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Abstract
Climate change has played a crucial role in the subrogation of Chinese dynasties. In par-
ticular, the Ming-Qing transition coincided with the rapid decrease in precipitation and the 
sharp deterioration of agroecological conditions in northern China under the cold condi-
tions brought on by the Little Ice Age. Here, we present a new precipitation reconstruction 
(June-April) for northern Chinese Loess Plateau since 1590 CE. The reconstruction was 
derived from a tree-ring width chronology of Platycladus orientalis, and made it possible 
to quantitatively assess the period of megadroughts during the late Ming Dynasty, with 
high resolution. Our analysis showed that these extreme drought events have been unprece-
dented in China for the last 500 years, and precipitation variation could be linked to ENSO 
activities. The environmental imbalance caused by these megadroughts magnified the neg-
ative impacts of the climate on agriculture and society, an important reason for considering 
these phenomena as catalysts for the demise of the Ming Dynasty.

Keywords  Fall of the Ming Dynasty · Chinese Loess Plateau · Tree rings · Precipitation 
reconstruction · NDVI variations · Climate-human interaction

1  Introduction

Climatic change had repeatedly affected the human societies spanning some millennia, 
varying from place to place and influencing the ability of humans to adapt to extreme 
climate events (Beever et al. 2017; Zscheischler et al. 2018; Cattaneo et al. 2019; Feng 
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et al. 2019; Yang et al. 2021; Chen et al. 2021). Extensive research indicates that climate 
change processes have been important factors in driving the collapse and reshaping of 
human societies in prehistoric and pre-industrial times (Weiss and Bradley 2001; de 
Monocal 2001; Büntgen et  al. 2011; Butzer 2012; Buckley et  al. 2014; Su et  al. 2016; 
Evans et  al. 2018; Lee et  al. 2019; Petraglia et  al. 2020; Yang et  al. 2021; Brice et  al. 
2021). Some case studies on the potential influences of climate change on society provide 
people with an in-depth understanding of the interplay of between environmental changes 
and human activities, which may also be valuable for human society to successfully adapt 
to possible future extreme climate events (Dearing et al. 2006; Ford et al. 2018; Haldon 
et al. 2018).

As one of the most significant monsoon countries, China’s social evolution has been 
heavily influenced by climate change over the past 5000  years. In this sense, historical 
records provide unique opportunity to explore the influences of climate change on human 
society. Various investigations on the relationship between historical social changes 
(regime change, wars, populations, etc.) and climate change have been conducted in 
China, revealing interactions between social resilience and climatic crises (Zhang et  al. 
2006, 2008, 2010, 2021; Su et al. 2016; Zheng et al. 2014; Yang et al. 2021; Zhao et al. 
2021a, b; Liu et al. 2021a, b). Both low temperatures and the monsoon droughts would 
have caused great damage to the fragile agricultural production of ancient China, causing 
serious social conflicts (Zhang et al. 2006, 2008; Yancheva et al. 2007; Cook et al. 2010; 
Su et al. 2016). However, due to the vast territory of China, its regions have very differ-
ent responses to changes in the intensity of the monsoon and consequently in the impact 
produced on agricultural production. Therefore, adverse climate conditions do not neces-
sarily lead to lower agricultural yields, and fairly conclusive evidences must be provided 
accordingly.

A political event with far-reaching influences on Chinese society has been the transi-
tion of the Ming-Qing dynasties. These social and political changes have been cited as 
a typical case related to the influence of climate change, since the Manchu invasion was 
synchronous with a period of droughts, famine, plagues, and massive peasant revolts in 
northern China (Zhang et  al. 2014; Cui et  al. 2019). Other studies suggest that the fall 
of the Ming Dynasty coincided with the deterioration of the environment caused by the 
weakness of the summer monsoon in northern China during the Little Ice Age (LIA) 
(Wang et al. 2010; Cook et al. 2010; Zhao et al. 2021a, b). Several historians argue that 
the severe socio-economic crisis that accelerated the fall of the Ming Dynasty was a con-
fluence of the environmental deterioration caused by the climate and political corruption 
(Atwell 1988, 2005;  Bai 2004; Di Cosmo 2009). Another important factor that occurred 
during this period of political decline was the Black Death, a plague that devastated the 
population and caused destruction of the social order. Cao (1997) and Brook (2020) have 
linked these phenomena to extreme climate events in northern China during the late Ming 
Dynasty. As an important military zone, the ecological and economic situation of the Chi-
nese Loess Plateau largely influences on the trend of the national destiny, and therefore, 
it is necessary to understand its climate conditions. However, previous high-resolution 
studies mainly focused on northern China or the other region (Zhang et al. 2008; Zhao 
et  al. 2021a, b), and cannot accurately reflect the local climate information of northern 
Chinese Loess Plateau. Some scholars have used historical documents to discuss the late 
Ming drought and its desertification in this area (Cui et al. 2017), and however, the his-
torical records here are discontinuous. We need to combine more high-resolution continu-
ous proxy climate records to provide more evidences for the influences of these extreme 
climate events on the fall of the Ming Dynasty.
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Tree rings are playing a vital role in indicating past drought change in northern China. 
To date, there are tree-ring-based precipitation/drought reconstructions for the northern 
China (Liu et al. 2007, 2019a, b; Cai et al. 2014; Li et al. 2016, 2022; Chen et al. 2016, 
2020a). Nevertheless, precipitation reconstructions are still insufficient on the northern 
China for interpreting the late Ming Dynasty megadrought in a long-term perspective. 
Most of precipitation/drought reconstructions for the northern China were based on the 
tree-ring data of Pinus tabulaeformis, but few studies focused on Platycladus orientalis, 
a long-lived tree species (Sun et al. 2021a). Here, we present a new reconstruction of total 
June-April precipitation for the northern Chinese Loess Plateau based on tree rings of Plat-
ycladus orientalis and compared it to historical records on societal responses to extreme 
drought-induced ecological imbalances, particularly during the first half of the seventeenth 
century, and how this contributed to the downfall of the Ming Dynasty, especially the influ-
ences of the drought-induced ecological imbalances on the social stability in the late Ming 
Dynasty. Our study will aim to quantify abnormally low precipitation events in the study 
area where the earliest peasant uprisings occurred in the late Ming Dynasty, and determine 
the specific impacts of ecological imbalances caused by severe drought on the Black Death 
and the peasant uprisings, in order to explore the early origins of the collapse of the Ming 
Dynasty. Our study attempts to improve our understanding of climate–ecosystem–human 
interplay and the resilience of northern Chinese society in a context of climate change.

2 � Data and methods

The study area is located at the northern Chinese Loess Plateau, and corresponds to the 
transition zone between monsoon and non-monsoon climate, with semiarid to arid condi-
tions. It also represents the borderland between agricultural and nomadic regimes in the 
pre-modern period, where many dynasties built great walls and military strongholds to 
defend themselves against nomads, especially during the Ming Dynasty. After thousands 
of years of intense human influence, the northern Chinese Loess Plateau has preserved few 
old-growth forests and has become one of the most severe soil erosion areas in China. In 
June 2019, two wood samples per tree were collected with a 5.1-mm increment borer at 
the hillside near the abandoned castle (Bailin castle, 38°40′ N, 110°26′ E, 1180 m a.m.s.l.) 
(Fig. 1A). The native tree species under study was Platycladus orientalis (Cupressaceae). 
The trees grow in deep loess soils and have a reduced and open crown, which would indi-
cate a priori that they are subjected to moisture stress.

The tree-ring width data from the sampling site represented 40 crossdated radii from 
21 trees. The dendrochronological series were detrended and standardized with a nega-
tive exponential curve using the ARSTAN program (Cook 1985). The detrended series 
were combined into a standard (STD) version tree-ring width chronology by computing the 
bi-weight robust mean (Cook and Kairiukstis 2013). To reduce the impact of decreasing 
sample depth in the earlier part of the chronology, the variance of chronology was stabi-
lized using the method proposed by Osborn et al. (1997). Both expressed population signal 
(EPS) and inter-series correlation (Rbar) were computed for 50-year running windows with 
25-year overlaps, and the threshold value of 0.85 in EPS was considered to show the reli-
able period of this chronology (Wigley et al. 1984).

The STD chronology was compared with instrumental precipitation data to select the 
optimum seasonal predictand for precipitation reconstruction. Instrumental precipitation 
record (1970 to 2020) of Yulin city (38°12′ N, 109°42′ E, 1059 m a.m.s.l.) was used in 



	 Climatic Change          (2022) 173:13 

1 3

   13   Page 4 of 16

this analysis. The grid-point normalized difference vegetation index (NDVI) data over the 
northern Chinese Loess Plateau for  the period 1982–2015 were also extracted from the 
AVHRR GIMMS NDVI 3  g dataset (Pinzon and Tucker 2014). The data corresponded 
to the region between 38–39° N and 109–111° E and were averaged to assess summer 
changes of vegetation productivity in the long-term precipitation context.

The STD chronology was significantly correlated with the total precipitation from pre-
vious June to April, and was used as a predictor of a linear regression model that recon-
structed the pre-instrumental precipitation. The model was evaluated based on adjusted r2 
and cross-validation statistics (Reduction of Error and Coefficient of Efficiency) (Cook and 
Kairiukstis 2013). In order to investigate linkages between precipitation in the northern 
Chinese Loess Plateau and the state of the Pacific ocean–atmosphere system, composites 

Fig. 1   A Map of the study area, showing the location of the sampling site, nine garrisons of Great Wall 
during the Ming dynasty. The tree-ring data is correlated with the gridded NDVI dataset for May–Septem-
ber growing season over northern China for the period 1982–2015. Note the positive correlations over the 
monsoon boundary region along the Great Wall. B The reconstructed total June-April precipitation and its 
31-year low-pass filter value during 1590–2018 (blue line). Horizontal black line indicates average value of 
the reconstruction. The monthly total precipitation computed for the period 1970–2018 is also showed in 
the inset (yellow line)
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of previous June-April precipitation and 850  hPa water vapor transport anomalies were 
created for the El Nino and La Nina years during 1850–2005 based on the CESM model 
simulations (Hurrell et  al. 2013). Furthermore, we also investigated the influences of 
ENSO activities in the precipitation reconstruction using superposed epoch analysis (SEA, 
Haurwitz and Brier 1981). The method of significance testing-random sampling was used 
to assess statistical significance, and strong El Nino and La Nina year lists based on Gergis 
and Fowler (2009) were used for the superposed epoch analysis.

The main cereal crops in the northern province of Shaanxi during the Ming Dynasty 
were millet and oats, crops for which 300 mm of precipitation has been indicated as the 
minimum threshold for achieving normal growth (ICRISAT  and  FAO 1996;  Suttie and 
Reynolds 2004). To evaluate whether the probability of meeting this minimum precipita-
tion differed between pre-instrumental periods and the instrumental period, we used the 
cumulative distribution function (CDF) of reconstructed precipitation. Based on the log-
normal CDFs, we compared the specific probabilities (non-exceedance probability) of not 
meeting the 300-mm minimum precipitation between the instrumental period (1970–2018) 
and (1) the full reconstructed period (1590–2018) and (2) the reconstructed driest period 
(1605–1679). Moreover, the transfer function between ring width index and NDVI was 
also developed (not shown), and we also compared the specific probabilities of not meeting 
the mean instrumental NDVI between the instrumental period (1970–2018) and (1) the full 
reconstructed period (1590–2018) and (2) the reconstructed driest period (1605–1679).

3 � Results

After correlating the STD chronology with several seasonal subsets of total precipitation from 
June of the previous year and September of the current year, it was found that the highest cor-
relation (r = 0.64, P < 0.01) was with total June-April precipitation (Fig. 1B). Precipitation during 
these months corresponds to the previous monsoon season and winter precipitation, periods that 
represent very well the opportunity for precipitation in the study region. Based on the precipita-
tion reconstruction model (Y = 175.495 + 190.548X), we reconstructed total June-April precipita-
tion for the northern Chinese Loess Plateau to 1590 CE. The precipitation reconstruction model 
accounted for 40.4% (r2

adj = 39.1%, P < 0.01) of the instrumental precipitation variances over the 
calibration period from 1970 to 2018. The positive RE (0.33) and CE (0.32) indicated predictive 
skill of the precipitation reconstruction model. The significant correlation (r = 0.57, P < 0.01), 
sign test (36+/12−, P < 0.01), and product mean test (4.45, P < 0.01) between the reconstructed 
precipitation and the leave-one-out estimates are all indications of validity of our precipitation 
reconstruction model.

The reconstructed total June-April precipitation contains interannual to multi-dec-
adal variations (Fig.  1B). The reconstruction spanned 429  years with an average pre-
cipitation of 366  mm and a standard deviation (σ) of 64.7  mm. Several dry episodes 
occurred during 1600s–1670s, 1730s, 1890s–1930s, and 1970s–1990s. Marked periods 
with high precipitation occurred during 1680s–1720s, 1740s–1770s, and 2000s to pre-
sent. Of particular interest are the abnormally low precipitation (drought) events dur-
ing 1600s–1670s, which characterizes the most intense and extended dry period dur-
ing the past four centuries. At the same time, the late 1920s drought events are also 
recorded by our reconstruction (Liang et al. 2006). Significant positive correlations with 
NDVI are found with the monsoon boundary region along the Great Wall (Fig. 1A), and 
significant positive correlations with regional NDVI were found for the February-June 
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(r = 0.73, P < 0.01) and May–September (r = 0.65, P < 0.01) months. This result implies 
that precipitation plays an important role in driving vegetation productivity and main-
taining ecological balance along the Great Wall (Fig. 1).

During El Nino years, the precipitation anomaly is negative in the northern China, with 
mean winds at 850 hPa exhibiting strong westerly flow over eastern China; during La Nina 
years, the opposite pattern occurs (Fig. 2A, B). Such patterns suggest a relationship between 
precipitation anomalies in the northern Chinese Loess Plateau with thermal anomalies in the 
surrounding oceans and the regional atmospheric circulation anomalies. Figure  2C and D 
show the SEA results based on the lists of strong El Nino (37) and La Nina (38) years from 
Gergis and Fowler (2009). A statistically significant (P < 0.05) reduction in regional precipi-
tation is indicated at the beginning of El Nino year, and the opposite precipitation condition 
occurred at northern China during La Nina years.

4 � Discussion

4.1 � Regional comparison and possible climate mechanisms for extreme low 
precipitation during the late Ming Dynasty

The reconstructed precipitation was compared with the precipitation index (PI) in north-
central China based on drought/flood index and tree-ring records (Yi et al. 2012), summer 

Fig. 2   Spatial distribution of precipitation and 850  hPa water vapor transport anomalies (vectors, where 
uq and vq are multiplied by 1000) in El Nino (A) and La Nina (B) years during 1850–2005 in the CESM 
model simulation. Results of superposed epoch analysis (SEA) testing the impact of ENSO activities on 
regional precipitation variation in Yulin. The lists of strong El Nino and La Nina years, based on Gergis and 
Fowler (2009), were used for tests
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monsoon season streamflow of the Middle Yellow River (Chen et al. 2020a), and the sta-
lagmite δ18O records of Xiniu Cave and Qujia Cave (Zhao et al. 2021a, b). The correlation 
between this study and Chen et al. (2020a), computed over the 1590–1700 common period, 
is 0.44 after a 21-year smoothing. All proxy records showed relative low level and remark-
able downward trend, including precipitation and streamflow during the late Ming Dynasty 
(Fig.  3), reaching the mean reconstructed precipitation during the period 1605–1679 a 
value of 338  mm (8.9% lower than the average). Some differences existing between the 
reconstructions may reflect the local influence of different geographic features or difference 
in seasonality of the various climate reconstructions. Of particular interest is the recent 
wetting trend (mean2004-2018: 428 mm, 17% higher than the average) in the context of global 
warming (Gao et  al. 2017; Sun et  al. 2019), which is quite different from other drought 
reconstruction results (Cai et al. 2014; Li et al. 2016; Liu et al. 2019b; Hua et al. 2019; Li 
et al. 2022), and this also may be linked with the implementation of the grain for green pro-
ject. The increase in precipitation has resulted in the restoration of vegetation in the north-
ern Chinese Loess Plateau and significant improvement of the regional ecological environ-
ment after the implementation of the grain for green project, especially the alleviation of 
soil erosion (Feng et al. 2016; Zhao et al. 2018; Wu et al. 2020; Wang et al. 2021), and the 
wetting trend recorded in our precipitation reconstruction. However, if the effect of the dry-
ing trend, such as those that occurred in surrounding areas, extends to our study area due 
to the effect of increased evaporation caused by anthropogenic warming; then this wetting 
trend could be reversed in the near future (Sun et al. 2019; Lu et al. 2021), so the ecological 
and economic systems in the Loess Plateau will be forced to adapt.

The Yulin city is located in the northern Chinese Loess Plateau, which is influenced 
by the Asian summer monsoon during the warm season (Fig. 1B). The June–September 
precipitation probably originates from the monsoon circulation pattern and accounts for 

Fig. 3   Comparison of the proxy records from different climate regions. (A) Reconstruction of June-April 
precipitation for 1590–1700 derived from tree rings for the northern Chinese Loess Plateau (this study); (B) 
summer precipitation index reconstruction based on dryness-wetness index record and tree rings for north-
central China (Yi et al. 2012); (C) summer monsoon season streamflow reconstruction in the middle Yellow 
River derived from tree rings (Chen et al. 2020a); two stalagmite δ18O records from Qujia Cave (D) and 
Xiniu Cave (E) in China, reflecting large-scale drought signal. All precipitation and streamflow series were 
smoothed with a 10-year low-pass filter to highlight long-term fluctuations
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74% of total annual precipitation at Yulin. Previous studies have shown that the monsoon 
failures in northern China are closely related with ENSO activities, and our precipitation 
series show low values in some strong El Nino years, such as 1877 (277.4 mm) and 1918 
(271.2 mm) (Zhang et al. 1999; Zhou and Yu 2005; Cook et al. 2010). The possible con-
nection of regional precipitation with ENSO also has been supported by the results of cli-
mate model simulation and SEA analysis (Fig. 2). In this scenario, the ENSO phenomenon 
also may have played an important role in the occurrence of extremely low precipitation 
on the northern Chinese Loess Plateau during the late Ming Dynasty. Comparisons of our 
precipitation reconstruction with some ENSO reconstructions (Gergis and Fowler 2009; 
Li et al. 2013) reveals no systematic relationship, likely linked to the regional character of 
both the precipitation and reconstruction errors. Detailed analysis, however, suggests some 
low precipitation years following some El Nino events, such as 1607–1609, 1618–1621, 
1630, and 1638–1642. Moreover, low temperature during the LIA and the mid-seventeenth 
century eruption cluster not only makes the regional temperature colder, such as the cold 
summers in the Eastern Tibetan Plateau (Zheng et al. 2014; Wang et al. 2015; Chen et al. 
2020b), but also, to a certain extent, affected the regional water cycle (weak summer mon-
soon and low streamflow) and formed the dry-cold climate in the northern edge of the 
Asian summer monsoon region, which has played an important role for the demise of the 
Ming Dynasty (Chen et al. 2020a; Zhao et al. 2021a, b; Stoffel et al. 2022). To sum up, the 
mechanism(s) that triggered the dramatic and strongly decrease of precipitation in northern 
China during the late Ming Dynasty may be multifaceted, possibly involving the combined 
influence from the different external forcing factors.

4.2 � Link between extreme low precipitation and ecological crisis during the late 
Ming Dynasty

During the period 1605–1679, the frequency of extreme droughts increased dramatically, 
with a concentration of more than 40% of the extreme drought years (precipitation ≤ the 
mean − 1σ) for the last 429 years. The probability distribution of the reconstructed precipi-
tation during the pre-instrumental periods provided comparisons with normal conditions 
during the instrumental period that indicate a level of satisfaction with the water require-
ments of the vegetation. The probability of not meeting the 300-mm precipitation condi-
tion calculated from the CDF of the reconstruction during the period 1580–2018 (0.15) 
was remarkably higher than that derived from the instrumental record (0.05). Based on the 
range of precipitation reconstructed from 1605 to 1679, there would be a 33.3% chance 
that June-April precipitation would not meet or exceed 300 mm. Thus, in almost three out 
of every 10 years, the natural precipitation supply would not be sufficient to meet the water 
demands of crop millet and forage crop. More seriously, more than 70% of the years during 
the period 1605–1679 are below the mean instrumental May–September NDVI, which may 
lead to supply–demand imbalances of material and energy for the regional ecosystems. 
Zheng et  al (2014) indicated the impact of climate change on the collapse of the Ming 
Dynasty in the two pathways, which both are closely related to decline of agricultural pro-
duction. The grain prices in the late Ming Dynasty were risen continuously because of the 
war and the bad climate (Fig. 4C). Not only the grain prices in the border areas were con-
tinuously rising, but also the grain prices of the whole country were also rising, and grain 
prices in Yulin have more than tripled (Zheng et  al. 2014; Liu et  al. 2018). Meanwhile, 
due to food shortages, the Ming government had to provide more money to the troops on 
the border, which increased the financial burden (Quan 1970). There is no doubt that the 
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famines resulting from the droughts were the important reason for the collapse of the Ming 
Dynasty.

The fall of a vast empire should be considered a long-term process. However, the Ming 
Dynasty collapsed in less than 20 years after the outbreak of the peasant uprising in north-
ern Shaanxi in 1628. Thus, climate change alone cannot fully explain the Ming Dynasty’s 
rapid decline. Among the many explanations for the rapid collapse of the Ming Dynasty, 
the outbreak of the Black Death is often cited as an important reason (Cao 1997; Liu et al. 
2018; Li et  al. 2020; Brook 2020). Related research has shown that the outbreak of the 
Black Death may be affected by climate change (Schmid et  al. 2015; Chen et  al. 2022). 
The Black Death appeared in the nearby northern Shanxi during the Yuan Dynasty, but a 
southward expansion was not occurred until the late sixteenth century (Cao 1997). During 
the early seventeenth century, a long dry period was accompanied by a marked increase 
in the frequency of more deadly extreme drought events, followed by the outbreak of 
the Black Death (Chongzhen pandemic, 1640–1644) (Cao 1997; Brook 2020). There is 
abnormally low precipitation (< 300  mm) in 1627–1629 and peasant uprising broke out 
in northern Shaanxi in 1628, and during the period of 1637–1644; only the 1643 year has 

Fig. 4   A) Cumulative distribution functions (CDFs) of reconstructed precipitation. CDFs plotted for dif-
ferent periods: full-length (1590–2018), instrumental (1971–2018), and driest period 1605–1679. Smooth 
lines are lognormal fits to CDFs. Annotated are probabilities of not exceeding the specified 300-mm pre-
cipitation target. B) Cumulative distribution functions (CDFs) of NDVI. CDFs plotted for different periods: 
full-length (1590–2018), instrumental (1971–2018), and driest period 1605–1679. Smooth lines are lognor-
mal fits to CDFs. Annotated are probabilities of not exceeding the mean NDVI1982-2018. C) Comparison of 
changes in precipitation, food prices (Quan 1970; Zheng et al. 2014), and major epidemics in Ming China 
(Brook 2020) during 1580–1650
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a precipitation of more than 300 mm (Fig. 4C). Considering the relationship between the 
vegetation productivity and precipitation, it is understood that at that time, the probability 
of maintaining normal grain production was much lower, threatening human food security. 
Due to food shortages, high food prices made it more difficult for farmers to maintain a 
normal life, and as a result, a large number of farmers went bankrupt and became refugees, 
which triggered the massive uprising of peasants (Zheng et al. 2014). More serious was that 
as the vegetation productivity was drastically reduced, the ecological balance was broken, 
and the rodents also could also not get enough food and therefore moved to the heart of the 
empire (Cao 1997). Refugees with the Black Death ravaged the northern part of the Ming 
Empire, killing more than 40% of the population (Cao 2000; Zheng et al. 2014). The con-
sequence was the destruction of the social order and the economic base, greatly weakening 
the military power of the garrisons along the Great Wall (Cao 1997; Zheng et al. 2014). 
This produced weak resistance from garrisons along the Great wall to the attack on Beijing 
by Zhicheng Li’s peasant army, which led to the downfall of the Ming Dynasty (Cao 1997). 
Thus, this reveals that the societal turbulence and fiscal deterioration were closely linked 
with the influences of climate deterioration during late Ming Dynasty, through the third 
possible pathway: climate deterioration → decline in agricultural production → food crisis 
for humans and rodents → epidemic outbreaks → rapid declining population → increase of 
social vulnerability. The influence of the plague on the Ming Dynasty may be even more 
deadly under relatively poorer hygienic sanitary conditions in ancient times.

4.3 � Implication for management

The drying trend in northern China has been a wake-up call for many government agen-
cies throughout the northern China (Ma and Fu 2006; Su et al. 2018; Zhao et al. 2021b). 
The late Ming Dynasty megadrought is an unprecedented severe event in the context of 
the precipitation reconstruction extending to 1590 CE. However, the characteristics of this 
megadrought have rarely been revealed in the past dendroclimatic studies. Of the 429 years 
of precipitation reconstruction, 70  years (16.3%) were categorized as “extremely dry” 
(< mean − 1σ); however, no consecutive drought years (≥ 3 years) have occurred after the 
late Ming Dynasty, except for 1916–1918. Overall, these analyses suggest that severe, per-
sistent droughts are not the defining feature of the hydroclimate along the northern mon-
soon fringe of China. The precipitation along the Great Wall of northern China is also 
shown to be nonstationary at interannual and interdecadal scales, making short-term instru-
mental records inappropriate for most planning and forecasting applications.

Although our reconstruction differed in some respects from those of Liu et al (2019b), 
some new climate information, such as the recent wetting trend and late Ming Dynasty 
megadrought, is provided. The long-term perspective provided by our  tree-ring record 
shows that the monsoon fringe in northern China may have a sharp environmental deterio-
ration due to some climate extreme events. This finding has even greater relevance today. 
With the rapid development of China’s economy, demands in northern China over the past 
decades have risen to meet or exceed mean water availability (Shen et al. 2013; Liu et al. 
2021a, b). Any variations or shifts in climate may have some significant influences on the 
fragile ecosystems. The sensitivity of fragile systems in northern China became abundantly 
clear with the onset of the recent drying under the background of global warming (Xu et al. 
2018; Sun et al. 2021b). Although many measures have been taken in northern China to 
resist the impacts of climate change, such as South-to-North Water Diversion Project, these 
measures need to be tested because no consecutive droughts occurred during the recent 
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decades. In the future, projected climate change, including warming-induced drought and 
more frequent monsoon failure (Yuan et  al. 2019; Li et  al. 2021; Piao et  al. 2022), will 
likely compound risks of climate change throughout the entire northern China. In concert 
with information on long-term climate change, information on projected future changes 
must guide planning for sustainable development and drought management in northern 
China, if we are to adequately face the challenges of climate change that coming decades 
will undoubtedly present.

5 � Conclusions

Based on a tree-ring width chronology of Platycladus orientalis from the northern Chinese 
Loess Plateau, a total June-April precipitation was reconstructed over the past 429 years. 
This new reconstruction provided a detailed picture of the precipitation variation in the 
northern Chinese Loess Plateau during the late Ming Dynasty, which has made it possible 
to assess the magnitude of the impacts produced by major droughts on agricultural civili-
zation and in the ecological balance in ancient China. This work has shown that there was 
a long period of low precipitation that affected the northern Chinese Loess Plateau dur-
ing the last stage of the Ming Dynasty. ENSO, cool temperatures, volcanic eruption, and 
other factors seem to have the combined effects on the regional precipitation variations, 
generating intense and prolonged droughts toward the end of the Ming Dynasty, coinciding 
with the Little Ice Age. The abnormally low precipitation-induced ecological imbalance 
in northern China severely disrupted the food supply, sustaining the large-scale peasant 
uprising and mass deaths produced by the Black Death. The resulting destruction of the 
political, social and economic order of the northern China forced the demise of the Ming 
Dynasty in just over 20 years.
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