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Impact on porous targets: Penetration, crater formation, target compaction, and ejection
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Using a granular-mechanics code, we study the impact of a sphere into a porous adhesive granular target,
consisting of monodisperse silica grains. The model includes elastic repulsive, adhesive, and dissipative forces, as
well as sliding, rolling, and twisting friction. Impact velocities of up to 30 m/s and target filling factors (densities)
between 19% and 35% have been systematically studied. We find that the projectile is stopped by an effective
drag force which is proportional to the square of its velocity. Target adhesion influences projectile stopping
only below a critical velocity, which increases with adhesion. The penetration depth depends approximately
logarithmically on the impact velocity and is inversely proportional to the target density. The excavated crater
is of conical form and is surrounded by a compaction zone whose width increases but whose maximum value
decreases with increasing target density. Grain ejection increases in proportion with impactor velocity. Grains
are ejected which have originally been buried to a depth of 8Rgrain below the surface; the angular distribution
favors oblique ejection with a maximum around 45◦. The velocity distribution of ejected grains features a broad
low-velocity maximum around 0.5–1 m/s but exhibits a high-velocity tail up to ∼15% of the projectile impact
velocity.

DOI: 10.1103/PhysRevE.86.061313 PACS number(s): 81.05.Rm, 79.20.Ap, 96.25.Pq, 95.30.Wi

I. INTRODUCTION

Impact into granular material has been studied intensely in
the recent past, with particular emphasis on non-cohesive tar-
gets, such as dry sands [1–8]. Impacts into adhesive materials
appears to have received less attention. However, such impacts
are of prime importance in the field of planetary sciences. As
an example, the mechanical properties of surfaces of planets,
moons, asteroids, etc. can be determined from the dynamic
behavior of impacting projectiles [9]. As one outstanding
example, we mention the space mission DEEP IMPACT, in
which an impactor (364 kg, 49% Cu) impinged with a velocity
of 10.3 km/s on the comet Tempel 1 [10]. This comet is
highly porous with a filling factor of around 30%–50% [11].
The objective of this mission was to learn about the structure
of the comet nucleus by an analysis of the crater formed
and of the ejecta. Similar impacts would occur (naturally)
if compact objects like meteorites collide with comets, the
surface of ice-covered moons, or planetary rings. As a final
related example, one could consider the impacts of cometary
material into the capture foam in the STARDUST mission
[12], which have been extensively analyzed by continuum
modeling of impact in low-density materials [13,14]. Such
continuum modeling might become problematic as the size of
the aggregates reaches micrometer-size scales.

The role of adhesive forces on the dynamics of granular
matter has recently been nicely documented in an experimental
study on the clustering of silica grains in granular streams
[15]. This study revealed both the relevance of van der Waals
adhesion forces on low-velocity dynamics and showed that
rough grains will exhibit less cohesion than smooth grains.

Recent experiments have also demonstrated that interstitial
gas contained in a granular target will affect the slowing-down
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forces on the projectile, and hence the crater shape [16,17]. A
high gas content induces the granular material to respond in a
nearly incompressible, fluidlike manner, while in the absence
of gas the target is able to compact more strongly, increasing
energy dissipation and projectile deceleration. In the present
context of astro-physical applications, however, we may safely
assume that the gas content of our targets is near zero.

From a theoretical point of view, the modeling of such
impacts is not trivial. Available granular-mechanics codes
often favor nonadhesive grains since they care for larger
grain sizes where adhesive forces may be neglected. The
important work by Paszun and Dominik [18] and Wada et al.
[19–23]—which aim at modeling porous adhesive material for
the astrophysical and planetary context—has allowed up to
now only the simulation of targets containing <10,000 grains,
which is hardly sufficient for the modeling of impacts on
extended targets. Finally, the established method of “smoothed
particle hydrodynamics” (SPH)—which has proven successful
for describing impacts on large bodies such as planets or
moons [24]—needs to be carefully adjusted to include an
appropriate porosity model [25–27], and might also fail in
the micrometer-size scales needed for some astrophysics
scenarios.

In the present paper, we use a recently developed code [28]
for adhesive granular mechanics to investigate the problem of
impact of a rigid sphere into a porous medium composed of
adhesive grains. The projectile is 3 times larger than the grains
of which the target is composed; this size has been chosen as a
compromise between clarity of the results and computational
effort (size of the simulation volume). While it would be
interesting to use larger projectiles—to come closer to practical
applications and also to vary projectile size and mass and
study their influence—the present work concentrates on a fixed
projectile size and studies the impact-induced processes in
detail for this prototypical example.
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We focus on grains composed of monodisperse micrometer-
sized silica spheres. By systematically varying the impact
speed and the target porosity, we are able to characterize the
effective force with which the projectile is slowed down, the
dependence of the penetration on the target porosity, the crater
size and shape, and the amount and characteristics of ejected
material. Where data or theoretical analyses are available, we
compare our results to those for nonadhesive granular targets.

II. METHOD

A. Granular mechanics algorithm

The details of our simulation method and granular-
mechanics code have recently been published [28] and
employed to simulate collisions of porous clusters [29]. In
the following we only briefly describe the main features of our
method.

Our porous targets consist of a collection of spherical
grains, cf. Fig. 1. All of them possess the same properties
(radius Rgrain, elastic moduli, etc.). The grains only interact
if the distance of their centers d < 2Rgrain. As common in
granular mechanics, the length δ = 2Rgrain − d is called the
grain overlap, and interactions are nonzero only for δ > 0.

Forces between grains are classified as normal and tangen-
tial forces. The normal force consists of a repulsive and an
adhesive contribution. The repulsive part [30],

frep = max

{
0,

4

3
M

√
Rredδ(δ + Avn)

}
, (1)

consists of a Hertzian δ3/2 contribution, based on elastic theory,
and a dissipative part, describing a viscoelastic contact [31].
Here Rred = Rgrain/2 is the reduced radius, M = Y/2(1 − ν2)
is the reduced modulus, Y Young’s modulus, ν Poisson’s ratio,
vn is the velocity component in normal direction, and A is an
empirical factor modeling dissipation. The max operator in
Eq. (1) prevents the force from becoming attractive when the
two grains move away from each other with high velocity.

The adhesive part of the normal force is taken to be identical
to the pull-off force needed to break a contact. According to

FIG. 1. (Color online) Target used for impact simulation, filling
factor φ = 26.7%. Red: impacting sphere.

the widely used Derjaguin-Muller-Toporov model [32] it is
given by

fadh = 4πRredγ. (2)

Adhesion is characterized by the material-dependent
parameter γ ; in our case, where grains consist of the same
material, γ is twice the specific surface energy of the material.

Note that existing contact models [33–36] predict the
adhesive force to follow a complex dependence on the distance
between two grains, which we simplify by the constant value,
Eq. (2) [28].

The tangential forces consist of several friction forces.
Gliding friction,

fslide = 1
2Gπa2, (3)

depends on the shear modulus G and the radius a = √
δRred

of the contact area [37]. Rolling motion is decelerated by a
torque [38],

Dr = 2fadhξyield. (4)

Here, ξyield is the distance which two grains can roll over
each other without breaking their atomic contacts. Finally, also
torsional motion is decelerated by a torque, whose strength is
given by [38]

Dt = 1

3
G

a3

π
. (5)

In the actual implementation, we supplement the velocity
independent friction force, Eq. (3), with a velocity proportional
contribution (a viscous term), valid for small velocities. This
has the effect that the abrupt jump in the sliding force,
which occurs when the tangential velocity approaches zero, is
smoothened. As a consequence, the grain contact is stabilized.
For the other friction forces we proceed analogously. For
details see Ref. [28].

The adhesive properties of our granular material are sum-
marized in the surface energy γ . We note that this parameter
also describes the energy needed to break the contact between
two spheres; it is given by [28,29]

Ebreak = fadhδequ. (6)

Here δequ denotes the equilibrium distance between two grains
in contact. It can be calculated from the requirement that at
this distance frep = fadh:

δequ =
(

9π2γ 2Rred

M2

)1/3

. (7)

Thus the potential energy of a contact scales with the surface
energy as Ebreak ∝ γ 5/3.

Our simulations have been performed with the well-
documented molecular-dynamics package LAMMPS [39] after
the above features have been coded into this software.

B. Parameter selection

The materials parameters are chosen as appropriate for SiO2

[40]: Young’s modulus Y = 54 GPa, Poisson’s ratio ν = 0.17,
shear modulus G = Y/[2(1 + ν)], and γ = 0.05 J m−2 is twice
the specific surface energy of SiO2.
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The grain radius was kept fixed as Rgrain = 0.76 μm. The
density of the SiO2 grains amounts to ρ = 2 × 103 kg m−3

[41]. The mass of a grain amounts to m = 3.68 × 10−15 kg.

C. System and simulation

The global filling factor of an ensemble of N grains—each
with a volume Vgrain = 4πR3

grain/3—in a volume V is defined
as φ = NVgrain/V . We build porous targets with a specified
filling factor as follows:

(1) Set a grain at an arbitrary position in the volume.
(2) Calculate the local filling factor for each grain; this is

done by counting the number of grains in a sphere of radius
5Rgrain around it.

(3) Determine the grain with the smallest local filling factor.
(4) Attach a grain to it in random direction.
(5) If the actual number of grains <N , go to step 2.
This simple algorithm distributes the grains homogeneously

in the volume. We construct targets with filling factors between
around 20% and 35%; the actual values were 19.1%, 22.8%,
26.7%, 30.7%, and 34.7%. The volume V was cubic with a
side length of 93Rgrain = 70.7 μm. The maximum number of
grains used, in the densest target, amounted to N = 70,000.
The top and bottom surfaces of the target are free; at the sides
we employ periodic boundary conditions.

As a projectile we employ a sphere with radius 3Rgrain and
mass mproj = 27m. Its elastic and contact properties are again
those of silica. It does not possess any internal structure.

III. RESULTS

A. Stopping and penetration

When the projectile penetrates into the target, it feels an
effective stopping force which results from its interaction with
the grains and of the grains with each other. This stopping
force F is a priori unknown. Let us assume it has a power-law
dependence on the projectile velocity v with exponent α,

F = −f |v|α. (8)

Such a law (with α > 1) leads to a decrease of the projectile
velocity with time t as

t = mproj

f

1

α − 1

(
1

vα−1
− 1

vα−1
0

)
. (9)

We tested our slowing-down data v(t) with such a law
and conclude that our results are compatible with α = 2; a
representative case is shown in Fig. 2. At later times than those
shown in Fig. 2, the stopping law changes due to adhesion, cf.
the Appendix Sec. A.

While for α < 2, a power-law stopping force leads to finite
penetration depths, they become (formally) infinite for α � 2.
Assuming particles to have stopped if they reach a threshold
velocity vth (threshold energy Eth), we obtain for our case
α = 2 a penetration depth of

D = mproj

f
ln

v0

vth
∝ ln

E0

Eth
. (10)

In this simple model it is assumed that the projectile follows a
straight path while slowing down. Figure 3 assembles all our
data and shows that such a logarithmic dependence appears

FIG. 2. (Color online) Slowing down of projectile (impact ve-
locity 30 m/s) in a target (filling factor φ = 30.7%). The linear
dependence of (1/v − 1/v0) on time t , cf. Eq. (9), is characteristic of
a quadratic stopping force law, see text.

to be reasonably well fulfilled. In the simulation we assume
the projectile to be stopped when its energy is below Eth =
1.0 × 10−16J , corresponding to a velocity of vth = 0.04 m/s.

We conclude from Fig. 3 that the penetration depth in-
creases roughly logarithmically with impact energy; naturally
more porous targets possess higher penetration depths.

The problem of penetration of impactors into granular
media has been intensely studied in the recent past. Katsuragi
and Durian [7], extending simulation studies by Tsimring and
Volfson [6], recently proposed a “unified law” for penetration
into granular material. They find that gravity leads to a
depth-dependent contribution to the effective force acting
on the projectile in the target, caused by the difference of
the hydrostatic pressure on the upper and lower side of the
impactor; this force is of course missing in our context. In
addition, they find a drag force which is proportional to v2,
just as in our simulations. Such a drag force, caused by
dynamic friction, has already been assumed in early studies

FIG. 3. (Color online) Dependence of penetration depth D on
impact velocity v for various target filling factors φ.
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FIG. 4. (Color online) Dependence of penetration depth D on
target filling factor φ for various impact velocities v.

of high-speed ballistics, known as the Poncelet force law, cf.,
e.g., Ref. [42]. Granular material packed at low densities is
a particular case of a highly porous material. Penetration of
projectiles in highly porous media has been considered in a
number of models, e.g., in Refs. [13] and [14].

We thus conclude that we find that Poncelet’s law also
describes the slowing down of projectiles in adhesive granular
materials. Deviations from this conclusion occur at low
impactor velocities and are described in the Appendix, Sec. A.

In Fig. 4 we display the dependence of the penetration depth
on the target filling factor. In good approximation, an inverse
relationship

D ∝ 1

φ
(11)

can be observed, i.e., the penetration depth scales with the
effective target density.

B. Crater

During impact, the projectile digs a crater into the target,
with a depth equal to the penetration depth. Figure 5 shows
two exemplary cases. We note that the crater shape in this
figure is similar to the shape of some of the craters shown in
Ref. [13] for STARDUST craters. This suggests that some of
our conclusions might still remain qualitatively valid at much
larger impact energies, where the approximation of elastic
granular material is no longer valid.

In Fig. 6(a) we display how the upper crater diameter
evolves with impact speed. After an early increase for small
velocities, the diameter saturates for velocities �20 m/s at
values of (20 − 30)Rgrain; this corresponds to 3–5 times the
projectile diameter. Note that since the projectile penetration
depth—and hence the crater depth—keeps increasing with
velocity (cf. Fig. 3), the crater aspect ratio keeps increasing; for
higher impact speeds, craters become increasingly tubelike.

The crater diameter decreases with target density φ,
cf. Fig. 6(b). We note that the decrease does not scale with 1/φ,
in contrast to the penetration depth [Eq. (10), cf. Fig. 4]. This
means that crater forms are not self-similar for materials with

FIG. 5. (Color online) Craters caused by the impact of a projectile
with velocity of 20 m/s into a target with filling factor of (a)
φ = 19.1% and (b) φ = 26.7%. Color code denotes relative target
compaction. Blue (red): 10% smaller (larger) filling factor than
original target; green: original filling factor. The yellow sphere marks
the position of the stopped projectile.

different porosities. The dependence of the crater aspect ratio
on target density is summarized in Fig. 6(c). The highest aspect
ratios are obtained in the most porous targets; here tubelike or
conical impact craters with an aspect ratio of 2.5 are formed
at the highest velocities investigated here. For denser targets,
craters become increasingly hemispherical with an aspect ratio
approaching 1.

C. Target compaction

In Fig. 5, the region in the target which has been compacted
by the impact has been highlighted. The features displayed for
the two cases are observed quite generally in our simulations.
The regions below and at the sides of the craters are found
compacted; at the crater wall itself and towards the surface,
we find only little target modification (besides an obvious
target thinning immediately at the crater wall). The compacted
region has a quite uniform thickness below and sideways to
the crater.
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FIG. 6. (Color online) Dependence of the upper crater diameter
on (a) impact speed and (b) filling factor. (c) Dependence of the crater
aspect ratio on filling factor.

FIG. 7. (Color online) Change of local target filling factor δφ with
depth z into the target for impact of a projectile with velocity of 6 m/s
into a target with filling factor of φ = 26.7%. The final position of the
impactor is marked. The maximum compaction δφmax and the width
of the compacted zone wmod—taken as the region where the change
of the filling factor amounts to at least 1/e = 37% of δφmax—are
indicated.

In order to study this behavior quantitatively, we measure
the local filling factor in a cylinder below the projectile impact
point with a diameter equal to the projectile diameter and
display the result for a representative example in Fig. 7;
the position of the stopped projectile is also indicated. The
modified target region is clearly defined. We denote the
maximum change of the filling factor by δφmax; in addition,
the width of the modified zone wmod is taken as the region
where the change of the filling factor amounts to at least
1/e = 37% of δφmax.

Figure 8 shows the systematics of our results. Initially
highly porous targets show a larger maximum compaction
than initially dense targets. Even more pronounced is the
dependence of the width of the compacted region, which
increases significantly with the initial target filling factor. The
dependence of both quantities on projectile speed is only mild
and does not appear to be statistically significant.

D. Grain ejection

Projectile impact not only digs a crater into the target, but
also ejects grains from it. This process is analogous to the
sputtering known from ion impact into (nongranular) solids
[43]. The number of grains ejected by the impact is called the
ejection yield Y .

A grain was considered ejected when its height is above
the original target surface and its velocity is above zero. Thus
grains forming the crater rim [cf. Fig. 5(a)] are not counted as
ejected, since they have vanishing velocity. On the other hand,
a few low-energy grains are still moving in the otherwise empty
crater volume and some of them may finally be ejected.

In Fig. 9, we display the ejection yield as a function
of projectile velocity for a target of medium porosity. An
approximately linear dependence of the ejection yield Y on
projectile velocity v,

Y = αv, (12)

061313-5



RINGL, BRINGA, AND URBASSEK PHYSICAL REVIEW E 86, 061313 (2012)

FIG. 8. (Color online) Dependence of the (a) maximum com-
paction and (b) width of the compacted zone on filling factor φ for
various impact velocities v.

is observed. This also happens in the other targets not shown
here, with the exception of the smallest filling factor, φ =
19.1%, where fluctuations are largest. The proportionality
constant α in Eq. (12) assumes values of 1.05, 3.24, 3.46, 2.05,
and 2.91 s/m with increasing filling factor. It thus appears that
ejection is maximum for intermediate filling factors, but this
conclusion is at the limit of the statistical relevance of our data.

In order to gain more insight into the ejection process,
we analyze a particularly abundant case in more detail.
We selected the case of intermediate filling factor and high
velocity, φ = 26.7% and v = 30 m/s, and simulated nine
impact events; the impact point was varied randomly within
a distance of 3Rgrain. We analyzed the ejection velocity v, the
depth of origin z of the ejected grains, and the ejection angle
ϑ measured with respect to the surface normal. The results are
plotted in Fig. 10.

Ejection energies have a broad maximum at around 0.8 ×
10−15 J, corresponding to velocities around 0.5 m/s. A fit of
this distribution to a Maxwellian emission distribution (not
shown) gives unphysically high ejection “temperatures” of

FIG. 9. (Color online) Ejection yield as a function of projectile
velocity for a target with filling factor φ = 26.7%.

∼3.7 × 107 K; furthermore, our ejection data show a strong tail
of grains emitted at high energies (up to 43.2 × 10−15 J), which
the exponential decay featured by the Maxwellian distribution
cannot describe. We therefore attempt a fit to the so-called
Thompson distribution, which characterizes particle ejection
in sputtering induced by atom impact [44,45]:

f (E) = c
E

(E + U )3
. (13)

Here, c is a constant proportional to the total ejection yield,
while U describes the surface binding energy. We note that our
simulation data show an apparently even softer decay towards
high emission energies than predicted by the 1/E2 falloff of
the Thompson law.

In sputtering from solids, U is well approximated by the
cohesive energy of the material. The question arises as to
which materials constant our fit value U = 1.4 × 10−15 J
corresponds. In granular materials, we may compare to two
quantities: (i) the fragmentation energy (Ebreak ∼ 2.8 × 10−17

J) [Eq. (6)], which is needed to break the contact between
two grains; (ii) the so-called rolling energy, i.e., the energy
needed to roll two spheres through 90◦, and which amounts
to Eroll ∼ 1 × 10−16 J. We conclude that the fit value of U

is more than an order of magnitude larger than either of these
materials quantities. On average, a grain needs to break around
50 contacts with surrounding grains, or alternatively, around
15 roll events, before it is ejected.

Grains are emitted from depths up to 8Rgrain; note that
the projectile penetrates down to (45.5 ± 2)Rgrain. However,
the majority of grains originate from around (1 − 4)Rgrain.
Such a broad distribution demonstrates that emission occurs
throughout the penetration process. While the projectile digs
its way down into the target, it imparts momentum to the grains
that it shuffles aside. This momentum is mainly directed in
the direction down into the target (leading to the compaction
described in Sec. III C above) and sideways. However, due to
collisions with other grains, the momentum of the colliding
grains (or of other recoiling grains) can be redirected such that
eventually emission is possible. This mechanism is reminiscent
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FIG. 10. (Color online) Characteristics of grain ejection caused
by impact onto a target with filling factor φ = 26.7% with velocity
of 30 m/s. Distribution of (a) ejection energies, (b) depth of origin,
and (c) ejection angles, measured with respect to the surface normal.
In (a), a Thompson distribution, Eq. (13), is included as a reference.

of the collision-cascade mechanism well known in the theory
of sputtering of solids bombarded by energetic ions [45].

We note that also clusters are emitted. Around 32% of all
emitted grains have been ejected in the form of clusters, the
majority of them (15%) as dimers and 5.4% as trimers. The
cluster mass distribution then decreases, and the largest emitted
cluster we observed consisted of ten grains.

For the presentation of the angular distribution of ejecta
N (ϑ), we divide by the pertinent spherical area and plot

N (ϑ)/(2π sin ϑ) (14)

in Fig. 10(c). We see that emission is far from isotropic;
emission along oblique angles, ϑ ∼ 45◦, is strongly preferred.
While isotropic emission would be compatible with emission
from a flat undisturbed surface, emission from a deep crater
would enhance ejection angles close to the surface normal,
around ϑ = 0◦. The oblique emission observed here must
hence be due to the emission in the small cone opening between
the downward-moving projectile and the crater walls.

IV. CONCLUSIONS

Using a granular-mechanics code, we study the impact of a
rigid sphere into a porous adhesive granular target, consisting
of monodisperse silica grains. The model includes elastic
repulsive, adhesive, and dissipative forces, as well as sliding,
rolling, and twisting friction. Impact velocities up to 30 m/s,
and target filling factors (densities) between 19% and 35%,
have been systematically studied. We find:

(1) The projectile is stopped by an effective drag force
which is proportional to the square of its velocity, as predicted
by some models like the so-called Poncelet law, and observed
in several experiments.

(2) The penetration depth depends approximately logarith-
mically on the impact velocity and is inversely proportional to
the target density.

(3) Target adhesion influences projectile stopping only
below a critical velocity, which increases with adhesion γ .
The grains in front of the projectile form an adhesive stopping
cushion, which stops the projectile efficiently due to its large
effective mass.

(4) The excavated crater is of conical form and is sur-
rounded by a compaction zone, whose width increases, but
whose maximum value decreases with increasing target den-
sity. Such conical craters display some similarities with craters
formed at much higher impact velocities in the STARDUST
mission aerogel collector.

(5) Grain ejection increases in proportion with impactor
velocity.

(6) Grains are ejected which have originally been buried
up to a depth of 8Rgrain below the surface; their angular
distribution favors oblique ejection with a maximum around
45◦. The velocity distribution of ejected grains features a broad
low-velocity maximum around 0.5 − 1 m/s, but exhibits a
high-velocity tail up to ∼15% of the projectile impact velocity.

Future simulations with projectiles having internal struc-
ture would allow projectile fragmentation, and therefore the
formation of more complex crater shapes, possibly includ-
ing a thin track extending from the bottom of the main
crater.
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FIG. 11. (Color online) Influence of the surface energy of grains
γ on (a) the penetration depth and (b) the slowing down of the
projectile. Data are for projectile impact at 30 m/s into a target with
filling factor of 30.7%.
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APPENDIX: INFLUENCE OF SURFACE ENERGY

We investigate in this Appendix how the value of the
surface energy γ influences the stopping and penetration of
the projectile. To this end we performed simulations in which
γ was varied between 2 and 200 mJ/m2 around the nominal
value of 50 mJ/m2, for which this model was set up. In this
study, the projectile always impacts with a velocity of 30 m/s
into a target with filling factor of 30.7%.

We note that according to Sec. II A, γ influences the
dynamics in two respects since (i) the adhesion force
[Eq. (2)] and (ii) the rolling friction [Eq. (4)] are proportional
to γ .

We observe in Fig. 11(a) that projectile penetration de-
creases monotonically with γ . The penetration depth D =
57Rgrain for our smallest value of γ , 2 mJ/m2, will be identical
to the penetration in a nonadhesive powder. It is almost 50%
larger than the penetration in adhesive silica dust with the
realistic value of γ = 50 mJ/m2. A further fourfold increase
of γ to 200 mJ/m2 reduces the penetration by 40% to
D = 24Rgrain.

In order to gain more insight into the influence of adhesion
on the stopping process, we plot in Fig. 11(b) the temporal
evolution of the projectile velocity. The velocities for the
standard case, γ = 50 mJ/m2, coincide for the first 7 μs
with those plotted in Fig. 2; they correspond to stopping
according to the Poncelet force law [Eq. (8)] with α = 2:
F ∝ v2. We verified that the velocity for the smallest adhesion,
γ = 2 mJ/m2, follows Eq. (9) throughout the first 35 μs plotted
in Fig. 11(b).

Figure 11(b) thus gives us the following picture. Initially,
target adhesion is irrelevant for projectile stopping. In this
ballistic phase, stopping follows Poncelet’s law as discussed
in Refs. [7] and [6]. With decreasing projectile velocity, target
adhesion becomes important and leads to a strong increase of
the stopping force; the critical velocity below which adhesion
becomes important increases with increasing γ . We are not
aware of a theoretical analysis of the adhesion-increased
stopping force. The physical picture behind it is that the
projectile no longer interacts with individual target grains but
with an agglomerate (a stopping cushion) of target grains held
together by adhesion; due to its increased mass, it can stop the
projectile more efficiently.

Finally, after the projectile velocity has decreased to values
of ∼0.1 m/s, the stopping force becomes smaller again. This
is a consequence of the viscous force law entering the friction
forces for small velocities (see our discussion at the end of
Sec. II A). However, at this time the projectile velocity is
already so small that penetration is only marginally affected
by this third stopping stage.

We note that we saw an analogous behavior if we vary the
target density for constant adhesion. In this case the Poncelet
law holds for larger times in thinner targets. This is plausible
since adhesion-increased stopping works via the buildup of a
temporary target cushion which will be less effective in thin
targets.

We summarize our findings on the influence of adhesion
on stopping as follows. At large velocities, the projectile is
stopped ballistically, as in Poncelet’s law. Below a critical
velocity, which increases with adhesion γ , the projectile is
stopped considerably more strongly. The reason hereto lies
in the formation of an adhesive target cushion in front of the
projectile, which stops the projectile efficiently due to its large
effective mass.
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