nitrogen isotherms at −196 °C were measured with a
Micrometrics Model Accelerated Surface Area and Poros-
imetry System 2020 instrument. Each sample was degassed
at 100 °C for 720 min at a pressure of 10−4 Pa.

Results

Morphology and particle size

Scanning electron microphotographs of MI, MII, and MIII

materials calcined at 540 °C are shown in Fig. 1. The
particles of these materials have spherical morphology. In
addition, the size and degree of association increase with
increasing the template microemulsion nonpolar phase den-
sity. Apparently, discernible pores are present between the
nanosized TiO2 particles. The pores can be seen as black
spots with nonordered wormhole-like structures, whereas
the nanosized TiO2 particles appear white. The effect of
temperature on the synthesized materials can be appreciated
from inspection of Fig. 2, where it can be observed how the
systems templated with water/AOT/n-hexane and water/
AOT/cyclohexane microemulsions undergo changes from
granular to a bicontinuous phase. For those materials pre-
pared from water/AOT/n-heptane microemulsion, an in-
crease of particle association is observed, but without forming
a bicontinuous structure.

Also, fractal dimension can be obtained from SEM
images of the gels. To do this, the box counting method
was applied to different SEM images. This protocol consists
of applying an increasingly fine grid over the area studied
and in counting at each iteration the number of boxes con-
taining at least one part of the object to be measured. The
fractal dimension Df is then linked to the number n(s) of
boxes of dimension s necessary to fill the surface area of the
particle according to [34]:

Df ¼ lim s!0
ln nðsÞ
ln 1

s

� � ð1Þ

This method was also optimized by means of a calculation
procedure stemming from the work of Foroutan-Pour et al.
[35], which allows a precise determination of the key param-
eters of the method, namely, the number and the dimensions of
the boxes [36]. The images, initially with 256 gray levels and
1,024×768 pixels in size, are converted to binary images. The

Fig. 1 FE-SEM microphotographs showing the surface morphology
of TiO2 samples prepared by reverse microemulsions: a MI, b MII, and
c MIII
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fractal dimension is then derived from the slope of a least-
square linear fit of the plot of log n versus log (box size),
where n is the number of nonoverlapping equal boxes that
would fill the projected surface area of the aggregate. This
operation can be carried out by different software packages
[37]. Log–log representations for the calculations of fractal
dimension on systems under study lead to the values listed in
Table 1. It is interesting to see how the fractal dimension tends
to decrease as oil density increases. This fact can be observed
for both temperatures. Previous studies have analyzed the
effect of type of oil on the particle size showing that the

particle size decreases with decreasing oil density [38]. How-
ever, to the best of our knowledge, this is the first study where
the fractal dimension of the materials is related to the interfacial
elasticity of the templates.

XRD and FT-IR analysis

Figures 3 and 4 show the XRD patterns of all tested materi-
als. The nanopowders exhibit a high degree of crystallinity.
Relatively broad diffraction peaks due to TiO2 (anatase and
rutile) structures are present in all synthesized materials. No
obvious peaks are observed regarding brookite ((121), at
2θ030.8°), some peaks that correspond to TiO, Ti5O9, and
Ti7O3 appear too, but they are negligible. The average
crystallite size (L) was determined by XRD line broadening
technique using the Debye–Scherrer equation:

L ¼ 0:94l
b cos θ

ð2Þ

where l is the wavelength of the X-ray used and b is the
relative peak broadening, calculated as b2 ¼ b2exp � b2ref ,

Fig. 2 FE-SEM microphotographs showing the surface morphology
of TiO2 samples prepared by reverse microemulsions: aMIV, bMV, and
c MVI

Table 1 Fractal dimension of the synthesized materials obtained from
analysis of SEM images

Microemulsion template system 30 °C 40 °C

Water/AOT/n-hexane 1.84 1.80

Water/AOT/n-heptane 1.87 1.70

Water/AOT/cyclohexane 1.77 1.65

Fig. 3 XRD pattern of TiO2 nanopowders obtained through precipita-
tion in microemulsion after calcination at 540 °C for 7 h in air flux: MI

(water/AOT/n-hexane, 30 °C), MII (water/AOT/n-heptane, 30 °C), and
MIII (water/AOT/cyclohexane, 30 °C). R rutile
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where bexp and bref are half widths at maxima observed
on a given sample and on a reference material which is
ideally crystalline, respectively [39]. Results are shown
in Table 2.

Changes in temperature conditions or in the oil phase
during template emulsion preparation result in an alteration
of TiO2 crystalline phase. Table 2 presents the rutile-to-
anatase ratio (Fr) computed for each material from the
XRD intensity data by the following equation [40]:

Fr ¼ 1� 1þ 1:265Irutile 110ð Þ Ianatase 101ð Þ
�� ��1 ð3Þ

Materials prepared at 30 °C present a high proportion of
rutile phase, and such proportion increases as the oil phase
density in the template microemulsion augments. On the
other hand, a change in the synthesis temperature conditions
favors anatase phase.

The percentage of anatase phase depends on the template
microemulsion system. Thus, for the material templated
with water/AOT/n-hexane microemulsion, the increase of
temperature causes a small diminution of rutile phase. When
cyclohexane is used instead n-hexane, a 30 % plus of
anatase phase is observed with the increase of temperature,
and for MV (TiO2 material templated with water/AOT/
n-heptane microemulsion, at 40 °C), a single-anatase phase
(without rutile) is obtained.

To clarify the state of anatase after crystallization, IR trans-
mission spectra, shown in Figs. 5 and 6, were analyzed for all
tested materials before calcinations. The peak appearing near
3,400 cm−1 is due to stretching vibration of O-H group, while
the corresponding peak at 1,628 cm−1 can be ascribed to
bending vibrations of adsorbed water molecules. The peaks
appearing near 2,900 and 900–1,300 cm−1 correspond to
organic bonds. Ti-O-Ti appears in region 400–600 cm−1,
which arises from the lattice vibration of TiO2 [41]. An
increase of adsorption bands due to organic residues can be
found in such materials witch lead to a major content of rutile
phase (MI, MII, MIII, MIV), while much smaller bands are
visible in MVI (major content of anatase phase). For MI and
MIV, adsorption bands due to H2O, OH are also distinguished.
No bands related to H2O, OH or organic residues can be
appreciated for MV where single anatase phase is obtained.

N2 adsorption–desorption analysis

The obtained N2 adsorption–desorption results for all tested
materials are summarized in Table 3. To determine the pore
radius (rp) the Kelvin equation was used [42]:

kBTln
p

p0

� �
¼ � 2σu cos θ

rm
ð4Þ

where kB is the Boltzmann constant, T is the absolute temper-
ature, p is the vapor pressure in the gas phase, p0 is the vapor
pressure at saturation onto a flat liquid surface at temperature
T, σ is the surface tension of the liquid adsorbate, rm is the
mean radius of curvature of the liquid/gas interface, taken as
the pore radius, θ is the contact radius, and υ is the volume per
molecule of liquid adsorbate. For nitrogen at −196 °C, σ0
8.88 mNm−1, θ00, and υ00.057589 nm3 [42]. To determine
the Brunauer–Emmet–Teller (BET) area, ABET, the nitrogen
molecules’ diameter is taken as 0.43 nm, calculated by assum-
ing the closest packing spheres [43], and the area per molecule
am00.1620 nm2.

Fig. 4 XRD pattern of TiO2 nanopowders obtained through precipita-
tion in microemulsion after calcination at 540 °C for 7 h in air flux:MIV

(water/AOT/n-hexane, 40 °C), MV (water/AOT/n-heptane, 40 °C), and
MVI (water/AOT/cyclohexane, 40 °C). A anatase

Table 2 Textural parameters of prepared TiO2 samples

Microemulsion template system 30 °C 40 °C

Fr La/nm Fr La/nm

Water/AOT/n-hexane 0.79 9.51 0.80 9.77

Water/AOT/n-heptane 0.88 9.23 0 12.58

Water/AOT/cyclohexane 0.93 12.17 0.62 11.33

Fr rutile fraction, L average crystalline size
a Computed from anatase peak of XRD by line broadening
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In the so-called modified Kelvin equation, which is the
basis of the Barrett–Joyner–Halenda (BJH) method [44],
used to extract pore size distribution from the isotherm
analysis, 2/rm is replaced by f rp � t

� ��
f/(rp−t), where rp is

the pore radius, f is the meniscus shape factor, which,
provided there is a perfect wetting, equals 1 or 2 in relation
to the filling (adsorption) or the empting (desorption) of the
pore, and t is the statistical thickness of the adsorption film
on a pore wall. The surface layer thickness t for nitrogen
adsorption on silica is given by [45]:

t nmð Þ ¼ 0:1
13:99

0:034� log p
p0

� �
8<
:

9=
;

1
2

ð5Þ

From t plots proposed by Halsey [46], it is possible to
determine the total surface area (Attot), the external surface
area (Atext), the pore volume (Vtp), and the core volume (Vc),
as explained below. The t plot of pore structure analysis is
based on the assumption that micropore filling in porous
solids takes place by the formation of successive layers of
the adsorbate until the layers in opposite pore walls merge.

As an example, N2 adsorption–desorption isotherm, t plot, and
pore radius distribution for MI are shown in Fig. 7. The t plot
shows the typical appearance presented by adsorbents with
slit-shaped pores. Below point “a,” no pores are filled; be-
tween a and “b,” mesopores are filled, a indicating the mini-
mum pore size; and above “c,” Kelvin capillary condensation
occurs. Since the intercept of the straight line at low t values is
not 0, it follows that micropores also are present, whose
volume is the intercept, and the slope equals the free surface.
Similar results are obtained for the rest of studied materials.

The BET specific area (ABET) of MI, MII, and MIII samples
is 86.89, 45.89, and 32.18 m2g−1, respectively. For those
materials, the augment of microemulsion alkane phase density
results in a diminution of micropore volume (Vspat), while it
has no significant effect on pore diameter (Daap). The increase
of temperature synthesis conditions causes an augment of
ABET from 45.89 to 119.11 m2g−1 for the material templated
with water/AOT/n-heptane and from 32.18 to 60.70 m2g−1 for
those preparedwith water/AOT/cyclohexanemicroemulsions,
while in MI, it produces a decrease in ABET to 62.09 m2g−1.
Similar variations present the parameters Vspat and Daap.

Fig. 5 FT-IR of TiO2 samples. MI (water/AOT/n-hexane, 30 °C), MII

(water/AOT/n-heptane, 30 °C), andMIII (water/AOT/cyclohexane, 30 °C)

Fig. 6 FT-IR of TiO2 samples. MIV (water/AOT/n-hexane, 40 °C), MV

(water/AOT/n-heptane, 40 °C), andMVI (water/AOT/cyclohexane, 40 °C)
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Discussion

Influence of nonpolar microemulsion phase

The change in nonpolar microemulsion phase density has no
any effect on particle morphology. In most cases, spherical
nanoparticles are obtained in reverse micelles where the
surfactant-stabilized water nanodroplets play the role of
nanoreactors. It was initially assumed that the nanodroplets
could be used as templates to control the final size of the
particles obtained in reverse micelles. However, later re-
search has shown that there is no direct correlation between
the droplet size and the particle size, although the droplet
size does seem to have a great influence on the final particle
size in many cases. Nevertheless, the combination of the
droplet size with other parameters including intermicellar
exchange rate, surfactant film flexibility, and reactant concen-
tration can exert a delicate control over the final particle size
[47]. For the tested MI, MII, and MIII materials, spherical

structures are obtained (Fig. 1). These facts are in accord with
literature findings, which said that such characteristic only
depends on water-to-surfactant (W0) and water-to-oil ratio
[22, 25, 48]. For the specific case of AOT-stabilized micro-
emulsions, it has been shown by neutron scattering that theW0

value determines the radius R of the spherical water droplet
and a linear relation is found [49]:

R nmð Þ ¼ 0:175�W0 ð6Þ
In our studied systems, W0060 and S0030, the theoretical

value of the droplets obtained from Eq. (5) was 10.50 nm.
This value is similar than those obtained for the average
crystallite size (L) determined by XRD line broadening tech-
nique using the Debye–Scherrer equation (Table 2).

From inspection of FE-SEMmicrophotographs (Fig. 1), an
increase of particle agglomeration is seen, due to the increase
of the templated microemulsion oil phase density. The micro-
emulsion nonpolar phase density alters the microdroplet
environment favoring microemulsion interdroplet attractive

Table 3 Nitrogen adsorption data of the different samples

Sample Asp (m
2/g) ABET (m2/g) Atext (m

2/g) ABJHac (m
2/g) Daap (Ǻ) DaBJH (Ǻ) Vspat (cm

3/g) VBJHacvp (cm
3/g)

MI 85.89 86.89 78.72 86.61 154.63 190.14 0.033 0.041

MII 41.06 45.89 72.71 23.46 167.49 369.49 0.019 0.021

MIII 30.21 32.18 46.07 18.95 130.47 255.12 0.010 0.012

MIV 53.64 62.09 82.09 11.40 85.83 501.55 0.013 0.014

MV 117.85 119.11 12.86 106.24 205.91 235.70 0.061 0.071

MVI 59.02 60.70 69.00 58.18 382.65 394.76 0.058 0.057

Asp single-point surface area at P/P000.2002, ABET BET surface area, Atext t plot external surface area, ABJHac BJH adsorption cumulative surface
area of pores between 3.4- and 600-nm diameter, Daap adsorption average pore diameter by BET (8 V/A), DaBJH BJH adsorption average pore
diameter, Vspat single point adsorption total pore volume of pores, VBJHacvp BJH adsorption cumulative volume of pores

Fig. 7 a N2 adsorption–
desorption isotherm, b t plot,
and c pore diameter distribution
of MI. The explanation of a, b,
and c is in the text
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interactions due to a reduction in solvent penetration into the
interface [50, 51]. This fact would cause an increase of micro-
droplet association and the posterior particle agglomeration.
As a result, there is a decrease in ABET and in pore volume.
The pore diameter is not affected by the variation of alkane
density presumably because it directly depends on particle
size and morphology.

The materials’ phase composition (Fig. 3) is different
from that of other TiO2 powder prepared by microemul-
sions method reported in the literature, for which pure
TiO2 anatase was achieved [52]. The solvent effect on
the crystalline phase of obtained materials is explained
on basis of the preferential adsorption of the organic
molecule on specific crystallite faces, which inhibits the
growth of some planes and favors others [53, 54]. The
presence of the organic residues provides nucleation sites
for the rutile phase [55]. On the other hand, from XRD
and FT-IR results, we can end that the H2O and OH
remaining after crystallization have a great effect on the
anatase–rutile transition kinetics by breaking Ti-O bonds
or by creating oxygen vacancies as it was previously found by
Ha et al. [56].

Microemulsion temperature conditions effect

Usually, the works found in literature evaluated the varia-
tion of temperature in the hydrothermal and calcination [5,
53, 56] conditions and its effect in the final synthesized
material morphology or in its crystallinity. Here, we found
that small changes in the temperature during templated
microemulsion preparation can cause similar effects. How-
ever, the variation of microemulsion preparation temperature
conditions has no direct correlation with particle character-
istics as the effect of nonpolar phase density has. Temperature
effect is necessarily associated with a specific microemulsion
system. So, for those materials templated with AOT/water/
n-hexane, it can be seen that there is a variation ofmorphology
and surface properties, while crystalline properties remain
almost constant.

The formation of a microemulsion is an entropy-driven
process. The enthalpy term is very small since only little
work is required to form the water/oil interface due to the
very small interfacial tension developing between the
phases separated by the surfactant monolayer. As a conse-
quence, the microscopic structure of the water and oil
domains is strongly dependent on temperature. By Eicke
et al. [57], it was first observed that the microemulsion
electric conductivity increases drastically within a range of
few degrees centigrade.

The temperature increase causes an augment of micro-
droplet interface flexibility. On the other hand, due to the
dynamic character of the microemulsion, during the particle
formation process, aggregates constantly collide. Both

mentioned facts favor the exchange rate of droplet content
and the droplets coalescence. In some surfactant and oil
phase conditions, the microemulsion transforms in a bicon-
tinuous system; as a consequence, the obtained materials
change from granular to a spongelike structure as we can
appreciate for MIV and MVI materials in Fig. 2. Except for
the water/AOT/n-hexane templated materials (MI and MIV),
all powders present an increase of ABET, pore diameter, and
pore volume with the augment of temperature. In the water/
AOT/n-hexane microemulsion systems, the temperature in-
crease caused a major droplet association, so the obtained
material has a minor BET surface area, pore diameter, and
pore volume.

The alteration of microemulsion (due to the temperature
increase) probably changes the preferential adsorption of the
organic and water molecules on specific crystallite faces and
decreases the growth of rutile instead of anatase. So MVI

presents a 30 % reduction of rutile phase, while in MV, it is
completely absent.

Conclusions

Both microemulsion nonpolar phase density and tempera-
ture conditions have a great influence on the characteristic
of the TiO2 nanopowders. A uniform TiO2 material com-
posed of monodisperse spherical nanoparticles of R ≈ 10 nm
was prepared by water/AOT/n-hexane reverse microemul-
sion at 30 °C. A change in microemulsion oil phase density
leads to increased particle agglomeration and size while
retaining almost constant spherical morphology. The alkane
density also affects the material crystalline phase, favoring
rutile growth instead of anatase. A brief increase in the
microemulsion temperature condition causes an augment
of particle agglomeration and in some systems a morpho-
logical change from granular to a bicontinuous structure.
The fractal dimension of the TiO2 nanostructures tends to
decrease as oil density increases. The change in morphology
reduces the specific surface area of the material templated
with AOT/water/n-hexane microemulsion, while for AOT/
water/n-heptane and AOT/water/cyclohexane microemul-
sions, augments. For such systems, a high proportion of
anatase phase is seen. Overall, this work shows the versatil-
ity of microemulsions to form a variety of structures due to
the balance between their interfacial elasticity and tempera-
ture. Our results are expected to be useful to guide the
design of nanostructures based on a simple, versatile, and
rapid method of preparing nanomaterials with desirable
properties for certain applications.
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