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Abstract
The two-level system and the Einstein model of a crystalline solid are taught in
every course of statistical mechanics and they are solved in the microcanonical
formalism because the number of accessible microstates can be easily evaluated.
However, their solutions are usually presented using the Stirling approximation
to deal with factorials. In this paper, those two models are solved without any
approximation, using the gamma function and its derivatives. Exact values
are calculated for the entropy, temperature and specific heat, and the relative
error between our exact solution and the approximate one using the Stirling
approximation. This error is significant for small systems, with a number of
particles N ∼ 100, as in studies of atomic clusters or nanoscale structures.

1. Introduction

The microcanonical formalism is an important topic in statistical mechanics courses; indeed,
some textbooks [1–4] use it as the starting point for developing the subject. Typically, the
relationship between ‘number of states’ and entropy is stated, and then some simple examples
are considered. Amongst the most popular examples, the two-level system and the Einstein
solid are solved using the Stirling approximation [5] and expressions for the entropy in terms
of the relevant variables are found. The use of the Stirling approximation is justified since one
is interested in the thermodynamics limit, i.e. when the number of particles gets very large.
However, one may wonder what happens when the number of particles is small (10–103).
This question is interesting for two reasons. On one hand, it is conceptually interesting to
know the influence of the system size. On the other hand, there is a huge interest in small
systems, including atomic clusters [6–9] and nanostructures [10, 11]. There are experimental
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data for systems as small as 10–103 atoms and the usual formulae of statistical mechanics
and thermodynamics are sometimes used without taking into account possible finite size
corrections. The aim of this paper is to address the issue of finite system size solving both the
two-level system and the Einstein solid exactly, i.e. without using the Stirling approximation,
in the framework of the microcanonical formalism.

This paper is suitable for an upper undergraduate course in statistical physics and might
also be of interest for a graduate course dealing with nanophysics.

The structure of this paper is as follows. After this short introduction, the Stirling
approximation, the gamma function and its derivatives are discussed in section 2. Section 3
deals with the two-level system while section 4 is devoted to the Einstein solid. Finally, the
results are summarized in section 5, with a discussion of their possible implications.

2. Stirling approximation, the gamma function and its derivatives

Counting the number of states at constant energy usually requires the evaluation of expressions
including ln N !, where N is a positive integer. The usual trick is to write the factorial in terms of
the Stirling approximation, which is obtained by the series expansion of the function gamma:

ln(N !) = ln(�(N + 1)) =
(

N +
1

2

)
ln(N) − N +

1

2
ln(2π) +

1

12N
+ · · · . (2.1)

Expression (2.1) is then simplified, and only the most relevant terms are kept:

ln(N !) � N ln N − N (2.2)

or directly

ln(N !) � N ln N. (2.3)

If one calculates ln(N !)/(N ln N − N) or ln(N !)/(N ln N), it becomes clear that the ratios
go to 1 as N → ∞, although the second ratio has a much slower convergence, as shown in
figure 1. From figure 1(a) it is clear that, for N > 1000, the first approximation—equation
(2.2)—is in excellent agreement with the exact value. This approximation is used in the
standard textbooks to solve the two-level system. The second approximation, (2.3), usually
applied when dealing with the Einstein solid, is less satisfactory and even for N = 108 it still
differs by about 10% from the exact value, as seen in figure 1(b). Our purpose is to solve both
physical systems without employing these approximations.

Some derivatives of the gamma function � appear in the following sections; they are
designated as ψn(z) and they are defined as [12]

ψn(z) = dn+1

dzn+1
ln [�(z)] . (2.4)

These derivatives cannot be expressed in terms of elementary functions, but they can be
evaluated numerically and are included in computer packages like Mathematica [13].

3. Two-level system

3.1. Entropy

This is the simplest example studied in a statistical physics course. There are N particles and
each one can be in one of two quantum states: the fundamental state with zero energy, or an
excited state with energy ε. In the microcanonical formalism, one needs to know the number
of states � with energy U that are available to the system. The energy U is given by U = Mε,
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(a) (b)

Figure 1. Log–log plots showing the Stirling approximation (ln N ! ∼= N ln N −N ) compared with
the exact function in equation (2.1). (a) The ratio between (N ln N − N ) and ln N ! is shown as a
function of N. For a system size as small as 103 the approximation is still extremely good, giving
≈ 0.1% difference. (b) Sometimes the exact function is simplified to ln N ! ∼= N ln N . The log–log
plot of (N ln N)/(ln N !) is shown in terms of N. For N = 108 the exact and approximated values
are still different by ≈10%. Despite this difference, this approximation is usually applied to solve
the Einstein model in most textbooks.

i.e. M is the number of energy quanta and it can be thought of as a dimensionless energy.
Two-level systems are used as simplified models for a number of more complex scenarios,
including paramagnetism in solids [14] and aspects of disordered systems [15].

In many textbooks—see for example [1]—it is shown that

� = N !

M!(N − M)!
. (3.1)

The entropy of the system is given by the well-known relationship due to Boltzmann [1]:

S = kB ln �, (3.2)

where kB is the Boltzmann constant.
Replacing (3.1) in (3.2), the exact value Sex of the entropy for the two-level system is

Sex = kB ln
N !

M!(N − M)!
. (3.3)

In the usual treatment [1], the Stirling approximation (2.2) is applied to evaluate the logarithm
in (3.3) and an approximated expression for the entropy Sapp is obtained:

Sapp = kB [N ln N − M ln M − (N − M) ln(N − M) − N + M + (N − M)] . (3.4)

As shown in figure 1(a), the Stirling approximation is justified for large values of N, but for
N < 103, the approximate value differs considerably from the exact one. Consequently,
one expects differences between Sex and Sapp for small systems. It is useful to rewrite (3.3)
using the gamma function for further use. One needs to evaluate derivatives of Sex to get the
temperature and the specific heat, and the derivatives of the gamma function are well defined.
Equation (3.3), which is written in terms of factorials, cannot be used because the derivative
of a factorial is not defined:

Sex = kB {ln [�(N + 1)] − ln [�(M + 1)] − ln [�(N − M + 1)]} . (3.5)
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(a)

(b)

(c)

Figure 2. The relative errors of the entropy (a), temperature (b) and specific heat (c) are shown for
the two-level system in terms of the energy per particle M/N . Two sizes have been considered:
N = 100 (solid line) and N = 1000 (dash line). Note that the absolute values have to be used to
plot the errors in a log scale. The odd behaviour of the specific heat is an artifice due to the use
of the absolute value. The error is negative below M/N ∼= 0.125 (or above M/N ∼= 0.875) and
becomes positive above (below) that value. A plot in a linear scale of the specific heat relative
error shows a monotonically increasing value as M/N goes from 0 (or 1) to 0.5 and the error sign
changes at M/N ∼= 0.125 (or M/N ∼= 0.875). It is clear that for N = 100 the relative errors of the
entropy and temperature are significant in the full range. The dashed vertical line at M/N = 0, 5
indicates a discontinuity in the functions.

The relative error (Sapp−Sex)/Sex is shown in figure 2(a) as a function of the energy per particle
M/N for two different sizes (N = 102 and N = 103). For the smaller system, the difference
between the approximated and exact values is relevant in all the energy range. This means that
the value shown in textbooks is inaccurate for N � 100. For the larger system (N = 1000),
the error is lower but it is still relevant for low (M/N < 0.1) and high (M/N > 0.9) energies.
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3.2. Temperature

The temperature evaluation is our next step and the well-known thermodynamics definition
should be used:

∂S

∂U
= 1

T
. (3.6)

The usual temperature Tapp obtained using the Stirling approximation is [1]

Tapp = ln

(
N

M
− 1

)−1
ε

kB

. (3.7)

On the other hand, if one uses the exact value of the entropy (3.5) in (3.6), the exact temperature
Tex is

Tex = [ψ0(N − M + 1) − ψ0(M + 1)]−1 ε

kB

. (3.8)

The function ψ(0) is defined by (2.4).
In figure 2(b), the relative error between Tapp and Tex is shown in terms of M/N . Once

again, the error is large for very low or very high energies.

3.3. Specific heat

The next step is to evaluate the exact specific heat cex and to compare it with the approximated
value capp given in textbooks (see for example [1]):

capp = Nε2

k2
BT 2

(eε/2kBT + e−ε/2kBT )−2. (3.9)

The temperature in (3.9) can be replaced by the value given in (3.7) to obtain

capp = kB

[
ln2

(
N − M

M

)]
M

N
(N − M). (3.10)

To calculate the exact value of the specific heat, it is convenient to start from (3.8) and obtain

dM

dT
= − 1

T 2

ε

kB

[−ψ1(N − M + 1) − ψ1(M + 1)]−1, (3.11)

and from the definition of the specific heat

c = ∂U

∂T
= ∂U

∂M

dM

dT
= ε2

T 2kB

[ψ1(N − M + 1) + ψ1(M + 1)]−1. (3.12)

As defined in (2.4), ψ1 is the second derivative of the gamma function, which can be evaluated
numerically. The final step is to replace the value of T given by (3.8) into (3.12) to obtain the
exact value of the specific heat:

cex = kB[ψ0(N − M + 1) − ψ0(M + 1)]2

ψ1(N − M + 1) + ψ1(M + 1)
. (3.13)

The relative error of the approximate specific heat is shown in figure 2(c) for two different
system sizes. Note that in the N = 100 system the error is around 1% for M/N → 0.5 and it
becomes larger for very low or very high energies. The error is much lower for the N = 1000
case.

In figure 3, the relative error is shown in terms of the system size for different values
of the energy M. It becomes clear that for sizes smaller than 102 the difference between the
approximated and exact specific heat can be significant. For instance, it is ≈ 5% for N = 100
and M/N very large or very small.
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Figure 3. The specific heat relative error of the two-level system in terms of the system size
N. The different curves are for different values of the energy: upper curve for M = 0.05N (or
M = 0.95N ); middle curve for M = 0.475N (or M = 0.525N ) and the lower one for M = 0.25N

(or M = 0.75N ). For systems smaller than N = 100 there is an appreciable difference between
the approximated and the exact value of the specific heat.

4. The Einstein model of a crystalline solid

4.1. Entropy

The Einstein solid [1, 4] is another example used to illustrate the microcanonical formalism
because the accessible microstates are easily counted. In this model the solid is an assembly
of N atoms that can oscillate in the three spatial dimensions, i.e. there are 3N independent
quantum oscillators with a frequency ν. If the total energy is E, the number of energy quanta
is M = E/hν. It is easy to show [1] that the number of accessible microstates � is

� = (3N − 1 + M)!

(3N − 1)!M!
. (4.1)

For large N this expression is usually simplified to

� � (3N + M)!

(3N)!M!
. (4.2)

From (4.2) and using the Stirling approximation (2.3), one obtains the approximated expression
for the entropy Sapp:

Sapp = kB

{
3N

(
1 +

M

3N

)
ln

[
3N

(
1 +

M

3N

)]
− 3N ln (3N) − M ln M

}
. (4.3)

The exact value of the entropy is obtained from (4.1) and replacing the factorial by the gamma
function:

Sex = kB {ln [�(M + 3N)] − ln [�(M + 1)] − ln [�(3N)]} . (4.4)

In figure 4(a), the relative error between the approximated and the exact entropy values is
shown in terms of the dimensionless energy M for two different system sizes. For the smaller
system (N = 100) the difference between the two values is ≈ 5% at intermediate energy values
and is larger than 15% at low energies. Even for the larger system (N = 1000) the difference
is ≈10% at low energies.
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(a)

(b)

(c)

Figure 4. The relative error of the entropy (a), temperature (b) and specific heat (c) for the Einstein
model of a solid in terms of the energy per particle M/N . The solid line corresponds to N = 100
and the dashed line to N = 1000. Note that for N = 100, the entropy error is larger than 1% even
for M/N ∼= 1 and larger than 15% for M/N ∼= 0.01

4.2. Temperature

From (3.6) and (4.3) the approximated expression for the temperature Tapp is

Tapp = hν

kB

[
ln

(
1 +

3N

M

)]−1

. (4.5)

From (4.4), one can obtain the exact value of the temperature Tex:

Tex = hν

kB

[ψ0(M + 3N) − ψ0(M + 1)]−1. (4.6)
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Figure 5. The relative error for the specific heat of the Einstein solid as a function of the reduced
temperature T/TE where TE is the Einstein temperature. For low temperatures, the error is quite
large.

The relative error between the two temperatures for N = 100 and N = 1000 is shown in
figure 4(b). As in the previous case, the difference between the two values is larger than 10%
and 5% at low energies.

4.3. Specific heat

The same steps as in the two-level system should be followed to evaluate the specific heat.
The energy is calculated from (4.5) and, therefore, the approximated specific heat capp is

capp = h2ν2

kBT 2

ehν/kBT

(ehν/kBT − 1)2
3N. (4.7)

Using (4.5) in the previous expression, the approximated specific heat in terms of the
dimensionless energy M is

capp = kBM ln2

(
1 +

3N

M

) (
M + 3N

3N

)
. (4.8)

To obtain the exact value of the specific heat is slightly more complicated. From (3.12) and
(4.6), one obtains

dM

dT
= − 1

T 2

hν

kB

[ψ1(M + 3N) − ψ1(M + 1)]−1. (4.9)

It is clear that dE/dM = hν and the exact value of the temperature is given by equation (4.6).
Finally, one obtains

cex = kB[ψ0(M + 3N) − ψ0(M + 1)]2

ψ1(M + 1) − ψ1(M + 3N)
. (4.10)

The relative error between the approximated and the exact values of the specific heat is shown
in figure 4(c). The difference between the two values is appreciable for low energies, i.e. larger
than 20%. The relative error in terms of a dimensionless temperature Tex/TE has been plotted
in figure 5, where TE is the Einstein temperature defined as TE = hν/kB . Note that the error
is as large as 25% for T/TE = 0.2 and a 100-atom system. These results may be of interest in
research about atomic clusters since clusters smaller than 100 atoms are often probed in such
experiments [6, 16].
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5. Conclusions

In this paper, two well-known examples taught in any statistical mechanics course have been
exactly solved in the microcanonical formalism. The two-level system and the Einstein model
have been always solved in the microcanonical formalism using the Stirling approximation.
We have solved both examples without any approximations, using the gamma function and its
derivatives to deal with the factorials in the equations.

The first conclusion we reach is that the Stirling approximation is an excellent one. For
systems larger than N = 104, the differences between the exact values and the approximated
ones for entropy, temperature and specific heat are negligible. However, for smaller sizes
(N ∼ 100) the differences can be significant, as shown in figures 2 and 4. This is interesting
from a conceptual viewpoint since a lower bound to the Stirling approximation has been found.
Moreover, some results may be useful in the study of small atomic clusters or nanostructures.

In summary, we have proposed an interesting addition for a typical course in statistical
mechanics and suggested some results that might be of interest to researchers working with
few-body systems. Other properties of small systems described by the Einstein or two-level
models, including Gruneisen-type corrections [17], are being studied and will be published
elsewhere.
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