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In this paper the double ionization of helium by high-energy electron impact is studied. The corresponding
four-body Schrödinger equation is transformed into a set of driven equations containing successive orders in
the projectile-target interaction. The transition amplitude obtained from the asymptotic limit of the first-order
solution is shown to be equivalent to the familiar first Born approximation. The first-order driven equation is solved
within a generalized Sturmian approach for an S-wave (e,3e) model process with high incident energy and small
momentum transfer corresponding to published measurements. Two independent numerical implementations,
one using spherical and the other hyperspherical coordinates, yield mutual agreement. From our ab initio solution,
the transition amplitude is extracted, and single differential cross sections are calculated and could be taken as
benchmark values to test other numerical methods in a previously unexplored energy domain.
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I. INTRODUCTION

The study of electron-impact double ionization of atoms
allows one to learn about correlated systems. The most detailed
information is obtained through a kinematically complete
(e,3e) experiment, in which the three outgoing particles are
detected in coincidence and a fivefold differential cross section
(FDCS) is deduced. At high impact energy, the only available
absolute experimental (e,3e) data for helium have been pub-
lished by the Orsay group [1,2]. The coplanar measurements
were performed with an incoming projectile of 5600 eV, two
different sets of ejected electrons energies (4 + 4 eV and
10 + 10 eV), and a small scattering angle corresponding to
small momentum transfers q = 0.22 a.u. and q = 0.24 a.u.: the
conditions are such that the first Born approximation should be
suitable. In spite of this, no theoretical study has yet managed
to describe satisfactorily all the data. What is more confusing,
and difficult to explain, is that several ab initio methods provide
different answers both in FDCS shapes and magnitudes (see
a review in Ref. [3]). The main aim of this paper is not to
attempt to resolve the situation, but rather to provide—for these
high projectile energies—benchmark cross sections which,
hopefully, other ab initio methods will reproduce. If agreement
can be found, at least for the simplified e−-He S-wave (e,3e)
model proposed below, then one can start exploring more
deeply the reasons beyond the above-mentioned disagreements
for the real problem.

From a theoretical point of view, the description of an
(e,3e) process on helium requires the solution of a pure
four-body Coulomb problem. However, a reduction to a
three-body problem can be performed in the case of high-
energy projectiles as those used in the Orsay experiment.
For two electrons escaping with energies E2 and E3 in the
solid angles d�2 and d�3, the FDCS—within the first Born

*Also at Consejo Nacional de Investigaciones Cientı́ficas y
Técnicas, CONICET, Argentina.

approximation—is defined as [4]

d5σ

d�2d�3d�f dE2dE3
= (2π )4 kf k2k3

ki

|Tf i |2, (1)

in terms of the transition matrix

Tf i = 4π

q2
〈�−

f |W |�0〉. (2)

Here q = ki − kf is the momentum transferred to the target
[projectile with initial (ki) and final (kf ) momenta], and W

contains the Fourier transform of the interaction between the
projectile and the three target particles. Only three-body wave
functions are required in (2): �0 representing the helium
ground state, and a double continuum �−

f describing the
movement of the two ejected electrons (momenta k2 and k3)
in the presence of the residual target ion.

Various methods have been developed in the past decades
to describe both types of three-body states. The description of
the double continuum is by far the most difficult both from
the theoretical as well as the numerical point of view, the
main difficulty being the imposition of appropriate asymptotic
behaviors. Ab initio methods like the R matrix [5], J matrix
[6,7], convergent close coupling [8], and exterior complex
scaling [9] have been very successful in describing the single
ionization of atoms by electron impact. For the simplest
case, the ionization of hydrogen by electron impact, really
good agreement has been found not only between several ab
initio methods but also in their comparison with the available
experimental data. This very satisfactory picture suggests that
all the methods provide an appropriate description of the
double continuum of a three-body Coulomb system (or at
least they numerically manage to find convergence towards
the exact solution of the problem). From these observations,
it can be stated that the three-body scattering problem has
been solved numerically. This idyllic situation, however, is
not encountered when applying the same double continuum
wave function to describe (e,3e) processes within the first
Born approximation. When comparing the results provided by
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ab initio methods, no concluding agreement is found with
the two sets of absolute experimental data. What is even
more significant, and unsatisfactory from a theoretical point
of view, is that no agreement is found between the different ab
initio methods [3]. This is difficult to understand (and accept)
because they should all provide the exact solutions of the
three-body problem.

The full solution of the four-body Coulomb problem
within the context of collisional processes requires a huge
amount of computational resources. In particular, the triple
continuum scattering wave function necessary to study a
(e,3e) process has been obtained only within a time-dependent
treatment which, however, is restricted, again by computa-
tional limitations, to low energies of the projectile and of the
ejected electrons [10,11]. A time-dependent treatment with
the high impact energy of the Orsay experiment has also
been implemented using a wave-packet evolution combined
with the exterior complex scaling technique [12]. Even when
the shapes of the cross sections obtained are in relatively
good agreement with the different data sets, this method
presents a disagreement in magnitude being, on average, of
a factor 2.6 when compared with the 10 eV data, and a factor
8.5 when compared with the 4 eV set. Two other ab initio
treatments of the process have been implemented, namely the
convergent-close-coupling [13] and the J-matrix approaches
[6,7,14]. The close-coupling approach has a more or less
good representation of the FDCS angular shapes, but fails
by magnitude factors of 3.2 (respectively 14) with the 10 eV
(respectively 4 eV) data sets. The J-matrix approach [6,7]
also presents a disagreement in magnitude when compared
with the other methods and with the experimental data [3].
Very recently, the group of Piraux implemented a J-matrix
approach [14] and found a reasonable overall agreement with
both sets of experimental data; however, due to convergence
problems that appear in the formulation, the authors stated that
their results cannot be considered as conclusive. Thus, overall,
the situation is far from being resolved.

In order to contribute in elucidating this confusing picture,
we propose here to study an e−-He double-ionization S-wave
model, providing data which could be used to test numerical
methods. To describe (e,3e) processes, we first introduce
a high-energy approach where convergence problems are
avoided; the formulation, based on the expansion of the wave
function in powers of the projectile interactions, is equivalent
to the Born series but written in terms of driven differential
equations. The solution to the zero- and first-order equations
contains the first Born approximation for the full four-body
problem. The advantage of our proposal is that it leads to
a three-body problem where no convergency problems arise
since the driven term contains the helium ground state and is
therefore of short range. Within this formalism, we propose
to study a helium double-ionization S-wave model. We shall
solve numerically the corresponding driven equation by using
a generalized Sturmian approach in which the asymptotic
conditions of the wave functions are imposed by defining the
basis appropriately. Both spherical [15–17] and hyperspherical
[18,19] formulations—which are fully independent—will be
used and compared favorably. For the Orsay high-incident-
energy conditions [1,2], we shall present cross sections which
could serve as benchmark values.

Model calculations, used as benchmarks, can be found
throughout the collision literature. They are useful, in general,
as they allow one to put on a strong footing different numerical
methods which do not necessarily yield converging results
when applied to complicated scattering processes which
involve several ingredients. For the three-body problem, before
solving the full e−-H ionization problem, the S-wave model
(often referred to as the Temkin-Poet model [20,21]) calcula-
tions have played a very important role in the development of
theoretical methods. Very recently, a Coulombic three-body
breakup model was presented [22,23] allowing for detailed
investigations of convergence issues. In a similar way, it is to
be expected that a four-body e−-He S-wave model will play
an equally important role for understanding double ionization,
as well as ionization with excitation. Although restricted to
zero angular momentum states, an S-wave model serves as
a test bed. It contains most of the features and difficulties
associated to the full problem of treating electron collisions
with a target that has two active electrons, but requires less
computational resources. One such model was investigated
in Ref. [24], where the authors focused on double ionization
at around 200 eV incident energy. In Ref. [25], Plottke and
co-workers made a systematic study of single ionization
from threshold to several hundred electron volts; all electrons
were not treated in an equivalent manner. A similar model
was considered by Horner and co-workers [26], who studied
excitation and single ionization with low projectile energies.
Recently, the propagating exterior complex scaling method
was used to explore several four-body processes within the
Temkin-Poet model [27,28]. The authors made a very complete
study of excitation, excitation ionization, and also double
ionization. Their nonperturbative solution was calculated with
high accuracy, and their results should certainly be considered
as solid benchmark values. However, in the case of double
ionization—the process we are interested in—the presented
cross sections do not correspond to the case where the two
ejected electrons share a given amount of energy. Besides, the
maximum projectile energy considered was 500 eV, a value
quite distant from the one considered in the Orsay experiments.
All the mentioned model calculations are very important for
the low-incident-energy range where both experimental data
and theoretical calculations are available. In particular, the
four-body results of Bartlett and Stelbovics [27,28] will surely
play a determinant role as those of the Temkin-Poet model
played for the three-body case. Finally, for completeness,
we should also mention that, even more recently, J-matrix
calculations of electron-helium S-wave scattering (single
excitation and ionization) have been presented by Konovalov
et al. [29].

In the present contribution, we focus on the double-
ionization process due to high-energy electron impact (Or-
say experimental conditions), exploring therefore a very
different—and thus complementary—domain. None of the
above cited references performed calculations in this energy
range; even within a Temkin-Poet approach, any of the meth-
ods would require huge computational resources. Besides, it
should be noted that in the Orsay kinematical situations, the
ejected electrons are sharing a rather small amount of energy
given to the target, since the projectile is scattered with a fixed
high energy. In this case, the four-body problem turns into
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a three-body one, and it is for this reduced problem that the
S-wave model is discussed here. Our study aims to test the
three-body problem and not the four-body one as done, for
example, by Bartlett and Stelbovics [27,28]. As previously
stated, it is within the three-body problem that disagreement is
found when describing the (e,3e) processes measured by the
Orsay group.

Another point of interest, which has suscitated considerable
discussion in the (e,3e) community (see, e.g., [30]), is to
investigate the energy region where the full four-body problem
starts to be in agreement with the high-energy (three-body
problem) approach. For this purpose, we shall also provide
benchmark data at 500 eV incident energy, the maximum
value considered in Refs. [27,28]. At this energy we do not
expect the first Born approximation to be valid, and a four-body
nonperturbative calculation should be able to clearly illustrate
this.

The rest of the paper is organized as follows. In Sec. II
we present the theoretical background for the treatment of the
double ionization of helium by high-energy electron impact.
We also provide the necessary formulas to extract the transition
amplitude from the asymptotic behavior of the wave function.
In Sec. III a simplified version, the S-wave model, of the (e,3e)
process is introduced and solved using generalized Sturmian
basis functions. Two independent formulations provide equal
benchmark cross sections for the experimental configurations
of Refs. [1,2], and for the 500 eV case. Concluding remarks
are given in Sec. IV.

Atomic units (h̄ = e = 1) are assumed throughout, unless
stated otherwise.

II. GENERAL THEORY

The nonrelativistic four-body Hamiltonian for three elec-
trons and an infinite mass helium nucleus of charge Z = 2 is
given by

H = −1

2
∇2

1 − 1

2
∇2

2 − 1

2
∇2

3 − Z

r1
− Z

r2

− Z

r3
+ 1

r12
+ 1

r13
+ 1

r23
, (3)

where particle 1 labels the electron projectile, while particles
2 and 3 are the target electrons. In view of the presentation
below, we also define the Hamiltonians:

hHe =
(

−1

2
∇2

2 − 1

2
∇2

3 − Z

r2
− Z

r3
+ 1

r23

)
, (4a)

hp(Zp) =
(

−1

2
∇2

1 − Zp

r1

)
. (4b)

hHe is the three-body helium Hamiltonian [subsystem
(2,3)], while hp(Zp) is the Hamiltonian associated to the pro-
jectile including only Coulomb projectile-nucleus interaction
with a model charge Zp. With these definitions, we decompose
the four-body Hamiltonian as follows:

H = H0(Zp) + W̄ (Zp), (5)

where

H0(Zp) = hp(Zp) + hHe, (6a)

W̄ (Zp) = −Z − Zp

r1
+ 1

r12
+ 1

r13
. (6b)

On top of all kinetic operators, the Hamiltonian H0(Zp)
includes all the interactions of the subsystem (2,3) through hHe,
and a projectile-nucleus interaction −Zp/r1 through hp(Zp).
The two subsystems are coupled through the interaction
W̄ (Zp).

To study (e,3e) collision processes we need to find a
scattering solution, with outgoing ( + ) type behavior, of the
four-body Schrödinger equation

[H0 + λW̄ − E]� (r1,r2,r3) = 0, (7)

where explicit dependence on Zp has been dropped off.
The inclusion of the parameter λ (whose numerical value
is 1) associated to the interaction W̄ suggests the following
expansion:

�+ =
∑

n

λn�(n)+, (8)

where successive orders �(n)+ satisfy the following system of
differential equations:

[E − H0] �(0)+ (r1,r2,r3) = 0, (9a)

[E − H0] �(1)+ (r1,r2,r3) = W̄�(0)+ (r1,r2,r3) , (9b)
...

[E − H0] �(n)+ (r1,r2,r3) = W̄�(n−1)+ (r1,r2,r3) . (9c)

From the zeroth-order equation (9a), �(0)+ (r1,r2,r3) is the
solution of the Hamiltonian H0 which is separable in the two
subsystems (2,3) and 1 [see Eq. (6a)]. Let �(0) (r2,r3) represent
the ground state of the helium atom, and consider an incident
projectile of momentum ki . The solution �(0)+ (r1,r2,r3),
which represents the initial state of the system, reads

�(0)+ (r1,r2,r3) =
{ 1

(2π)3/2 e
iki ·r1�(0) (r2,r3) , Zp = 0,

C(Zp,ki ,r1)�(0) (r2,r3) , Zp = Z.

(10)

The projectile-nucleus interaction is either switched off
(Zp = 0), and a plane wave describes the incident projectile,
or properly represented through a Coulomb wave function
C(Zp,ki ,r1) with charge Zp = Z [31].

Next, consider the first-order solution of Eq. (9b) in which
the driven term is clearly not separable as W̄ couples all the
coordinates. A formal solution is

�(1)+ = G0W̄�(0)+, (11)

where G0 = [E − H0]−1 is the Green’s function correspond-
ing to the Hamiltonian H0. The interaction W̄ is included only
once in (9b), or (11), meaning that the projectile and the target
electrons interact only once. Using again the definition of the
Hamiltonian H0, we can look for solutions written as

�(1)+(r1,r2,r3) =
∫

dk C(Zp,k,r1)�(1)+
sc (r2,r3) , (12)

where the label sc stands for scattering. Let Ea be the energy
of two electrons in interaction with the nucleus in the final
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state, and k2/2 the energy associated to the projectile: the
total energy of the system is then E = k2/2 + Ea . Replacing
the proposal (12) in Eq. (9b), and taking into account that
hp(Zp)C(Zp,k,r1) = (k2/2)C(Zp,k,r1), we have∫

dk C(Zp,k,r1) [Ea − hHe] �(1)+
sc (r2,r3)

= W̄C(Zp,ki ,r1)�(0) (r2,r3) , (13)

where the integration limits are restricted by energy con-
servation. Projecting by the left with a Coulomb function
C(Zp,kf ,r1) with momentum kf , i.e., selecting kf as being
the momentum of the scattered projectile in the final channel,
we find

[Ea − hHe] �(1)+
sc (r2,r3) = Wf i (r2,r3) �(0) (r2,r3) , (14)

where in the right-hand side (RHS)

Wf i(r2,r3)

= 〈kf |W̄ |ki〉

=
{

1
(2π)3

4π
q2 (−Z + eiq·r2 + eiq·r3 ), Zp = 0,

〈C(Zp,kf ,r1)| 1
r12

+ 1
r13

|C(Zp,ki ,r1)〉, Zp = Z.

(15)

In this way we have reduced the four-body problem to a
pure three-body one where the dynamics of the two ejected
electrons in the presence of the heavy nucleus is described by
Eq. (14). This is a pure three-body problem. As we pointed
out in the Introduction it has been said that the three-body

scattering problem has been completely solved numerically
with various numerical methods. However, when the same
recipes are applied to a problem similar to Eq. (14), the
same agreement is not observed, and we wonder what are
the difficulties leading to such discrepancies. It is easy to
show that the problem (14) is well formulated and that its
solution possesses all the information contained in the first
Born approximation. The formal solution of Eq. (14) may be
written as

�(1)+
sc (r2,r3)

=
∫

dr′
2dr′

3G
+
a (r2,r3,r′

2,r
′
3)Wf i(r′

2,r
′
3)�(0)(r′

2,r
′
3), (16)

where G+
a

(
r2,r3,r′

2,r
′
3

)
is the three-body Coulomb Green’s

function. In the �0 region its asymptotic limit reads [32]

G+
a (r2,r3,r′

2,r
′
3)

→ (2πi)1/2

(2π )3
κ

3
2
ei[κρ−λ0 ln(2κρ)−σ0]

ρ
5
2

�−
k̃2,k̃3

(r′
2,r

′
3), (17)

where ρ = (r2
2 + r2

3 )1/2 is the hyper-radius, κ = (2E)1/2, σ0 is
a phase, and λ0 is a Coulomb parameter [32]; k̃j (j = 2,3) are
the coordinate-dependent momenta defined originally by Alt
and Mukhamedzhanov [33]. Hence

�(1)+
sc (r2,r3) → (2πi)1/2

(2π )3
κ

3
2 Tk̃2,k̃3

ei[κρ−λ0 ln(2κρ)−σ0]

ρ
5
2

, (18)

where the transition amplitude Tk̃2,k̃3
is given by

Tk̃2,k̃3
=

{
1

(2π)3
4π
q2 〈�−

k̃2,k̃3
(r2,r3) | − Z + eiq·r2 + eiq·r3 |�(0) (r2,r3)〉, Zp = 0,

〈�−
k̃2,k̃3

(r2,r3) |〈C(Zp,kf ,r1)| 1
r12

+ 1
r13

|C(Zp,ki ,r1)〉|�(0) (r2,r3)〉, Zp = Z.
(19)

These transition amplitudes are equivalent to the one given
by Eq. (2), except for the presence of the position-dependent
momenta k̃2 and k̃3. For Zp = 0, one recovers the standard first
Born approximation, as used in all the calculations presented in
the literature. The case Zp = Z, on the other hand, includes the
projectile-nucleus interaction in both initial and final channels.
In ion-atom collision processes a similar approach has been
implemented [34].

III. A SIMPLE MODEL

A. Formulation of the problem

Instead of considering the solution for the full first-order
equation (14), we consider here the following S-wave model:

[
− 1

2r2
2

∂

∂r2

(
r2

2
∂

∂r2

)
− 1

2r2
3

∂

∂r3

(
r2

3
∂

∂r3

)

− Z

r2
− Z

r3
+ 1

r>

− Ea

]
φ(1)+

sc (r2,r3) = F (r2,r3) . (20)

Furthermore, for simplicity, we consider only the case Zp = 0.
This leads to the following definition for the RHS:

F(r2,r3) = − 1

(2π )3

4π

q2
[−Z + j0(qr2) + j0(qr3)]φ(0)(r2,r3),

(21)

where j0(x) represents the spherical Bessel function of zeroth
order. In (21), φ(0) (r2,r3) is the ground-state solution of the
S-wave helium equation (20) with the RHS set to zero.

B. Spherical Sturmian expansion

To solve Eq. (20) we use a configuration interaction (CI)
expansion

φ(1)+
sc (r2,r3) =

∑
ν

as
νθ

+
ν (r2,r3) , (22)

where as
ν are linear coefficients with index ν = {n2,n3};

the configurations are expressed in terms of products of
generalized Sturmian functions S+

ni
(ri) with outgoing-wave
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boundary conditions [15,16],

θ+
ν (r2,r3) = 1

r2r3

1√
2

[
S+

n2
(r2)S+

n3
(r3) + (−1)SS+

n2
(r3)S+

n3
(r2)

]
,

(23)

where S is the total spin. The basis functions S+
ni

(ri) (i = 2,3)
are solutions of a two-body radial equation,[

−1

2

d2

dr2
i

+ Ui(ri) − Ei

]
S+

ni
(ri) = −βni

V (ri)S
+
ni

(ri), (24)

where V (ri) is a short-range generating potential, i.e., V (ri) →
0 for ri > rc. On the other hand, we include a potential Ui(ri)
which has a Coulomb tail −Zi/ri for ri > rc. This implies that
the asymptotic behavior of the basis functions is associated to
an outgoing wave of energy Ei , distorted by the charge Zi .
Equation (24) generates a discrete spectrum with complex
eigenvalues βi , and a complete set of basis functions which
are orthogonal with respect to V (ri) [17].

An expansion such as (22) has been used successfully in
a recent study of e−-H single ionization [16]; it was shown
that the best way of defining the asymptotic behavior in each
coordinate ri corresponds to Ei = E and Zi = Z − 1. We
observed that this choice is also adequate for the present (e,3e)
processes. It actually corresponds to an appropriate description
for the �α region: one particle is at finite distances with
close-to-zero energy and sees the full nuclear charge Z, while
the other is at infinite distances carrying all the system energy
but sees a screened charge Zi . Since this screened value does
not correspond to the atomic value at short distances, in order
to have a more consistent picture, we define the potential Ui(ri)
by parts, i.e., Ui(ri) = −Z/ri for the inner region (r < rc), and
Ui(ri) = −(Z − 1)/ri for the outer region (r > rc) (no major
differences were observed between the results obtained with
smooth or sharp charge transitions). The choice of the outer
charge has a considerable effect in yielding a CI expansion
convergence towards the correct asymptotic behavior and, at
the same time, a smooth inner solution. On the other hand, the
inner charge is not so important since in the inner region
the expansion has to deal with the potentials not removed
by the basis elements; by choosing Zi = Z in the inner region,
though, the Sturmian functions diagonalize not only the the
kinetic energy but also the electron-nucleus potentials Z/ri .

We underline here that the chosen charges are used only for
the basis elements construction. In the three-body Schrödinger
equation the Coulomb potential with Z = 2 has to be solved.

C. Hyperspherical Sturmian expansion

We also perform a different numerical expansion in
generalized hyperspherical Sturmian (GHS) functions. Since
the GHS method has received ample documentation in our
previous work (see, for example, [18,19,22,23]), we will
confine ourselves to outline only its most important features.
More detailed work related to the present particular S-wave
(e,3e) problem and the analysis of convergence properties is
the subject of current investigations and will be presented in a
forthcoming article. The hyperspherical coordinates consist on
a hyper-radius ρ and five hyperangular coordinates. Leaving
aside the polar angles, we shall simply use ρ =

√
r2

2 + r2
3

and the hyperangle α = arctan(r3/r2). Within this framework,
the form of the expansion, analog to the spherical expan-
sion (22), is

φ(1)+
sc (ρ,α) =

∑
ν

ahs
ν θ̂+

ν (ρ,α), (25)

where ahs
ν are linear coefficients with index ν = {n,m}; the

configurations are expressed in terms of products of hyper-
radial (quantum numbers m) and hyperangular (quantum
numbers n) functions:

θ̂+
ν (ρ,α) = 1

ρ5/2
Ŝ+

n,m(ρ)�n(α). (26)

The hyperangular functions are the solutions of the hyper-
angular eigenvalue equation,

�2�n(α) = λn(λn + 4)�n(α), (27)

where �2 is the S-wave simplified form of the grand angular
operator, and λn = 2n (for integer numbers n = 0,1, . . .).
These functions have an analytical expression in terms of
Jacobi polynomials [18],

�n(α) = Nn 2F1

(
−n,n + 2,

3

2
; sin2 α

)
, (28)

with Nn = 4(n + 1)/
√

π . The eigenfunctions �n(α) form a
complete set and satisfy the orthonormality relation∫ π/2

0
�n(α)�m(α) sin2 α cos2 α dα = δnm. (29)

Coupled to these angular polynomials, for a given n, we
take as hyper-radial basis functions the Sturmian functions
Ŝ+

n,m(ρ) satisfying an equation analog to Eq. (24),[
−1

2

d2

dρ2
+ λn(λn + 4) + 15

4

2ρ2
+ Uρ(ρ) − E

]
Ŝ+

n,m(ρ)

= −β̂n,m Vρ(ρ) Ŝ+
n,m(ρ), (30)

together with the boundary conditions:

Ŝ+
n,m(0) = 0 lim

ρ→∞ Ŝ+
n,m(ρ) ∝ ei(Kρ− Z

K
ln 2Kρ), (31)

where E is a parameter which will be set equal to the
system’s energy, K = √

2E is the hyperspherical generalized
momentum, and β̂n,m are the eigenvalues. The generating
potential Vρ(ρ) is of short range, and vanishes faster than ρ−1

as ρ → ∞. In that way, we can choose the auxiliary potential
Uρ(ρ) as a Coulomb potential with charge Z, imposing the
desired asymptotic outgoing Peterkop’s boundary condition
to the basis functions [note the similarities in the asymptotic
condition defined in Eq. (31) and that given in Eq. (18)]. With-
out loss of generality, we can generate hyperadial Sturmian
functions with no angular momentum λn in Eq. (30).

D. Linear system

Replacing the CI expansions (22) or (25) in the scattering
equation (20), and projecting onto the basis elements, we
obtain linear systems of the form

[H − (E − Ẽ)O]a+ = F , (32)
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FIG. 1. Driven term F (r2,r3) defined by Eq. (21) for q = 0.24 a.u.

where H and O are the matrix representation of the Hamilto-
nian and overlap ([H]νν ′ = 〈θν |H | θν ′ 〉, [O]νν ′ = 〈θν |θν ′ 〉), and
F represents the RHS projected onto the basis set; a+ is the
vector of coefficients that build the solution. For the spherical
expansion Ẽ = E2 + E3; as the best choice of the Sturmian
parameters is E2 = E3 = E, the overlap matrix elements have
to be calculated. In the hyperspherical expansion, Ẽ = E, so
overlap matrix elements need not be computed in this case.

Both basis sets are constructed in such a way that they
remove the kinetic energy term of Eq. (20). In the region
ri < rc, the spherical Sturmian functions diagonalize also
the interaction potentials Z/ri ; in the outer region ri > rc,
both the overlap and Coulomb tail potential matrix elements
(see above discussion on the choice of Zi) can be evaluated
analytically (see [16,35]). Therefore, only the interaction 1/r>,
the auxiliary potentials Vi(r), and the overlaps (finite range
integrals) remain to be computed, substantially simplifying the
evaluation of the matrix elements [H]νν ′ . In the hyperspherical
approach, the latter involve separable integrals.

The driven term F (r2,r3) defined by Eq. (21) includes
the ground state φ(0) (r2,r3) of the S-wave helium (exact
energy E0 
 −2.879 a.u.). This ground state can be calculated
very accurately, as we did for example in Refs. [36,37].
The degree of sophistication (correlation) in its description
will obviously affect the final cross sections corresponding
to the proposed S-wave (e,3e) model. However, the main
focus here is on the double continuum wave function and
besides we want to produce cross-section data that can
be easily reproduced by other numerical methods; it is
thus better to avoid any unnecessary source of divergences
between different calculations. For this reason, we take as
ground state the simple product of screened exponentials:
φ(0) (r2,r3) = (Z3

e /π )e−Ze(r2+r3) with Ze = Z − 5/16, which
yields a ground-state energy of E0 
 −2.847 a.u.

Due to the bound character, when the coordinates r2 and r3

are larger than R0 
 5 a.u. the full term F (r2,r3) is practically
zero. This is illustrated in Fig. 1 where F (r2,r3) is plotted as
a function of r2 and r3, with q = 0.24 a.u.; this momentum
transfer corresponds to the initial and final projectile energies
of, respectively, Ei = 5599 eV and Ef = 5500 eV, and a
deflection of 0.45◦, used in the Orsay experiment [1]. These
values, together with the exact ground-state energy of the
bound initial state, define the energy of the final three-body
subsystem (2,3) equal to 0.734 a.u. (
 20 eV). For an equal
energy sharing situation, this corresponds to 10 eV per
electron, as in the experiments [1]. We also considered the

FIG. 2. Real part of the scattering wave function
�(1)+

sc (r2,r3)
√

r2
2 + r2

3 as a function of the ejected electrons
radial coordinates r2 and r3. �(1)+

sc is the solution of Eq. (20) for an
energy Ea = 0.791 a.u. and for a momentum transfer q = 0.24 a.u.

other experimental situation [2] corresponding to a momentum
transfer equal to q = 0.22 a.u., together with a two-electron
system with energy 0.294 a.u. (
 8 eV) (4 eV per electron in
equal energy sharing).

E. Scattering wave function

We have calculated the (singlet, S = 0) solution �(1)+
sc of

Eq. (20) with the two Sturmian expansions: in spherical coor-
dinates [Eq. (23)] and hyperspherical coordinates [Eq. (26)].
It must be emphasized that the two methods have been
implemented in completely independent numerical codes.

In order to visualize the scattering solution, we show in
Fig. 2 the real part of �(1)+

sc times
√

r2
2 + r2

3 . This factor was
chosen in order to maintain a uniform outgoing amplitude.
For all the results shown in the present section, we use the
approximate energy of the He ground state. Therefore, for
the momentum transfer q = 0.24 a.u., we solve Eq. (20) for
an energy value Ea = 0.791 a.u.. Details of the real part of
the solution can be seen in the contour plots presented in
Fig. 3. The function �(1)+

sc ρ5/2 is plotted as a function of r2

and r3. Here the factor ρ5/2 was chosen in order to keep the
amplitude of the ionization (the hyperspherical outgoing wave)
uniform as ρ → ∞; it has to be noted that this factor increases
the amplitude of single-ionization channels (the peaks close
the axis r2 = 0 or r3 = 0, i.e., the �α regions) by the factor
ρ1/2. The result of the spherical expansion is shown in the
left panel. In the domain r2,r3 > R0, in which the driven term
vanishes, the equation admits the solution of the corresponding
homogeneous equation. The basis functions θ+

ν (r2,r3) for ri

values larger than rc are simply products of outgoing waves
in spherical coordinates. However, as can be observed in the
figure, in the inner region they manage to generate the appro-
priate solution with a hyperspherical outgoing front (a formal
and mathematical explanation of how the hyperspherical front
is constructed from a spherical treatment is under investigation
by our group). For comparison, the result obtained with the
second numerical approach—the hyperspherical expansion—
is shown in the right panel. Considering that the solution
is obtained with two completely independent programs, the
agreement between both calculations is remarkable.

This agreement can be further appreciated through a more
detailed and quantitative comparison between both numerical
methods. Figure 4 shows slices of the solution �(1)+

sc ρ5/2 as
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FIG. 3. Left: real part of the scattering wave function �(1)+
sc (r2,r3)ρ5/2 as a function of the ejected electrons radial coordinates r2 and r3, for

Ea = 0.791 a.u. and q = 0.24 a.u. Right: real part of �(1)+
sc (ρ,α)ρ5/2.

a function of the hyper-radius ρ, for different values of of
the hyperangle α. The comparisons are made at low angles
(i.e., close to the r2 and r3 axis), where the differences
between spherical and hyperspherical functions are the largest
in magnitude. The worst case scenario produces a difference
of less than a 5%. We also show the comparison between
both calculations for r2 = r3 (i.e., at α = π/4), a region in
which—although the amplitudes of the solutions are very
low—the agreement between the results given by the two
numerical approaches is excellent.

Since we aim to provide reproducible data, we have chosen
to solve the driven equation (20) with a very simple ground
state of the S-wave helium on the RHS. We have, however,
also performed a calculation using the most accurate wave
function we are able to calculate [37]. The ensuing scattering
wave function does not change significatively except for the
global amplitude and some changes, mostly observed in the
(�α) regions close to the axis.

F. Differential cross section

One of our goals is to provide e−-He double-ionization
benchmark data within the above S-wave model. As shown
in Sec. II, the transition amplitude for the double-ionization
process can be extracted from the asymptotic limit of the
wave function φ(1)+

sc (r2,r3). This applies also for the sim-
plified model under consideration. Evaluating φ̄(1)+

sc (ρ,α) =
φ(1)+

sc (ρ,α) ρ5/2 at large values of ρ and taking its square
modulus gives the transition amplitude

|Tf i |2 = (2π )5

κ3

∣∣φ̄(1)+
sc (ρ → ∞,α)

∣∣2
. (33)

This is equivalent to taking the S-wave component of the wave
function �−

k̃2,k̃3

(
r′

2,r
′
3

)
of (17), and thus the S-wave component

of the transition amplitude defined by the integral (19). The
extraction of the amplitude directly from the wave function
(similarly to other flux formulas [38]) provides the advantage
that it allows one to verify the accuracy of the solution.

With the transition amplitude (33) and the definition of the
(e,3e) cross section (1), we obtain

σ (q,α) = lim
ρ→∞ σρ(q,α)

= lim
ρ→∞

(2π )9

κ

kf

ki

∣∣φ̄(1)+
sc (ρ,α)

∣∣2
cos α sin α, (34)

where k2 = κ cos α and k3 = κ sin α; α defines how the
energy is shared between the two ejected electrons. For a given
q value, σ (q,α) is a singly differential cross section. It should
be independent of the hyper-radial coordinate; effectively,
one evaluates numerically σρ at different values of ρ and
then extrapolates the result to infinite distances with a form
σ 
 σρ + O[ρ−1] [39]. This technique was used successfully
for the S-wave Temkin-Poet model for the electron-hydrogen
ionization [15,16,40]. For each fixed value of ρ we have a
circular arc contour in the (r2,r3) plane through which the
local energy fraction ε = sin2 α = E3/E changes from 0 to 1
(α = 0 to π/2). Note that on the borders (ε close to 0 and 1)
this contour hits discrete single-ionization channels which are
coupled with that of the double ionization, and evaluation of the
singly differential cross section (SDCS) with this definition of
the energy fraction leads to unphysical behavior at the unequal
energy sharing regime [40].

Instead of this standard definition, we used an energy
fraction value derived from the components of the quantum-
mechanical flux operator:

ε = J 2
2

J 2
2 + J 2

3

, (35)

where

Ji = 1

2i

[
(�+

sc)∗
∂�+

sc

∂ri

− �+
sc

∂(�+
sc)∗

∂ri

]
, i = 2,3. (36)

This alternative definition (whose foundation is described in a
separate contribution [41]) avoids the unphysical cross-section
behavior [42] at ε values close to 0 and 1.

For fixed values of q, we have calculated SDCS for double
ionization of the S-wave helium model. We evaluated, on a
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FIG. 4. (Color online) Real part of the scattering wave function �(1)+
sc ρ5/2 as a function of the ejected electrons hyperspherical coordinate ρ

for different values of the hyperangle α, obtained with the spherical (red, continuous) and hyperspherical (black, dotted) coordinates Sturmian
expansions. Ea = 0.791 a.u. and q = 0.24 a.u.

uniform α grid, both the energy fraction (35) and the cross
section (34). In Figs. 5 and 6, we present for q = 0.24 a.u.
and q = 0.22 a.u., respectively, SDCS results obtained for
different increasing values of ρ, from 2λ to 12λ, increasing
by steps of λ = 2π/

√
2E, associated with the two-electron

system wavelength. We can see that the curves slowly
converge towards the extrapolated (ρ → ∞) curve (circles);
we have verified that by increasing the number of steps no
significant differences were observed when using the ρ → ∞
extrapolation technique. Four more observations stem from the
figure: the smoothness of the scattering solution is reflected
into smooth SDCS curves; no unphysical behavior is observed
near ε = 0 or ε = 1; these SDCS are continuous at ε = 0.5 as

0.0 0.2 0.4 0.6 0.8 1.0
Energy fraction ε

0.0

1.0×10-9

2.0×10-9

3.0×10-9

4.0×10-9

σ
(ε

) (
un

its
 o

f a
02

π)

ρ = ∞

b)

ρ = ρ0+λ
ρ = ρ0+2λ

ρ = ρ0

FIG. 5. Single differential cross section for the S-wave model
(e,3e) process for q = 0.24 a.u. The equal energy fraction value
corresponds to ionized electron energies equal to 10 eV. Continuous
line: SDCS evaluated with the flux formula for different values of
ρn = ρ0 + nλ (λ = 2π√

2E
, ρ0 = 2λ). Circles: ρ → ∞ extrapolated

results.

it should be; the cross sections have a rather small magnitude
which can be associated to the high energy of the incoming
electron. When using a highly correlated S-wave helium
ground state instead of the simple product of exponentials, the
cross-section magnitudes change only slightly. No comparison
with other calculations can be presented since these are the first
calculations of the process at the considered projectile energy.
As the calculated SDCS are to be considered as benchmark
values, they are provided in tabular form (Table I) for the two
values of q considered.

As mentioned in the Introduction, it is useful to consider
also lower impact energies in order to make a connection
with the precise nonperturbative approach [27,28]. However,

0 0.2 0.4 0.6 0.8 1
Energy fraction ε

0.0

5.0×10-9

1.0×10-8

1.5×10-8

2.0×10-8

2.5×10-8

σ
(ε

) (
un

its
 o

f a
02

π)

ρ = ∞

b)

ρ = ρ0+λ
ρ = ρ0+2λ

ρ = ρ0

FIG. 6. Single differential cross section for the S-wave model
(e,3e) process for q = 0.22 a.u. The equal energy fraction value
corresponds to ionized electron energies equal to 4 eV. Continuous
line: SDCS evaluated with the flux formula for different values of
ρn = ρ0 + nλ (λ = 2π√

2E
, ρ0 = 2λ). Circles: ρ → ∞ extrapolated

results.
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TABLE I. Single differential cross section for the (e,3e) process at
an impact energy Ei = 5599 eV and momentum ki = 20.29 a.u. First
column: energy fraction of the “slow” two-electron system. Second
column: SDCS for the case where the “slow” two-electron system
energy is E = 0.294 a.u. (process where the case 4 + 4 eV electrons
can be found); this corresponds to a final projectile momentum kf =
20.13 a.u. and momentum transfer q = 0.22 a.u. Third column: same
as the second column but for the final state compatible with the
10 + 10 eV electrons final state, where E = 0.735 a.u., kf = 20.11
a.u., and q = 0.24 a.u.

SDCS ×10−9

ε/E q = 0.22 a.u. (4 + 4 case) q = 0.24 a.u. (10 + 10 case)

0.0 1.863 74 2.759 63
0.025 1.147 27 2.119 05
0.05 1.009 17 1.954 15
0.075 0.940 59 1.838 50
0.1 0.899 47 1.743 66
0.125 0.870 16 1.661 13
0.15 0.845 63 1.587 47
0.175 0.822 76 1.520 93
0.2 0.800 37 1.460 39
0.225 0.778 22 1.404 88
0.25 0.756 49 1.353 56
0.275 0.735 51 1.305 62
0.3 0.715 55 1.260 20
0.325 0.696 80 1.216 43
0.35 0.679 34 1.173 46
0.375 0.663 17 1.130 38
0.4 0.648 22 1.086 31
0.425 0.634 37 1.040 34
0.45 0.621 49 0.991 56
0.475 0.609 45 0.939 11
0.5 0.598 13 0.894 05

a direct comparison cannot be presented since, in these
references, the SDCS result from considering a situation where
all three electrons share the energy of the system. This differs
from the Orsay experiment in which the incident electron is

0 0.2 0.4 0.6 0.8 1
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ρ = ρ0+2λ

ρ = ρ0

FIG. 7. Single differential cross section for the S-wave model
(e,3e) process for q = 0.635 a.u. The equal energy fraction value
corresponds to ionized electron energies equal to 10 eV. Continuous
line: SDCS evaluated with the flux formula for different values of
ρn = ρ0 + nλ (λ = 2π√

2E
, ρ0 = 2λ). Circles: ρ → ∞ extrapolated

results.
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FIG. 8. Single differential cross section for the S-wave model
(e,3e) process for q = 0.555 a.u. The equal energy fraction value
corresponds to ionized electron energies equal to 4 eV. Continuous
line: SDCS evaluated with the flux formula for different values of
ρn = ρ0 + nλ (λ = 2π√

2E
, ρ0 = 2λ). Circles: ρ → ∞ extrapolated

results.

scattered with a given fixed energy. This said, we have also
considered the case of an incident energy of 500 eV, still
scattered at the same small scattering angle (0.45◦) of the Orsay
experiments; the two ejected electrons escape with 10 + 10 eV
or 4 + 4 eV, corresponding to q = 0.635 a.u. and q = 0.555
a.u., respectively. Following the same calculation procedure,
the resulting SDCS (presented in Figs. 7 and 8) have shapes

TABLE II. Same as Table I but for an incident electron energy
and momentum equal to 500 eV and ki = 6.06 a.u., respectively. In
this case the second column (4 + 4 eV) is associated to the following
kinematics: E = 0.294 a.u., kf = 5.43 a.u., and q = 0.635 a.u. For
the third column (10 + 10 eV) corresponds to E = 0.735 a.u., kf =
5.51 a.u., and q = 0.55 a.u.

SDCS ×10−9

ε/E q = 0.55 a.u.(4 + 4 case) q = 0.635 a.u. (10 + 10 case)

0.0 9.95 4.00
0.025 7.08 2.18
0.05 6.29 1.73
0.075 5.75 1.48
0.1 5.33 1.31
0.125 4.98 1.19
0.15 4.69 1.10
0.175 4.42 1.02
0.2 4.19 0.97
0.225 3.99 0.92
0.25 3.80 0.87
0.275 3.62 0.83
0.3 3.46 0.79
0.325 3.31 0.76
0.35 3.18 0.73
0.375 3.05 0.70
0.4 2.95 0.68
0.425 2.86 0.67
0.45 2.79 0.66
0.475 2.74 0.64
0.5 2.72 0.62
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similar to those corresponding to the higher impact energy
of 5599 eV, but have larger magnitudes (see Table II). The
500 eV case could be of interest for elucidating the limit at
which the Born approximation starts to be valid. Comparing
our three-body results with those coming out of a full four-body
calculation could indicate whether or not agreement is found
already at this relatively low incident energy.

IV. CONCLUDING REMARKS

In this paper we presented an original transformation of
the four-body Schrödinger equation for high-energy-electron-
impact double ionization of helium. Successive orders in the
projectile-target interaction appear in a set of driven equations.
From the asymptotic form of the first-order solution the
corresponding transition amplitude is shown to be equivalent
to the first Born approximation used in most publications.

As several ab initio three-body methods do not agree with
each other for high-energy (e,3e) processes, we looked for a
simplified problem for which agreement could possibly be
found. We thus considered an S-wave (e,3e) model with
energy and geometry conditions used by the experimental
Orsay group. Our three-body model differs from the one
investigated in Refs. [27,28], where the full four-body problem
was considered. In our case we deal with a three-body problem
which results when high-energy projectiles are considered;

besides, contrary to the study of [27,28], our calculated
cross sections correspond to the sharing between two ejected
electrons of a given energy. We have also considered a
lower impact energy (500 eV) to make a connection with
nonperturbative methods; our cross sections could serve as a
test of the range of validity of the first Born approximation.
The first-order driven equation was solved numerically with
a generalized Sturmian approach; two independent numerical
implementations (spherical and hyperspherical) were shown
to be in excellent agreement. From the asymptotic form of
our ab initio solution we extracted the transition amplitude
and calculated single differential cross sections. We hope that
the present results will be of value to others and that they
will stimulate other ab initio calculations. If agreement can
be found for the present model, one would then attribute the
existing differences for the real (e,3e) process to L = 0 and/or
convergence issues.
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