Logical Methods in Computer Science
Volume 18, Issue 3, 2022, pp. 32:1-32:36 Submitted Apr. 27, 2021
https://Imcs.episciences.org/ Published Sep. 12, 2022

QUANTUM CONTROL IN THE UNITARY SPHERE:
LAMBDA-S; AND ITS CATEGORICAL MODEL

ALEJANDRO DIAZ-CARO “* AND OCTAVIO MALHERBE ¢¢

¢ Instituto de Ciencias de la Computacién, CONICET-Universidad de Buenos Aires. Buenos Aires,
Argentina

® Depto. de Ciencia y Tecnologia, Universidad Nacional de Quilmes. Bernal, Buenos Aires, Argentina
e-mail address: adiazcaro@icc.fcen.uba.ar

¢ Instituto de Matemaética y Estadistica “Rafael Laguardia”, FIng, Universidad de la Republica.
Montevideo, Uruguay

4 Depto. de Matemética y Aplicaciones, CURE, Universidad de la Repiiblica. Maldonado, Uruguay
e-mail address: malherbe@fing.edu.uy

ABSTRACT. In a recent paper, a realizability technique has been used to give a semantics
of a quantum lambda calculus. Such a technique gives rise to an infinite number of valid
typing rules, without giving preference to any subset of those. In this paper, we introduce
a valid subset of typing rules, defining an expressive enough quantum calculus. Then, we
propose a categorical semantics for it. Such a semantics consists of an adjunction between
the category of distributive-action spaces of value distributions (that is, linear combinations
of values in the lambda calculus), and the category of sets of value distributions.

1. INTRODUCTION

In quantum programming languages, the control flow of programs divides models in two
classes. On the one hand, there is the model of the QRAM [Kni96], or classical control [Sel04].
The classical control refers to a scheme where the quantum operations are performed in a
specialized device, known as QRAM, attached to a classical computer, which instructs the
device which operations to apply over which qubits. It is the more realistic and practical
scenario. In this model, the quantum operations are given by a series of “black boxes”.
An example of this is the quantum lambda calculus [SV06], as well as several high-level
quantum programming languages such as Quipper [GLR"13] and QWIRE [PRZ17]. The
kind of problems that this model dealt with is, for example, to forbid cloning unknown
qubits, since the non-cloning theorem states that there is no universal cloning machine.
On the other hand, there is the model of quantum control, with a parallel agenda. The
ultimate motivation of this model is to extend the Curry-Howard isomorphism relating type

Key words and phrases: Lambda calculus, Quantum computing, Categorical semantics.

Partially funded by PIP 11220200100368CO, PICT-2019-1272, 21STIC10 Qapla’, PUNQ 1342/19 and
ECOS-Sud A17C03 QuCa.

|E5| LOGICAL METHODS © A. Diaz-Caro and O. Malherbe
IN COMPUTER SCIENCE DOI:10.46298/LMCS-18(3:32)2022 @ Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

32:2 A. Diaz-CARO AND O. MALHERBE Vol. 18:3

theory with logics, to the quantum case. Indeed, there is a long line of research on Quantum
Logic started by the pioneer work of Birkhoff and Von Neumann in the 30’s [BVN36].
However, the connection from this logic to a lambda calculus is unknown.

One of the first works on the quantum control approach is the development of QML [AGO05]
where the quantum control is expressed by the quantum if “if®” which, given a superposition
of |0) and |1), produces a superposition of its two output branches. However, a superposition
of the form «.|0) + 3.]1) is a valid qubit only if its norm is equal to 1, so, if |a|> + |B]? = 1.
Therefore, superposing the two output branches would be valid, only if the norm of this
term is equal to 1. Therefore, for example, the term if® «.|0) 4+ 5.|1) then s else ¢ is valid
only if s and ¢ are orthogonal, and so it preserves the norm. Thus, QML introduced a notion
of norm for a small subset of terms. Indeed, consider the type Bool, with its two orthogonal
values true and false. To detect if t : Bool and r : Bool are orthogonal, means to reduce t
and r and to compare them. So the orthogonality question in typing have been an open
question for many years, until the work [DCGMV19], which provided a partial answer.

The long path to this partial answer started at Lineal [AD08, AD17], which is an
untyped extension to the lambda calculus allowing for linear combinations of terms. This
way, if s and ¢ are two terms, so is its formal linear combination « - s+ 5 - t, with «, 8 € C.
Unitary matrices are not expressed as given black boxes, but they can be constructed.

Quantum programs can be expressed in Lineal, except for the quantum measurement,
which is left out of the system. However, Lineal is not restricted to only quantum programs.
In particular, the vectors are not ensured to be of norm 1, since it would require checking
for orthogonality between vectors. Neither functions are proved to behave as isometries, as
needed by the quantum theory. One main feature of Lineal, although, is the fact that all
the functions, even if they are not forced to be linear or isometries, are treated linearly: if a
function Az.s is applied to a formal linear combination « - v + (- w, it distributes linearly as
follows:

Az.s)(a-v+p-w) — a-(Azr.s)v+ - (Ar.s)w

generalising the quantum-if from QML.

A drawback in taking all functions as linear, is that adding measurement was not
trivial, since a measurement is not a linear operation: If M is a measurement operator,
M(a-v+ B -w) does not behave as - Mv + 5 - Mw.

Lambda-§ [DCD17, DCDR19] is a typed lambda calculus based on Lineal, mainly
focused on adding measurement to the calculus. Instead of treating all functions as linear,
its types enforce linearity when the argument is a superposition, and allow for duplication
when it is not. This is done by labelling superpositions with a modality S. Any term typed
by S is treated linearly, so only basis terms are duplicable. It is argued to be somehow the
dual to Intuitionistic Linear Logic, where duplicable terms are marked (by a !). Indeed,
in [DCM19, DCM20b, DCM20a] a categorical model for Lambda-S has been proposed,
obtained by a monoidal monad determined by a monoidal adjunction (S,m) 4 (U,n) and
interpreting S as the monad US—exactly the opposite to the ! of linear logic, which in the
literature is often interpreted as the comonad SU (see [Mel03]). This implies that on the
one hand there is a tight control of the Cartesian structure of the model, and on the other
hand the world of superpositions lives inside the classical word, i.e. determined externally
by classical rules until one decides to explore it. This is given by the following composition
of maps:

USAx USA S USA® SA) L2 US(A x A)

Vol. 18:3 LAMBDA-S; AND ITS CATEGORICAL MODEL 32:3

that allows us to operate in a monoidal structure explicitly allowing the algebraic manip-
ulation and then to return to the Cartesian product. This is different from linear logic,
where the ! stops any algebraic manipulation, i.e. (!A) ® (1A) is a product inside a monoidal
category. A concrete example is an adjunction between the categories Set of sets and Vec of
vector spaces [DCM19, DCM20b].

The problem of orthogonality has been finally addressed in [DCGMV19], which provides
another type system for Lineal, ensuring superpositions to be in the unitary sphere S; (that
is, norm-1 vectors). It also characterizes isometries via a specific type. On this system,
measurement has been left out of the equation, since Lambda-S already showed how to
add measurement on Lineal, so, it is already known how to add measurement and it is no
longer a problem. This system ensuring norm-1 vectors and characterizing isometries has
been obtained by means of realizability techniques [Kle45, van08, Kri09, Miql1]. Instead
of deriving a computational meaning of proofs once the type system is set up, the idea of
realizability is to consider the type system as a by-product of the operational semantics—
programs are then potential realizers of types. For example, a program behaving as the
identity will be a realizer of A — A, regardless of its inner structure. Realizability is
a powerful and modular framework amenable to many systems (see [Brul4]). So, one
particularity is that the typing rules are probable lemmas (any typing rule conforming the
semantics, is a valid rule), hence, the set of rules is potentially infinite. On this scheme, there
is a modality ff, with a similar behaviour to the S of Lambda-S. The claimed main goal of
this system has been to solve the long-standing issue of how to ensure norm-1 superpositions,
and characterize unitary functions.

The goal of the present paper is to extract a (finite) fixed type system following
the realizability semantics [DCGMV19], a calculus we call Lambda-S;, ensuring norm-1
superpositions. We also give a categorical model for this calculus.

Hence, the main contributions are twofold. On the one hand, we give the definition of
Lambda-S;, which is not trivial since [DCGMV19] provides only a method to produce an
infinite type system. On the other hand, the second main contribution is the categorical model,
which has some common grounds with the concrete model of Lambda-S [DCM19, DCM20b],
however, the chosen categories this time are not Set and Vec, but categories that use the fact
that values in our calculus form a distributive-action space (an algebraic structure similar to
a vector space, where its additive structure is a semi-group). Summarising, the main novelty
and contribution of this paper is presenting a model for quantum computing in the quantum
control paradigm, which we show to be complete on qubits (Theorem 5.6).

We left the measurement operator out of the obtained system, only for the sake of
simplicity. The inclusion of the measurement operator was a problem for Lineal. However,
after Lambda-S [DCD17, DCDR19] tackled this problem by considering linear types and
the modality S, it is no longer a problem. Since Lambda-S; uses the same modality (here
written f), the inclusion or not of a measurement operator does not suppose a challenge any
more. So, adding a measurement operator as the one from Lambda-S is not difficult, since
the problems were already solved on that system, and Lambda-S; follows the same line.
However, adding a measurement operator implies to have a probabilistic rewrite system,
which demands an extra monad (the probabilistic monad) to be added to the model. While
this addition would be easy (cf. [DCM19, DCM20b]), it introduces superfluous complexity
to the system making its model less clear.

In Section 2 we introduce the calculus Lambda-S;. We prove its main correctness
properties such as progress, subject reduction, and strong normalization in Section 3. In

32:4 A. Diaz-CARO AND O. MALHERBE Vol. 18:3

vzlulf; v,w =z | Ax.5]| x| (v1,v2) | inl(v) | inr(v)

pwe st =wv|st|t;5]let (x1,22) =¢ in §| match t {inl(z1) — & | inr(zy) — 5o}
diriv, O = v | T+d | o T (@ €C)
g, Bt=t]F+Tat (a €C)

Table 1: Grammar of terms

titta=ta+t (h+6)+is =1+ (2 +13) 1-t=1
a-(B-0)=aB -t (@+f)-T=a-t+8-T a-(fi+1)=a-f+a-t

Table 2: Congruence rules on term distributions

Section 3.4 we show the expressiveness of Lambda-S;, which includes the simply typed
lambda calculus with addition and pairs, plus the isometries. In Section 4 we introduce its
categorical model. In Section 5 we prove the soundness of the model, and the completeness
of the type #(U + U), which corresponds to C? (the type of qubits). We conclude in Section 6
with some final remarks.

2. LAMBDA-S;

2.1. Terms. In Table 1 we give the grammar of terms for Lambda-S;. Those fall into two
categories: “pure” and “distributions”, and those in two subcategories, of terms and values.
The idea is that a distribution is a linear combination of a pure terms. Formally, the set of
distributions is equipped with a congruence = that is generated from the 6 rules of Table 2.
We say that a term ¢ := >, oy -t is given in canonical form when t; # ¢, for all j, k.

From now on, we consider term distributions modulo the congruence =, and simply
write £ = # for £ = . This convention does not affect inner—or raw—distributions (which
occur within a pure term, for instance in the body of an abstraction), that are still considered
only up to a-conversion'.

Pure terms and term distributions are intended to be evaluated according to a call-by-
pure-values strategy?, which is a declination of the call-by-value strategy in a computing
environment where all functions are linear by construction. In its original form [AD08, AD17],
a superposition t(v + w) reduced to (tv + tw), while in our case following [DCGMV19], the
first term is not even in the grammar, but it is just a notation for the former. This notation
extends the syntactic constructs of the language by linearity, proceeding as follows: for all
value distributions v = 37" | a; - v; and & = Y7L, B; - wj, and for all term distributions
F1,5, t= > Yk -tk and §=Y"7_, 8¢ - s¢ we have the notations given in Table 3. Notice
that s is not in the grammar nor in the notation: the term at the left of an application must

1Intuitively, a distribution that appears in the body of an abstraction (or in the body of a let-construct,
or in a branch of a match-construct) does not represent a real superposition, but machine code that will
produce later a particular superposition, after some substitution has been performed.

2Called call-by-basis in [ADCP*14, DCGMV19], and simply call-by-value in [AD08, AD17].

Vol. 18:3 LAMBDA-S; AND ITS CATEGORICAL MODEL 32:5

n k q
(0, @) == > 3. oy - (vi, wy) t5= 3 0¢-tse
i=1j=1 =1
n L2
inl(¥) := Y «; - inl(v;) ;5= > - (tx; 9)
i=1 k=1
n . P
inr(v) := Y «; - inr(v;) let (z,y) =tin §:= > v - (let (z,y) =t) in J)
i=1 k=1

match £ {inl(zy) — 51 | inr(zp) — &} =

p
> k- (match ¢ {inl(z1) — &1 | inr(z2) — §>})
k=1

Where =", 0 -v;, W= Z;n:1 Bj-wj, t= Zi:l Vi tr, §= 22:1 YR,

Table 3: Notations for linear constructions

(A\z.t)v — t]z =]
*;8§ — §
let (z,y) = (v,w) in § — Sz 1= v,y := W]
match inl(v) {inl(zy) — &1 | inr(zg) — So} — S1[z1 := V]
match inr(v) {inl(zy) — &1 | inr(ze) — So} — Safza :=]

t— 17T t—sr t— 7 t— 7
st— st tv—rv t;§— 1§ let (xz,y) =t in § — let (z,y) =7 in §

t— 7
match ¢ {inl(x;) — & | inr(zs) — §2} —> match 7 {inl(x1) — &) | inr(z2) — 52}

t— 7
a-t+5—a-7+5

Table 4: Rewrite rules

be a pure term. The reason is that we will focus in isometries, and the linear combination of
isometries is not necessarily an isometry.

We write V, \7, A, and A to the sets of pure values, value distributions, pure terms, and
term distributions respectively.

Finally, in Table 4 we give the rewrite relation. As usual, we write —* for the reflexive
and transitive closure of —.

As the reader may have noticed from the grammar in Table 1 and the congruence rules
from Table 2, there is no such a thing as a “null vector” in the grammar, and so 0 - ¢ does
not simplify. Indeed, we do not want in general a null vector 0 within term distributions,
since 0 - ¥ must have a type compatible with v, while 0 do not have any restriction. In fact,
the set of value distributions do not form a vector space for this reason. However, we still
can define an analogous to an inner product and, from it, a notion of orthogonality.

Definition 2.1 (Pseudo inner product and orthogonality). Let ¢ = > """ | o - v; and & =
Z;ﬂ:l B; - w; be two value distributions in canonical form. Then we define the pseudo inner

32:6 A. Diaz-CARO AND O. MALHERBE Vol. 18:3

product (- |) :V x V — C as

(@ @) =) > @iBjibu,w,

i=1 j=1

where 5’07,',11)3' is the Kronecker delta, i.e. it is 1 if v; = w;, and 0 otherwise. We write ' L 0 if
(U] @) = 0.

Remark that in this section, we are not defining the mathematical structure we have,
just pinpointing the fact that it is not a vector space, and so we cannot define an inner
product. However, we have defined a function, which we call pseudo inner product, which is
enough for the syntactic treatment of the calculus we are introducing. In Section 4 we will
give the rigorous mathematical definitions needed to give a denotational semantics of such a
calculus.

2.2. Types. Types are produced by the following grammar
A=U|tA|A+A|AxA|A—= A

The type £A is meant to type term distributions of pure terms of type A. This is a subset of
the grammar from in [DCGMV19]. In particular, we do not include the construction bA,
however we use the notation A° (read: A is flat) for the following property: A does not
contain any f, except, maybe, at the right of an arrow. We also write A @ B :=#(A + B)
and A® B := (A x B). In [DCGMV19] there is also a type A = B, which contains the
superposition of arrows, which are valid arrows. In our case, we decided to simplify the
language by not allowing superpositions of arrows to be arrows, and so this particular type
construct is not used.

In Table 5 we give a subtyping relation between types. In particular, ffA < A since a
term distribution of term distributions of type A is just a term distribution of pure terms
of type A,

In Table 6 we give the typing rules, where we use the notation I' - (A1 - o7 L Ag
Ua) : A for

F, Al H 171 c A

F, AQ H 172 : A

Or.a, (U1) L Or a,(t2)
where for any context I', fp is a substitution of variables by pure values of the same type.
Notice that substituting a variable in a value by a pure value, keep the term being a value.
When Ay = Ay =0, we just write I' - (77 L 0) : A.

The given type system is linear on types, except flat types (i.e. any type A such that
Ab). Notice that the type system uses the notations from Table 3, for example, the rule

F'F7:A AEW:B p,,
AR (0,W): Ax B

is in fact

PEYai-vit A AR Bj-wj: B
F’A'_Zijaiﬁj‘(vi,wj):AxB

Pair

Vol. 18:3 LAMBDA-S; AND ITS CATEGORICAL MODEL

32:7

A<B B<(C
A<A A<C A<HA tHA < A
A< A B<B A< A B<B A< A B<B
A -B<A—B AxB< A x B A+B< A+ DB

Table 5: Subtyping

Ax I,x:A+¢:B Lam I't:A— B A|—§:AAPP

r:AFz: A I'Eei-A— B I''AFRts: B
Vod LhHt:U AFZ:A e PHi:4U AF&:gA | o
Fx:U LAFEGS: A) [AFES: 44 rarysed

FEv:A AEW:B p,,
AR (U,%W): Ax B
'HFt:AxB Az:Ay:BFS:C

Purelet
AFlet (zyy) =tin§:C
't:A® B A,:U:jjALy:ﬂBI—E':ij UnitaryLet
IAFlet (z,y) =tin §: {C
F'Fv: A InL l'-v:B InR
I'Finl(v): A+ B Pkinr(v): A+ B

't:A+B AF(x1:AbT Lag:BF):C

', A F match t {inl(z1) — ¥ | inr(z2) — 02} : C

THF{:A®B Ab (1 :4AF ¥ Lag: 4B F @) : §C

[, A+ match t {inl(z1) — @ | inr(zy) — o} : 4C

(k#h) b (0p LUp): A Z;n:1|aj|2:1 m>1 A#B—=C
. YT a1 A

'ct:A A<B _ Pi:A =7 _

PureMatch

UnitaryMatch

Sup

I'-¢:B - L7 A
. b . . . b
MWeak Nae:Ay:AFt:B A Contr
Mx:AFt: B Dz:AFtly:=z]:B

Table 6: Typing system

3. SYNTACTIC PROPERTIES

This section is devoted to proving several syntactic properties of the calculus introduced in
the previous section. In particular, Progress (Section 3.1), Subject Reduction (Section 3.2),
and Strong Normalization (Section 3.3). The last property is shown by proving that the
calculus is a valid fragment with respect to the realizability semantics given in [DCGMV19].
Since Lambda-&; is a fragment of a bigger calculus, we also show that it is expressive enough

for quantum computing (Section 3.4).

3.1. Progress.

Theorem 3.1 (Progress). If-1: A and t does not reduce, then t € V.

32:8 A. Diaz-CARO AND O. MALHERBE Vol. 18:3

Proof. We proceed by induction on f.

e If {'is a value distribution, we are done.

e Let £ = s7. Then - s : B = A, but since ¢ does not reduce, neither does s, so, by the
induction hypothesis s € \7, and, due to its type, the only possibility is s = Ax.5", which is
absurd since ¢ does not reduce.

e = § 7 Then there are two possibilities:

— F §: U, but since ¢ does not reduce, neither does 3, so, by the induction hypothesis 7 is
a value, and, due its type, the only possibility is § = *, which is absurd since t does not
reduce.

— F §: 4U, but since ¢ does not reduce, neither does §, so, by the induction hypothesis §
is a value, and, due its type, the only possibility is § = « - *, which is absurd since
does not reduce.

—

o t =1et (z,y) = §in 7. Then there are two possibilities:

— F §: B x C, but since t does not reduce, neither does §, so, by the induction hypothesis
§'is a value, and, due its type, the only possibility is §= (v1,v2), which is absurd since
¢ does not reduce.

—F §: 4(B x C), but since does not reduce, neither does 3, so, by the induction
hypothesis §is a value, and, due its type, the only possibility is § = (¥, ¥3), which is
absurd since ¢ does not reduce.

e i =match & {inl(x1) — ¥y | inr(zs) > @}. Then there are two possibilities:

— F §: B+C, but since ¢ does not reduce, neither does §, so, by the induction hypothesis
§is a value, and, due its type, the only possibilities are §= inl(s’) or §= inr(s’), both
of which are absurd since ¢ does not reduce.

—F §: 4(B + C), but since t does not reduce, neither does 3, so, by the induction
hypothesis § is a value, and, due its type, the only possibilities are § = inl(§") or
§ = inr(5'), both of which are absurd since ¢ does not reduce.]

3.2. Subject reduction. The type preservation with our chosen typing rules is proven
now. We first need a substitution lemma.

Lemma 3.2. Let T,z : AFt:B, AF7: A, and A°, then T, A+ tlz := 4] : B.

Proof. By induction on .

o If 2 ¢ FV(i) then a straightforward generation lemma shows that z : A can be removed
from ',z : AFt: B, and from I'F ¢ : B we can derive I', A F ¢ : B by rule Weak. Notice
that t[z := 0] = £.

e Let £ =z, then I'” and A < B, and so, by rules < and Weak, we have I, A I 7 : B. Notice
that z[x := 9] = 7.

e Let t = M\y.§, then C = D < Band I,z : A,y : C F §: D. Hence, by the induction
hypothesis, I', A,y : C' F §[x := 9] : D. Therefore, by rules Lam and <, I') A F \y.3[z :=
U] : B. Notice that \y.s[x := 9] = (\y.38)[z := 7.

o Let £ = (vq,uvp), then 'y - vy : By and T'y + vy : By with (I';,I'y) = (I',z : A) and
By x By = B. Assume that I'y = (I'},z : A). Then, by the induction hypothesis,
I, A F vz := 0] : By, and so, by rule Pair, T}, T2, A b (vi[z := ¥],v2) : B. Notice that
(I"},T2) =T and (v1[z := 9],v2) = (v1,v2)[x := ¥]. The case where I'y = (I'},z : A) is
analogous.

Vol. 18:3 LAMBDA-S; AND ITS CATEGORICAL MODEL 32:9

e Let £ = inl(w), then I,z : A - w : By, with B = B; + By, so, by the induction
hypothesis, I'y A - w[z := ¢] : By and, by rule InL, I',; A F inl(w[z := ©]) : B. Notice that
inl(w[z := 9]) = inl(w)[z := 7).

e Let £ = inr(w), this case is analogous to the previous.

e Lett=sr, thenT1Fs:C = Dand Ty F7:C, with D < B and (T'1,T) = (T, z : A),
Assume I'; = (I'},z : A). Then, by the induction hypothesis, I}, A - s[z := 9] : C = D.
Thus, by rules App, and <, I'},T's, A F s[z := ¥]7 : B. Notice that (I'},I'2) = I" and
sz := U] = (s7)[x := ¥]. The case where I'y = (I'}, z : A) is analogous.

e Let £ = 7 3, then there are two possibilities:
(1) Either T'y - 7: U and 'y F s : B, with (I'1,Ty) = (T, z : A),
(2) or Ty F7:4U and T'y - §': §C, with B = 4C, and (I';,T'2) = (', z : A).
In any case, assume I'y = (I'j,z : A). Then, by the induction hypothesis, I}, A +
rle := 9] : E (with E = U in the first case or F = {U in the second). Thus, by
rules PureSeq or UnitarySeq, I'},I's, A - 7z := ¢];§ : B. Notice that (I'},I'2) = I" and
Fla := v]; § = (7; §)[x := U]. The case where I'y = (I'}, z : A) is analogous.

o Let £ = let (x1,29) = 7 in 5, then there are two possibilities:
(1) Either 'y - 7: C x D and T'g, 21 : C,x9 : DF §: B, with (I';,T'2) = (T, z : A),
(2) or Ty F 7: 4(C x D) and Ty, x1 : §C,xo : $D + §: §C, with B = §C and (I'1,T'2) =

T,z : A).

In any case, assume I'y = (I}, : A). Then, by the induction hypothesis, I'}, A F 7z :=
0] :+ E (with E = C x D in the first case or E = $§(C x D) in the second). Thus, by
rules Purelet or UnitaryLet, I'},T'9, AF ' let (z1,22) = 7lz := 9] in §: B. Notice that
(I'},T2) =T and let (z1,22) = 7lz := ¢] in § = (let (x1,22) = 7 in §)[x := ¢]. The case
where I'y = (I'), z : A) is analogous.

e Let £ =match 7 {inl(zy) — ¥ | inr(as) — ¥}, then there are two possibilities:

(1) Either Fl F C—I—D and FQ H (321 . Cl‘ﬁl Lxg : D I—'UQ) . B7 with (Fl,FQ) = (F,x .
4,
(2) or Ty F7:4(C+ D) and T'y F (21 : $C F 01 Lz : D F 7o) : §C, with B = C and
(Fl,F2> = (F,J} : A)
In any case, assume I'y = (I}, 2 : A). Then, by the induction hypothesis, I'}, A F 7z :=
0] : E (with E = C + D in the first case or E = #(C + D) in the second). Thus, by rules
PureMatch or UnitaryMatch, I'}, 'y, A T b match 7z := ¥] {inl(z1) — ¥ | inr(z2) —
U2} : B. Notice that (I'},I'2) =T and match 7|z := 0] {inl(z1) — ¥ | inr(x2) — o} =
(match 7 {inl(x1) — 0 | inr(zg) — vo})[z := 7).
Now assume I'y = (I',, 2 : A), then by the induction hypothesis, I's, A, x1 : C' F [z :=
0] : B and I'y, A, x9 : D F @]z := ¢] : B. Notice that the L condition is preserved under
substitution, therefore, I'o, A F (21 : C' + Uiz :== 0] L 29 : D - Ua[z := ¥]) : B, and we
close analogously to the previous case.
e Let £ =" ;- then x ¢ FV(t) and we are in the first case.]

Theorem 3.3 (Subject reduction). IfT'Ft: A andt — 5, then T - 5: A.

Proof. By induction on the relation —». The proof is straightforward, using Lemma 3.2. []

32:10 A. Diaz-CARO AND O. MALHERBE Vol. 18:3

3.3. Strong normalization. We prove that Lambda-&; is valid with respect to the real-
izability model given in [DCGMV19] (Theorem 3.4), which implies strong normalization
(Corollary 3.5)3.

In [DCGMV19] a realizability semantics has been defined, and the type system of the
language is determined by any rule following such a semantics. In particular, the realizability
predicate [DCGMV19, Def. 1V.2] states that a term is a realizer of a type A (notation
t'I- A) if and only if £ rewrites to a value in the interpretation of A. Then, a typing judgement
Ft: Ais valid if and only if, £ IF A. In this paper, we have fixed a set of typing rules in
Table 6, some of which are already proven to be valid in [DCGMV19], while others are
proved to be correct next (Theorem 3.4). For the sake of self-containment, we include the
needed definitions from the realizability semantics [DCGMV19].

Let S; = {v: (¥|) = 1}. The interpretation (), of types is given by

(U)g = {=}

(8A); = span((A)z) NS
(A+ B), = {inl(v) : v €
(A x B), ={(v,@) : ¥ € (A,
(A — B), = {\z.t: Vi € (4),,

t(> I+ B}

where £ I- A means that ¢ reduces to a value in (A),, and £{z :=) is the bilinear substitution
defined as follows: Let { = Y, c;-t; and ¥ = >_;Bjvj. Then, Ho=0) =Y, > ifytilr =
’Uj].

If o is a substitution, we may write #(c) for the term distribution ¢ substituted by o. In
addition, we write o € (I'), if for all z: A € T, z(0) I+ A.

Finally, the realizability semantics defines the typing rules as follows: I' - ¢ : A is a
notation for Vo € ('), t{o) IF A. Hence, we need to prove that the typing system presented
in Table 6 is correct, which is done by Theorem 3.4.

Theorem 3.4 (Correctness). IfT'Ft: A, then for all o € (), we have t{c) I- A.

Proof. We only prove the judgements that are not already proved in [DCGMV19]. We

proceed by induction on the typing derivation.

e Rule Lam. By the induction hypothesis, V(o,z := @) € ([, : A),, t(o,x := @) |- B.
Therefore, by definition, (\z.t)(c) = A\z.t{o) € (A — B),. So, (\z.t){o) IF A — B.

e Rule App. By the induction hypothesis, Vo € ('), t(c) IF A — B and V0 € (A),, 5(6) IF A.
Then, by definition, t(c) —* Az.7 and 5(f) —* U € (A, such that 7(z := ¥) |- B. Since
(t5)(o,0) —* 7(x := ¥), we have, (t5)(c,0) I- B.

e Rule Sup. For all j, by the induction hypothesis, we have that v; € (A)),. Since for all k # h
we have), L U, and), laj|? = 1, we have Y. U; € 81, and so Yo - U5 € (BA),.
Hence, >, aj - U; IF fA. O

The following corollary is a direct consequence of Theorems 3.1 and 3.4.

Corollary 3.5 (Strong normalization). If ' £: A then t is strongly normalizing.]

3Notice, however, that subject reduction is not implied by the correctness with respect to the realizability
semantics, since it may be the case that a term ¢ reduces to a term ¢, both in the semantics, but the second
not typable with the typing rules chosen. This is why we have given a direct syntactic proof of such a
property (Section 3.2).

Vol. 18:3 LAMBDA-S; AND ITS CATEGORICAL MODEL 32:11

The realizability model also implies that V C Si.

3.4. Expressivity. First we define the following encoding of norm-1 vectors from C?" to
terms in Lambda-Si:

Definition 3.6. Let b; € {0,1} and |k) = |by...ban_1), where by...ban_1 is the binary
representation of k € N. Then, we encode |k) in Lambda-S; as k = (bg, (ba, (..., ban_1))),
with 0 = inl() and 1 = 1nr(). Thus, 1f 22 a2 =1and vV = (ag,...,am 1) € C*",
its encoding in Lambda-&; is V= Zk 0 Yoy - k.

From now on, we may write B for U+ U, A™ for [[.; A=A Xx Ax---x A, and A®"
for A" = (A x A x --- x A).

Example 3.7. (%,o,o,%,o,o,o,o)T = ﬁooo) \011> 7|)+ %@ in C2* is
encoded as

L. . : L. : .
7 (inl(x), (inl(x),inl(x))) + N (inl(x), (inr(x), inr(x)))

The previous construction is typable as shown in the following example.
Example 3.8. Let V= (ag,ay,...,a7)T = ZZ:O aglk) € C?°| with ZZ:O |a|? = 1. Hence,

V= ZZ:O Qg -E, using the encoding from Definition 3.6.
We check that Fv: B® B ® B. We have

_ ok UVOiIdL I—*:UVOiIdL
|_*:UV°'|d Finl(x): B " Finl(x):B Pn

Finl(x):B F@nﬂﬂpnﬂﬂ)ﬂ%xﬁpla”
F0:BxBxB A

Similarly, we derive F1:BxBx B,..., F7:BxB xB. Therefore,
G#k) F(LE):BxBxB Y lai>=1
FV:BRBOB

Sup

We can define a case construction for the elements of B®", noted as case s of {k — @},
as shown in the following example.

Example 3.9. Let Az.case z of {0+ @ |1 71 | 2+ T | 3 — 73} be defined as
Az.let (z,y) = 2z in match = {inl(2) — 2’;match y {inl(y’) — ¢/; 7 | inx(y') — ;01 }
linr(2') = 2’;match y {inl(y') — ;2 | inr(y/) — ¢'; U3} }

Assuming ; are orthogonal two by two, this term can be typed with (B® B) — (B® B),
Extending this construction to any n is an easy exercise.

Example 3.10. We can use the case construction from Example 3.9 to construct any
quantum operator. For example, the CNOT operator corresponds to the matrix

32:12 A. Diaz-CARO AND O. MALHERBE Vol. 18:3

which sends |0x) to |0z), [10) to |11), and |11) to |10). This operator can be written in
Lambda-&; as
A\z.case z of {Q»—>Q|i»—>i|2»—>3|3»—>2}
Any quantum operator can be written as a matrix, and this encoding provides exactly
that.

The expressivity of the language is stated as follows.

Theorem 3.11 (Expressivity).

(1) Simply Typed Lambda Calculus extended with pairs and sums, in call-by-value, is included
in Lambda-S;. R R

(2) If U is an isometry acting on C?", then there exists a lambda term U such that - U :
B — B and for all v € C?", if W = UV, we have UV —* w.

Proof.

(1) The terms from the lambda calculus with pairs and sums are included in the grammar of
pure terms. The set of types {A | Ab} includes the simply types. Simply types, together
with rules Ax, Lam, App, Pair, Purelet, InL, InR, PureMatch, Weak, and Cont allow to
type the lambda calculus extended with pairs and sums.

(2) Let U be an isometry. We can define it by giving its behaviour on a base of C2". So,
consider the canonical base B = {|0),...,|2" — 1)} and for all |k) € B, let Ulk) =

(ﬂ()’k,...,ﬁzn_Lk)T. That is, U = (Bi)ij. We can define a term U using the case
construction introduced before (cf. Example 3.9).

2n_1
U = \r.case z of {E — Z Bik i}
=0
We have F U : B®" — B®" (cf. Example 3.9).
Let V= (ag,...,agm_1)T = Zinzgl aylk) € C?", with 212261 |o;|? = 1. Then, we have
V=S2"tay -k, with Fv: BE" (cf. Example 3.8), therefore, - UV : B®".
Notice that,

on on_1 on_y
Uv = ap - Uk —"* E ay - § Bik - 1
k=0 k=0 =0
an_19n_1
= E agBix -1 = UV [
=0 k=0

Since Lambda-&; is a fragment of the calculus that can be defined using the realizability
model, and the previous lemma shows that any isometry can be represented in it, then the
following theorem is still valid.

Theorem 3.12 ([DCCGMV19, Theorem IV.12]). A closed A-abstraction \z.t is a value of
type 1B — B if an only if it represents an isometry U : C2 — C2. []

Extending this result to a bigger dimension is straightforward.

Remark 3.13. Even if we can check orthogonality on open terms, e.g. I' = (A - ¢ L
Ag F U3) 1 A, we cannot type a constructor of an oracle (as, for example, the oracle needed
for the Deutsch’s algorithm, cf. [NC10, §1.4.3]) parametrized by a given function f. That is,

Vol. 18:3 LAMBDA-S; AND ITS CATEGORICAL MODEL 32:13

the oracle Uy sending |b1b2) to |b1,bo & f(b1)) can be typed with B®? — B®? for any given
f in our language, however, we cannot type a term Af.Uy such as

M.Us := Af.Av.case z of {() — (inl(), finl(x)),

— (inl(x),not (finl(x))),

— (inr(x), finr(x)),

— (inr(x), not (finr(x)))}

Indeed, the branches of the case are not values and so the orthogonality cannot be verified.
In [DCGMV19] this term Af.Uy is valid, with typing = Af.Uy : (B — B) — B®? — B2,

Certainly, the orthogonality verification is done by the realizability model, by considering

all the reductions of the application of the term to any possible argument, something that

is not desirable in a static type system, where reducing a term in order to type it is not a

good practice. In any case, the Deustch’s algorithm, or any other quantum algorithm using

such kind of oracle, does not construct the gate dynamically with a term of the kind Af.Uy,
but the unitary Uy is given.

\0:» \

4. DENOTATIONAL SEMANTICS

We define two categories, Sety; and SVecy, and an adjunction between them. Types are
interpreted as objects in Set, and terms as maps using the adjunction.
As stated in Section 2, value distributions do not form a vector space. Here we make

this concept more precise by defining the non-standard notion of distributive-action space®.

Definition 4.1 (Distributive-action space). A distributive-action space over a field K is
a commutative semi-group® (V, +) equipped with a scalar multiplication (-) : K x V — V
such that for all ¥, € V, «, 8 € K, we have the following axioms.
1-9=4 (a+p) - v=a-0+8-7
a-(f-U)=af-U a +U)=a-U+a @
In analogy with vector spaces, the elements of V' are called vectors and the elements of K
scalars.

The notion of distributive-action space differs from the traditional notion of vector space
in that the underlying additive structure (V,+) is an arbitrary commutative semi-group,
whose elements in general do not include a neutral element, and so do not have an additive
inverse. In a distributive-action space, the vector (—1) - ¢ is in general not the additive
inverse of ¥, and the product 0 - 7 does not simplify to a neutral element 0. Indeed, term
distributions do not have a null vector.

The notions of inner product and norm can be generalized to the case of distributive-
action spaces in the following way.

Definition 4.2 (Inner product of a distributive-action space over C). An inner product
of a distributive-action space V' is a function (- |) : V' x V — C satisfying the following
properties. For all o € C, u,v, W € V,

‘In [DCGMV19] the notion of weak vector space is defined, which is based on a commutative monoid.
Here we use a commutative semi-group instead, since a null vector is not needed.
5That is, an associative and commutative magma.

32:14 A. Diaz-CARO AND O. MALHERBE Vol. 18:3

| U) + (U +).
) >0 forall de {7eV|Vi,v# 0.4}

Definition 4.3 (Norm of a distributive-action space). A norm of a distributive-action space

V is a function || - || : V' — R satisfying the following properties. For all « € K, v,% € V,
(1) |9+ wf| < [|a]] + |-
(2) [la- 3] = |a]||7]].

(3) ||9]| = 0 if and only if ¥ = 0., for some .
Theorem 4.4. V is a normed distributive-action space over C.

Proof. Verifying that V is a distributive-action space over C is straightforward by checking
that the congruence given in Table 2 coincides with the requirements from Definition 4.1.
We also check that Definition 2.1 verifies the definition of an inner product (Defini-
tion 4.2).
Finally, we define the norm

191 := V(@ |) =

and check that such a norm verifies Definition 4.3. (]

We write R(-) = P(-) \ {0}, and Def to the set of (computable) functions that can be
defined in Lambda-S;.

With all the previous definitions, we can define the categories which will give the
adjunction to model the calculus.

Definition 4.5 (Category Sety;). The monoidal category Sety has the following elements:

Ob(Sety) = R(V).
For all A, B € Ob(Sety),

Homser, (A, B) = {f € Def | f : A — B € Arr(Set)}

For all A, B € Ob(Sety),

;v € A
ABB (5, Ty - o) | &5)

© (@) | 7€ Aand @ € B}

1 = {+} € Ob(Sety).

The obvious structural maps: A)\—g> 1XA, A B AR 1, and (A; X Ag) K A o,
Al K (A2 X A3).

Remark 4.6. Let A L Band C % D in Arr(Sety). Then f,g € Def. So, let f and § be
the terms in Lambda-S; implementing f and g respectively. Therefore, a term implementing
f X g is the following Az.let (y,z) =z in (fy, §z).

Vol. 18:3 LAMBDA-S; AND ITS CATEGORICAL MODEL 32:15

Remark 4.7. Notice that while the category Sety; is generated by the syntax of the calculus,
it is not a syntactic category in the sense of [LS86, Part I §10], where the objects are types
and arrows are terms. Indeed, the objects at Sety are non-empty powersets of values, and
the interpretation of the language will be done by using an adjunction with a richer category
SVecy; yet to be define (cf. Definition 4.9 and Proposition 4.11 stablishing the adjunction).
Hence, this construction is far from trivial.

In order to define the category SVec;, we define the set H,; and the map S.
Definition 4.8.

(1) H,; is the set of all the sub-distributive action spaces® of \7, with inner product induced
by V.
(2) S:R(V) — Hy is a map defined by A~ {>, a; - v; | v; € A}.

(3) Let A,B€ R(V)and f: A— B be amap. Then, Sf: SA — SB is the map defined
Definition 4.9 (Category SVec;). The monoidal category SVecy; has the following elements:

Ob(SVecy) = Hy-
For all V, W € Ob(SVecy),

Homsvec\?(V, W) ={f €Def |V i> W is a linear map}
For all V,W € Ob(SVecy),

VoW =SVREW)
I ={a-x|aecC} e Ob(SVecy).

The obvious structural maps: V /\%@ I®V, V2 vel, and NV eVs 28,
Vi® (V2@ Vs).

Lemma 4.10. The following maps are monoidal functors:

(1) S: Sety — SVecy, defined as in Definition 4.8.
(2) U :SVecy — Sety, the forgetful functor.

Proof.
(1) If A € Ob(Sety;), then, by definition SA € Ob(SVecy).
Let AL B e Arr(Sety) and > I a; - a;,)52 B - a € SA. Then,

(S)01 -3y i ai + 02+ 300 By - af)

= (Sf)(Ximy 1o - ai + 32704 0235 - af)

=i 010y fai + 3750, 625 - fa
251'2?:1%'fai+52'22n:15j'fag'

=01 (SF)(Xiy i~ ai) + 02 (ST, B - af)

Therefore, Sf : SA — SB is lineal and since f € Def, Sf € Def. Thus Sf € Arr(SVecy).
Functoriality is fulfilled by being a span.

6V is a sub-distributive action space of W if V.C W and V forms a distributive-action space with the
operations from W restricted to V.

32:16 A. Diaz-CARO AND O. MALHERBE Vol. 18:3

(2) If V € Ob(SVecy) C R(V V) = Ob(Sety), then, UV =V € Ob(Sety;). Let f € Arr(SVecy),
then f is a linear map in Def, so it is a map and then f € Arr(Sety).

Finally, we prove the functors to be monoidal by proving the existence of the maps
SA®SB 48, S(AKB) and 1551
in Arr(SVecy), and

nr

UVRUW ™ U(VeWw) and 125UI

in Arr(Sety), trivially satisfying some well-known axioms.

e Since SA® SB = S(SAXSB) = S(AX B), we take map = Id.

e Since I = S1, we take my = Id.

e Since UVXIUW CUS(UVRUW)=U(V ® W), we take nyw as the inclusion map.

e Since 1 C U1, we take ny as the inclusion map. []

We can now establish the adjunction between the two categories, which will give us the
framework to interpret the calculus.

Proposition 4.11. The following construction is a monoidal adjunction:

_— (S,m) \
(Sety,X,1) L (SVecy,®,1)

~__ (U -
where m and n are mediating arrows of the monoidal structure.

Proof. We need to prove that Homsvec, (SA, V) ~ Homsget,, (A, UV).

e Let Homgyec, (SA, V) Fav, Homse,, (A,UV) given by h — h | A.
o Let Homset_/(A7 Uuv) —> HomsvecV(SA, V) given by s +— Ss.
Notice that ¢4y 0¥a v = id and 14y o 94 v = id. Therefore, we rename ‘P;le =Payv.

We must prove that if B i> A, V % W the following diagrams commute:

Homs\/ec (SA, V) —pav > Homse»c (A, UV) Homs\/ec (SA, V) —pav > Homse»C (A, UV)
\ \ \

|
v

Homsvecv(Sf,V) Homse_ (f,UV) HomSVecV(SA7g) HomsetV(A,Ug)
1 1 1 1
Homs\/ec (SB,V) -#Bv > Homget (B,UV) Homs\/ec (SA, W) —eaw » Homset (A, iW)

Homs,e»c (A, UV) —¢5l » Homs\/ec (SA, V) Homse'c (A, UV) —¢ly - Homg,\/ec (SA, V)
\ \ \

|
v

Homse (f UV) HomSVecv(vav) HomSetV(A7Ug) HomSVec\?(SAvg)
4 4 4 4
Homset, (B,UV) -¢5'y > Homsvec, (SB,V) Homser, (A iW) —exlw > Homsvec, (SA, W)

Vol. 18:3 LAMBDA-S; AND ITS CATEGORICAL MODEL 32:17

e In the first diagram we need to prove that (h [A)o f = (hoSf) | B.
We have, for any b € B,

((h 1 A) o f)(b) = h(f(b))
= h(5f(b))
= ((hoSf) I B)(b)

e In the second diagram we need to prove that Ugo (h [A) = (go h) | A.
We have, for any a € A,

(Ugo (h] A))(a) = g(h(a))
=((goh) [A)a)
e The third diagram follows by considering S(so f) = Sso Sf.
e The last one follows by S(Ugos) = S(Ug) o S(s) =goS(s).
Finally, the monoidality axioms of the adjunction are trivially satisfied. []

Before giving an interpretation of types, we need to define two particular objects A + B
and [A, B] in Sety to interpret the types A + B and A — B respectively:

Definition 4.12. Let A, B € Ob(Sety;), we define the following objects.
A+ B={inl(?) | 7 € A} U{inr(@) | & € B} CV
[A,Bl={f|f:A— B€Ar(Sety)} CV

where f is the term in Lambda-S; representing the map f.

In particular, we need to show that A + B is actually a coproduct, as stated by the
following lemma.

Lemma 4.13. A+ B is a coproduct. That is, given A i) C and B C, there is a UNIquUe
map [f,g] such that the following diagram commutes.

B

irn—— (A+ B) «—is
|
4 [£:9] 9
\ 1 /
C
Proof. Since A+ B € Ob(Sety) C Ob(Set) and f,g € Arr(Sety) C Arr(Set), we can take

[f,g] € Arr(Set) defined by
[f.g]:A+B —=C

f(@) if z = inl(a)
v { f(l_;) ifr = inr(g)

and prove that [f, g] € Arr(Sety). All we need to prove is that [f,g] € Def. Take [f,g] =
Azmatch x {inl(a@) — f(@) | inr(b) — §(b)}. O

The following lemma allows us to use the home [A, B] in the expected way.

Lemma 4.14. There is an adjunction X B 4 [B, _|. That is
Homset (A X B, C) ~ Homse, (4, [B, C1)

32:18 A. Diaz-CARO AND O. MALHERBE Vol. 18:3

Proof.

e Let ARBL 0 c Arr(Sety). Then take A curyd, [B, C] defined by @ — Az.f(@, x), which
can be represented in Lambda-S; as Ay.Ax.f(y, x).

uncurryg =

o Let A% [B,C] € Arr(Sety). Then take AR B "% (' defined by (@,b) > (g@)b, with
uncurryg being \z.let (y,z) = = in gyz.

Notice that uncurry(chryf)(a, b) —* f(a, b) and curry(unAcurryg)a —* ga. Finally, naturality

follows from the fact that Sety is a subcategory of Set. []
Definition 4.15. Types are interpreted in the category Sety, as follows:

[U] =1

[1A] = US[A]

[A+ B] = [A] + [B]

[Ax B] = [A]X[B]

[A— B] = [[A], [B]]
To avoid cumbersome notation, we write A for [A], when there is no ambiguity.
Before giving the interpretation of typing derivation trees in the model, we need to

define certain maps that will serve to implement some of the constructions in the language.
To interpret the match construction we define the following map.

Definition 4.16. Let AR A %5 ¢ ¢ Arr(Sety) and B X A 4 Ce Arr(Sety). Then, we

define the arrow (A + B) KA L% ¢ by (in1(a),d) — f(a,d) and (inr(b),d) — g(b, d).

To interpret the sequence construction, and the rules Weak and Contr we need the
following maps.

Lemma 4.17. Let A°. Then,
(1) AR B ™2 B € Arr(Sety) and BR A "2 B € Arr(Sety).
(2) A% AR A € Arr(Sety).

Proof.
(1) Take 7p := Az.let (y,2) = x in z, which can be typed as follows

- A
n 2 BFz:B A e
r:AXxBFxz:AXxB y:A,z:Brz:B

Purelet
x:AxBFlet (y,z) =z inz: B L
m
FAz.let (y,z) =xinz: Ax B — B
7TA33 is analogous.
(2) Take ¢ := Ax.(x,), which can be typed as follows
Ax Ax
x:AFxz: A y:AI—y:APair
. . . b
x: Ay Ak (z,y): Ax A A Contr

r:AF (z,2): Ax A Lam
Flx.(z,z): A— Ax A 0

Vol. 18:3 LAMBDA-S; AND ITS CATEGORICAL MODEL 32:19

We give the interpretation of a type derivation tree in our model. If ' - ¢ : A with a

derivation 7, we write generically [7] as T’ 14, A, When A is clear from the context, we may
write just ¢ for t4.

Definition 4.18. If 7 is a type derivation tree, we define [7] inductively as follows,
[z arza™=
:c AFz: A

Iz:AFi:B
C+M\of:A— B

A
H I (A, TR A 25

THt:A—> B AF3: 15,
IAF{5: B HZF&A [A,BJKAS B where &' = < oswap
Void

[[l—* U ﬂ:l——>1

THE:U AFS: APureSeq —F@A&l&A———)A

| T,AFES: A

PEE:0 AbS:g4 un;tarySeqH _rRA L UrRUSA S Ul e s4) 22 Usa

ARt s: 1A
TH7:A AF@:B .] TR
T,AF (6,0): Ax B aﬂ PHaA == AND

-]._‘l_t_'AXB A7:1"‘:A7y:‘B|_§»:C'PureLet:|:|
LAk let (z,y)=ting:C

{@nAgB
—TRA P (AR B)R[AR B,AR AR B]

MARBE, AR B)R[ARB,C] S C

HFI—?:A@B Az :4A,y 4B+ §:4C
I’A&—Iet(my):t_’inﬁﬁ(]

US

A B (AR B)R[USAR USB, AR USAR USB]
1dX([U SARU S B, 3]

UnitaryLetH

US(AR B)R [USARUSB,USC]

1, US(AR B)RUS[USARUSB, USC]
5L U(S(ANB) @ S[USARUSB,USCY))

U US(AR BYR[USARUSB, USC))

US((nXn)XKId) USe

US(USARUSB) R [USARUSB,USC)) L5 ususc & usc

T'Fv: A
_Fl—ml(v): A+ B

'-v:B mRII _ 7 2
Trin(0): A+ B HH_F*B%AJFB

THE:A+B Ab (1 :AbF o Lay:BFd):C
— PureMatch
| I, Ak match ¢ {inl(z1) — @ | inr(z2) = ¥} : C

]‘:riAi—%AJrB

32:20 A. Diaz-CARO AND O. MALHERBE

—reA ™ By ra 2B ¢

PFi:A®B Ab (x1:4AF ¥ Lag 4B @) : #C
I, A+ match ¢ {inl(zy) — ¥y | inr(xp) — T} : #C

—TRA B g5t A LU s+ USBYRUSA

UnitaryMatchm

™ U(S(USA+USB) @ SA) L% US(USA+USB) R A) L2 1760

ﬂ(k;ﬁh) @ L) A YT felf =1 m> A#B—)CSH
up

I—Z;nzlaj-'ﬁjlﬁA

Zj a;-SU;
. A

" U
=1—US1 USA

[[ASA]]:AgA

A<LC

HASB BgCﬂ:A[[ASB]] g B,

[ASM}]:AQUSA

[(pA<A] =USUSA L USA where = Ueg

I z:A+t:B
T,z:Ay:AFi:B A
| T,oz: AFtly:=2]:B

Contrjﬂ =TXA

'Af}ig’ giiBl;/ﬂ (4, B] [[A<A'L[B<B] A, B
ij f ;Vg i’i Jg’/ﬂ _ A g MSARIBSBL, 4o o
A] - L
[SEEEEL I Ly

IHi:B
iF I_lf_‘l:—jjlz’: 51;77 H :FLA
[T+i:B A Weakﬂ —rga™ 4 B

MO rRAR AL B

Vol. 18:3

Lemma 4.19 allows us to write the semantics of a sequent, independently of its derivation.
Hence, due to this independence, we can write [I' - ¢ : A, without ambiguity.

Lemma 4.19 (Independence of derivation). If 't : A can be derived with two different

derivations © and 7', then [n]| = [x'].

Proof. We first give a rewrite system on derivation trees such that if one rule can be applied
after or before another rule, we choose a direction to rewrite the tree to one of these forms.
Then, we prove that every rule preserves the semantics of the tree. This rewrite system
is clearly confluent and normalizing, hence for each tree m we can take the semantics of
its normal form, and so every sequent will have one way to calculate its semantics: as the

semantics of the normal tree.

Vol. 18:3 LAMBDA-S; AND ITS CATEGORICAL MODEL 32:21

The introduction rules (Ax, Lam, Void, Pair, InL, InR, and Sup) are syntax-directed. So,
whenever we have an introduction term, we know precisely what is the last rule applied in
its derivation tree.

For the structural rules (<, =, Weak, and Contr) if they can be applied as last rule, or
can be applied before, then we can always choose to rewrite the tree to apply them at the
end, and also choose and order between them.

Finally, the elimination rule App is the only one which is syntax-directed, all the others
are not, since for each elimination term there exists a rule preceded with Pure and another
with Unitary. However, if a term can be typed with one, cannot be typed with the other,
except for Seq, which, in combination with <, can be interchanged, and then we have to
choose a direction to rewrite one to the other:

THE:U o AFS:A _ I'Ht:U AFS:A

TH{:4U AFS:fA — [AF#5: A
— UnitarySeq —J <

ARt S: 4A ARt s: 1A
The confluence of this rewrite system is easily inferred from the fact that there are not
critical pairs. The normalization follows from the fact that the trees are finite and all the
rewrite rules push the structural rules to the root of the trees.

It only remains to check that each rule preserves the semantics.

PureSeq

e The structural rules follow trivially by naturality.
e UnitarySeq — PureSeq The diagrams for the left-side and the right-side of the rewrite
rule, commutes as it is shown below:

~T'XA UnitarySeq N
1 E?A - --» USIRUSA ----n--- i(I ® SA)
i T lag, ném i
" = (USA) st
i \ =)~ i
;1 —————————————————— e LT 3 UE'A —
y Pureseq J

5. SOUNDNESS AND (PARTIAL) COMPLETENESS

We prove the soundness of our interpretation with respect to reduction, and the completeness
only on type #(U + U), which corresponds to C2.

Lemma 5.1 (Substitution). If T,z : AFt: B and A+ v : A, then the following diagram
commutes:

I'KA tla:=v] > B
~
s

~ e
'K A

That is, [[F,Al—ﬂx :=v]: B] = [[F,x:A,FFf: B] o (IdXK [A+ v : A]).

32:22 A. Diaz-CARO AND O. MALHERBE Vol. 18:3

Proof. By induction on the derivation of I',z : A+ ¢ : B. The details can be found in A [
Theorem 5.2 (Soundness). IfT'Ft: A, andt — r, then [T -t : A] = [['Fr: A].

Proof. By induction on the rewrite relation. The details can be found in A. []

Lemma 5.3 (Completeness of values on C?). If [F ¢ : $(U + U)] = [F @ : 4(U 4+ U)], then
U = 0.
Proof. Since U and @ are values of type #(U + U), they have the following shape: ¥ is
=-equivalent to either
(1) a-inl(x) + (- inr(x),
(2) inl(x), or
(3) inr(x),
and W is =-equivalent to either
(1) 4 -inl(*) + 0 - inr(x),
(2) inl(x), or
(3) inr(x).
Indeed, we have consider three cases since 1 - inl(%) + 0 - inr(x) # inl(x) because V is a
distributive-action space and not a vector space.
We analyse the different cases:
e If ¥ and are both in case 1, i.e. ¥ = «-inl(%)+ B -inr(*) and @ = - inl(%) + 0 - inr(x),
we have

11 gy UlerSatBSia)

U(vy-Si146-Si2)
e d

[Fv:4U+0U) $(U+ 1)

]]:
[F@:4(U4+U)]=12%US1 t(U+ 1)

So, the maps * — «-inl(*)+ - inr(*) and * — v -inl(*) 4 0 - inr(x) are the same, and
so, since inl(x) L inr(x), we have @ = v and 8 = 0, thus, ¥ = .

e If ¥ and & are both in case 2 or both in case 3, then ¥ = .

e It is easy to see that ¥ and @ cannot be in different cases, since [¥ : (U + U)] must be
equal to [@ : (U + U)] and this is not the case when they are in different cases. For
example, let ¥ = inl(x) and @ = 1 - inl(%) + 0 - inr(*). In this case we have

[Fo:4U+U)]=1%1+124U+0)

[F@: U+ U] =15 us1 LE5t052) 4y
the first arrow with the mapping % — inl(x) while the second * +— 1-inl(*) + 0 - inr(x),
which are not equal in a distributive-action space []

Definition 5.4 (Equivalence on terms). We write ¢ ~ 7 whenever £ —* ¥ and 7 —* 0,
with v = .

Theorem 5.5 (Completeness on C?). If [F#: §(U+U)| = [F7: 4(U+U)], then t ~ 7.

Proof. By progress (Theorem 3.1) and strong normalization (Corollary 3.5), we have that
t —* @ and 7 —* 0. By subject reduction (Theorem 3.3), we have - @ : #(U + U) and
F @ : §(U + U). Hence, by soundness (Theorem 5.2), [F 7: §(U+U)|=[Ft: 4(U+ V)] =
[Fr:4(U+U)] =[Fw:4U +U)]. Thus, by the completeness of values on C? (Lemma 5.3),

we have ¥ = @. So, by definition, ¢ ~ .]

Vol. 18:3 LAMBDA-S; AND ITS CATEGORICAL MODEL 32:23

Theorem 5.6 (Completeness on qubits). If [£: B®"] = [7: B®"], then t ~ .

Proof. We prove it for n = 2. The generalization is straightforward. Since B®2 = (B x B) =
(U4 U) x (U+U)), the set of closed values with this type is

Q2 = {Z a; - (vi, wi) | vi; wi € {inl(x), inr(+)}}

Hence, if ¥ € Q9, ¥ is =-equivalent to one of

oV + a1V + g v+ 3 U3
Qg Vo + a1 - v+ - v2
Qo - v+ a1 - U1
Qo - Vo
with v; € {(w1,w2) | wi,ws € {inl(x), inr(x)}}.
Following the same reasoning from Lemma 5.3, we get that if [[l— v]B®2]] = [[I— w : IBB®2]],

then ¥ = 0, and following the same reasoning from Theorem 5.5, we have that if [[I— £ IB%®2]] =
[[I—F:B‘X’Q]],thenfwf’.]

6. CONCLUSION

In this paper we have introduced Lambda-S1, a quantum calculus issued from a realizability
semantics [DCGMV19], and presented a categorical construction to interpret it.

Comparison with Lambda-S. The main difference between Lambda-S; and Lambda-
S [DCD17, DCDR19] is the fact that Lambda-S; enforces norm 1 vectors by defining a
distributive-action space on values. This gives us a related but different model than those
for Lambda-S [DCM19, DCM20b, DCM20a]. In addition, in Lambda-S; it is allowed to
type a superposition with a product type, whenever it is a separable state. Indeed, since

(¥, @) == 370 0% @i - (vi,wj). We have

'Fv:A A+W:B
AR (U,%W): Ax B

That is,
LY v A AR wi: B
F,A F Z?:l ZTzl azﬂj . (vi,wj) :Ax B

So, the type A x B is telling us that the term is separable, while a generic term of the form
Doie1 2iey @iy - (vi,wj) would have type (A x B) = A® B. In Lambda-S the only way
to type such a term is with a tensor, and hence we need a casting operator in order to lose
separability information when needed to allow reduction without losing type preservation.

The main property of Lambda-S; is the fact that any isometry can be represented in the

calculus (Theorem 3.11) and any term of type #(U + U) — #(U + U) represents an isometry
(Theorem 3.12).

32:24 A. Diaz-CARO AND O. MALHERBE Vol. 18:3

Comparison with the full calculus. In its original presentation [DCGMV19], any arbi-
trary type A is defined by its semantics (), as a set of values, and the notation - ¢ : A means
that ¢ reduces to a value in (A), (notation t I A). For example, let |+) = %‘inl(*)—l—%'inr(*).

We can consider (A), = {|+)} € (#(U+ U)), = (#B), (even if this is not a type we can
construct with the given syntax of types).

The realizability semantics is so strong that it even allows defining a set (4 = B]), of
linear combinations of abstractions. However, not every linear combination of values in
(A — B), is valid in the semantics. Indeed, if A\z.f and A\z.5 are both in (A — B),, the
linear combination a - Az.t + 8 - Az.5 with |a|? 4 |8?| will be in (A = B),, if and only if
- tlv/x] + B - 5lv/z] have norm 1 for any v € (A),. Hence, (A = B), is contained, but not
equal to (§(A — B)),.

The set (A = B),, can be easily constructed by the realizability semantics (since the
typing F ¢ : C is done by reducing the term ¢ and checking that the resulted value is in
(C),), but not with static methods. Therefore, we decided to exclude the type A = B
in Lambda-&;. Remark that even without superposition of abstractions, we do not lose
expressivity, since a - Az.t + 3 - Az.5 behaves in the same way that \z.(a - + 8 - 5), which
can be typed in Lambda-Sj.

REFERENCES

[ADOS] Pablo Arrighi and Gilles Dowek. Linear-algebraic A-calculus: higher-order, encodings, and
confluence. In Andrei Voronkov, editor, Rewriting Techniques and Applications, pages 17-31,
Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. doi:10.1007/978-3-540-70590-1_2.

[AD17] Pablo Arrighi and Gilles Dowek. Lineal: A linear-algebraic A-calculus. Logical Methods in
Computer Science, 13(1:8):1-33, 2017. doi:10.23638/LMCS-13(1:8)2017.

[ADCP"14] Ali Assaf, Alejandro Diaz-Caro, Simon Perdrix, Christine Tasson, and Benoit Valiron. Call-by-
value, call-by-name and the vectorial behaviour of the algebraic A-calculus. Logical Methods in
Computer Science, 10(4:8), 2014. doi:10.2168/LMCS-10(4:8)2014.

[AGO5] T. Altenkirch and J. Grattage. A functional quantum programming language. In 20th Annual
IEEE Symposium on Logic in Computer Science (LICS’ 05), pages 249-258, 2005. doi:10.
1109/LICS.2005.1.

[Brul4] Alois Brunel. The monitoring power of forcing transformations. PhD thesis, Université Paris
13, France, 2014.

[BVN36] Garrett Birkhoff and John Von Neumann. The logic of quantum mechanics. Annals of Mathe-
matics, 37(4):823-843, 1936. doi:10.2307/1968621.

[DCD17] Alejandro Diaz-Caro and Gilles Dowek. Typing quantum superpositions and measurement.
In Carlos Martin-Vide, Roman Neruda, and Miguel A. Vega-Rodriguez, editors, Theory and
Practice of Natural Computing (TPNC 2017), volume 10687 of Lecture Notes in Computer
Science, pages 281-293. Springer, Cham, 2017. doi:10.1007/978-3-319-71069-3_22.

[DCDR19] Alejandro Diaz-Caro, Gilles Dowek, and Juan Pablo Rinaldi. Two linearities for quantum
computing in the lambda calculus. BioSystems, 186:104012, 2019. Postproceedings of TPNC
2017. doi:10.1016/j.biosystems.2019.104012.

[DCGMV19] Alejandro Diaz-Caro, Mauricio Guillermo, Alexandre Miquel, and Benoit Valiron. Realizability
in the unitary sphere. In Proceedings of the 84th Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS 2019), pages 1-13, 2019. doi:10.1109/LICS.2019.8785834.

[DCM19] Alejandro Diaz-Caro and Octavio Malherbe. A concrete categorical semantics for Lambda-S. In
Beniamino Accattoli and Carlos Olarte, editors, Proceedings of the 13th Workshop on Logical
and Semantic Frameworks with Applications (LSFA’18), volume 344 of Electronic Notes in
Theoretical Computer Science, pages 83-100. Elsevier, 2019. doi:10.1016/j.entcs.2019.07.
006.

https://doi.org/10.1007/978-3-540-70590-1_2
https://doi.org/10.23638/LMCS-13(1:8)2017
https://doi.org/10.2168/LMCS-10(4:8)2014
https://doi.org/10.1109/LICS.2005.1
https://doi.org/10.1109/LICS.2005.1
https://doi.org/10.2307/1968621
https://doi.org/10.1007/978-3-319-71069-3_22
https://doi.org/10.1016/j.biosystems.2019.104012
https://doi.org/10.1109/LICS.2019.8785834
https://doi.org/10.1016/j.entcs.2019.07.006
https://doi.org/10.1016/j.entcs.2019.07.006

Vol. 18:3 LAMBDA-S; AND ITS CATEGORICAL MODEL 32:25

[DCM20a] Alejandro Diaz-Caro and Octavio Malherbe. A categorical construction for the computational
definition of vector spaces. Applied Categorical Structures, 28(5):807-844, 2020. doi:10.1007/
510485-020-09598-7.

[DCM20b] Alejandro Diaz-Caro and Octavio Malherbe. A concrete model for a typed linear algebraic
lambda calculus. Draft at arXiv:1806.09236, 2020.

[GLRT13] Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and Benoit Valiron.
Quipper: a scalable quantum programming language. ACM SIGPLAN Notices (PLDI’13),
48(6):3337342, 2013. doi:10.1145/2499370.2462177.

[Kle45] Stephen C. Kleene. On the interpretation of intuitionistic number theory. The Journal of
Symbolic Logic, 10(4):109-124, 1945. doi:10.2307/2269016.

[Knig6] Emanuel H. Knill. Conventions for quantum pseudocode. Technical Report LA-UR-96-2724,
Los Alamos National Lab., 1996.

[Kri09] Jean-Louis Krivine. Realizability in classical logic. Panoramas et synthéses: Interactive models
of computation and program behaviour, 27:197-229, 2009.

[LS86] J Lambek and P. J. Scott. Introduction to higher order categorical logic. Cambridge studies in
advances mathematics 7. Cambridge University Press, 1986.

[Mel03] Paul-André Mellies. Categorical models of linear logic revisited. hal:00154229, 2003.

[Miql11] Alexandre Miquel. A survey of classical realizability. In Luke Ong, editor, Proceedings of

TLCA-2011, volume 6690 of Lecture Notes in Computer Science, pages 1-2, 2011. doi:10.1007/
978-3-642-21691-6_1.

[NC10] Michael Nielsen and Isaac Chuang. Quantum computation and quantum information. Cambridge
University Press, 2010.
[PRZ17] Jennifer Paykin, Robert Rand, and Steve Zdancewic. Qwire: A core language for quantum

circuits. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, POPL 2017, pages 846-858, New York, NY, USA, 2017. ACM. doi:10.1145/
3009837.3009894.

[Sel04] Peter Selinger. Towards a quantum programming language. Mathematical Structures in Com-
puter Science, 14(4):527-586, 2004. doi:10.1017/50960129504004256.

[SV06] Peter Selinger and Benoit Valiron. A lambda calculus for quantum computation with classical
control. Mathematical Structures in Computer Science, 16(3):527-552, 2006. doi:10.1017/
50960129506005238.

[van08] Jaap van Oosten. Realizability. An Introduction to its Categorical Side, volume 152 of Studies

in Logic and the Foundations of Mathematics. Elsevier, 2008.

APPENDIX A. SOUNDNESS

Lemma 5.1 (Substitution).If T,z : AFt: B and A v : A, then the following diagram
commutes:

I'XKA tlz:=v] > B

I'KA
That is, [[F,AI—E& =] : B] = [[F,x:A,FI—F: B] o (IdX [AF v : A]).
Proof. By induction on the derivation of I’z : A+ t: B.
- A
Cr:AbFz: A

X

https://doi.org/10.1007/s10485-020-09598-7
https://doi.org/10.1007/s10485-020-09598-7
https://doi.org/10.1145/2499370.2462177
https://doi.org/10.2307/2269016
https://doi.org/10.1007/978-3-642-21691-6_1
https://doi.org/10.1007/978-3-642-21691-6_1
https://doi.org/10.1145/3009837.3009894
https://doi.org/10.1145/3009837.3009894
https://doi.org/10.1017/S0960129504004256
https://doi.org/10.1017/S0960129506005238
https://doi.org/10.1017/S0960129506005238

32:26 A. Diaz-CARO AND O. MALHERBE

F,x:Al—f:B B<C
° <

D,z:AFL:C
I'KA tla:=v]¢ /\ C
T . opm (Def) /,\BL/(A/
&y mn‘ﬁB’”®&)§
AN
i®
KA
s Ft:A t=7 _
'Er: A
Flz:=v]
" (Def)
IXA -~ ﬂm:z;]\
Y H)
(/0 ()// K es‘\)
TKA —~—"

Iz:Ay:B+t:C

° - Lam
Mz: A Ayt:B—C

| AN B - -- > [B,FXA@B} ***** BF[I =v]] ----> [B,C]
: (IH & functorlalltx)/,/ i
%l [B,Id?’y@ld] -
Q.)
%g u3r§4x3} o
‘ X
B 7\ Y

\\\\\\ﬁr&A

''tt:B—-C Zx:AFs:B
[]
ez:A-ts: C

I'X=XA —tg[x::v]—; C

iy (Def) -

App

The case where x € FV(t) is analogous.

U

Vol. 18:3

Vol. 18:3 LAMBDA-S; AND ITS CATEGORICAL MODEL

This case does not follow the hypothesis of the lemma.
. '+¢t:U Z,2:A+5:B

— PureSeq
I'=Z,z:A-t;5: B

INEXA — o= — > B

S, (Def) o~

The case where x € FV(t) is analogous.
. I'Ft:4U0 Z,2:AF5:4B

— UnitarySeq
I=Zx:A-t;58: 4B

g, (Def) !
7&:%0/ . 7}1,
S
(IH) (US1)X (USB) (Def)
4 N 2%
% | <
\)5
IKEXA

The case where x € FV(t) is analogous.
't4:B Ex:A+d:C Pair
IEiz: Ak (d,wW) : BxC

IX=XA (@,0[z:=v])) —— BXC
N (Def) -
T iR =] T
% %
ﬁé\\\\\\\$ (TH) ///////é?

I'X=EXA

The case where x € FV(i) is analogous.
Ie:AFt:BxC EZ,y:B,z:C+5§:D
o =
Dz:AEFlet (y,z) =tins: D

PurelLet

32:27

32:28 A. Diaz-CARO AND O. MALHERBE Vol. 18:3

INEXKA ————let (y,2)=tlz:=v] in §—————— D
sw‘ap (Def) n‘u
rRARE (BRC)R[BRC,D
- ldg;\\“‘ﬁx::ng BRC - 5
{Y@ % 0®/d\‘} (IHW S > Idg[B‘XCJ
2 % I'RANE -#npacs (BRC)R[BRC,ZR BRC]
o 0
Q%b swap (Def)
4 I'N=K A let (y,2)=t n &
I'+t:BxC E,x:Avy:B,z:CF§:D
° - PurelLet
LEx:Ablet (y,2z)=tins: D
X=X A
\dﬁv/ ﬂgnégc
IR=ZXA sy (BRC)R[BRC,ZXARBRC]
i pre (Nat- ot \d&v@‘d\/ |
t 77v Ad&\B@C, i
(BRO)R[BRC,EX AKX BXC] (TH) WX[BHC,slai=v]] (Def)
I \\‘/dg[g i
et (y,,g)ét\-’_n - ®Q57~‘\\$ T //,\‘)\
(Der) (BRC)R[BRC,D] 4
| 4&‘\
¢ o
D — N

UnitaryLet

.FJ:AFRB®C E,y:4B,z:4C - 5: 4D
D,z:AZFlet (y,z) =tin §:4D

Vol. 18:3 LAMBDA-S; AND ITS CATEGORICAL MODEL 32:29

IXEX A 1dXv
I
swap (Naturality of swap)
I
4
ITXAXE ¢--cmmmmmmmm ldXoId -------=---==-===-———--———-
. 5C --~
&, VB8, (1H) /,U\ﬂnu sBBY
T -t

US(BRC)R[USBRUSC,ZXUSBRUSC]
Id&[(;"SéXID"SC,E}

V-
US(BRC)X[USBXRUSC,USD]
0(‘ I

- (Def) Umon o (1dB<n) (Def)

~
% #(BRCR[USBRUSC,USD])

e

1
U S (nKnXld)

~
US(USBRUSC R [USBRUSC,USD))

USe
<+
USDUSD
M
v
USD
. 't:BC z,x:A,y:]jBLz:ﬁCI—s:ij UnitaryLet
D=2 x: Ak let (y,2z) =tin §: 4D
TXEX A 1=y TXEXA
fgnuséﬁo'sc (Naturality of 77USB&USC) {E]nvs}smmc
+ +
US(BXC) X US(BX () X
[USBRUSC,EK ¢-------------=-=-—- IdRVRId == == === =======—===-—- [USBRUSC,=ZK
ARUSBRUSC] _ \\AﬁUSBXUSO}
sy, (TH) e
% USe SB$U 5
‘“57‘\; \d$\U
% US(BRC)XR[USBRUSC,USD]| @(/Q\
< | A
z ‘ °
‘%V\/\\ Umono (IdXn) /\;\o
% (Def) + (Def) X
N US(BRCKR[USBRUSC,USD]) N
| N
L’S(r/él'r}.ld)
v
US(USBRUSCXR[USBXUSC,USD])
U.‘S’a
v
USDUSD
M
v
USD
''z:A+v:B

° InL
Fz:AbFinl(v): B4+C

32:30

A. Diaz-CARO AND O. MALHERBE

Vol. 18:3
KA . Wz:=v]B+C \>7 B+C
g %7 (Def) . ./’//////
/:l.'ij\\ - 1\
/”é%a{)\:} B = (Def) ®9X0
KA
Fz:A+©:C

° Tz ALinn(@): B+ C IR Analogous to previous case.

Dz:AFt:B+C EF(z1:BF# Lay:CH®): D
[]

- PureMatch
[z: A ZF match t {inl(x1) — ¢ | inr(ze) — Ta} : D

I'RKZEXA —match ilz:=v] {inl(z1)—a1|inr(ze)—v2} — D
! A

‘ (Def) [171,‘172]1
DN —— P R s (B+C)RE
o o
O@Z’@/d‘ (IH) /@@\d"
% T
3 (Naturality of swap) ['KAKXZE (Def)
4‘\ \)'\/’J‘l\x
swap m\'\“ﬂm\
i)
—_ 7 ,\“\@X
IHERA —— it
. 't:B+C :,x:fll—(ml:Bl—vlJ_xQ:C’l—vg):D PureMatch
I'E,z : AF match t {inl(x1) — ¥ | inr(z2) — U2} : D
rx=xXA match & {inl(z1)71 [z:=v]|inr(ze)T [z:=v]} D
T~ N\ RS
Tt~ % (Def) _\B2 e //
@Id\\‘\w /,\m\”"/\ p
(B+C)XEXA S
~N f
| /Qh ®$
(Functoriality of X) 1dRv (1 I
", <+ ////' Ny
%, (B+C)RERA -— &
A g:&
g (Def) *

NS

9
X
/@@

IX=EXK A

Vol. 18:3 LAMBDA-S; AND ITS CATEGORICAL MODEL 32:31

Ix:A+t{:BaC EF(z1:4BF U Lag: CF4y) : 4D
[]

— UnitaryMatch
I,z : A ZEF match t {inl(xy) — ¥ | inr(z2) — U2} : D

I'X=XA — match #lz:=v] {inl(z1)—a1inl(z2)—d2} —> USD

US[51,72]1
|

(Def) US((USB +USC)R =)

Unjo n
US(USB+USC)XRUS=E
-y
% B USmMﬂﬁn
¢ US(B+C)XZ
‘ W
3> TRANE (Def) W
swap) .\(\\@x
|ZA _/‘(\a&c,‘(\’&
. I't:BpC :,x:él—(ml:ﬂBl—vlj_xgzﬁCl—vg):ﬁD UnitaryMatch
I2,z: AF match ¢ {inl(z1) — ¥y | inr(x2) — U2} : D
IX=KA 1d=v rXx=xA
#id (Functoriality of X) RId
v v
US(B+C)KEXKA ¢------------ ld®ly === ==-=-=-=-- US(B+C)KE=EXA
US(n+n)=n (Naturality of n) US(n+n)&n

US(USB +USC)RUS(ER A) < dxUS(d=w) —— US(USB + USC)RUS(EX A)

Umon (Naturality of n and m) Umon
US(USB+USC)REX A) ------- US(IdRv) ------- US(USB+USC)REXA)
- o m'?&\x :
maey - Deh) -, (IH) _a@e (Deh) et
(), , Z-.. g o
2"I/In/(‘z‘ Ty kU \ T\
gy) ————y USD ¢— { M

32:32 A. Diaz-CARO AND O. MALHERBE

.r,x:AHT:C B’
Iz:Ay:B+Ft:C

Weak

ﬂxi:v]rgB&lA

(Def)

(Funct. of X) 'd&” - TrmA

lelgy, r & A7 (Def) ¢ g8®?

\ ot /

F@B@A

T,y:B,z:A,z:B+-t:C B
[]

T,y:B,x: AFtlz:=y]:C

tlz:=y,x:=v]rxprA
/ (Def) \

Contr

I'XBXA -~ (P — > F&B&B&A ———5[7 =y, z:=1] rmmm
|d®u BRA
\ ,d%(FunCt' ! &r) X B BKE A f\ (/Dyg% ;jii\@ﬁw
|1 //t\
F@é@A
G F@ Lth):B YL leglP=1 m>1 B#C—D -

- Z _1 0y - Uj 4B
This case does not follow the hypothesis of the lemma.

Vol. 18:3

Theorem 5.2 (Soundness). IfT'Ft: A, andt — r, then [['Ft: Al = [T+ r: A].

Proof. By induction on the rewrite relation, using the first derivable type for each term.
First we check the congruence rules, since the rewrite relation is defined modulo such
congruence. Notice that the Unitary rules allow to type term distributions. However, at
some point, such distributions where typed by the rule Sup, which only occur on closed
values. It is easy to check that we can always use the congruence at the level of the closed
values, and inherit such form in the final term distributions. Therefore, we only check the

congruence rules for closed values.

e U + Uy = Uy + U1 and (U1 + U2) + U3 = 01 + (¥ + U3) follow from the commutativity and

associativity of + in SVecy.
e 1-U=v. We have
_Fv A
v A

l
<
BN

IN

Sup and

I
<y
s

Then,

Vol. 18:3 LAMBDA-S; AND ITS CATEGORICAL MODEL 32:33

M Sup M Sup
FB-TU:gA Sup and FaB-v:44 _
Fa-(8-7):4A Faf-v: 1A
Then,
1
i (Def.)
,,j] ///’/,,7- UST] -~\‘\\\\\ Q(ﬁ&)
\L //’/ (Equal maps) s .
N R Mommmmmm oo ooy » USUS1
U(apB-S7) (Nat. of n considering U(a-SU(B-S7))
! Ula- SU(B - S%)) = USU(af - S7)) !
o USA ——————-——o——. N »y USUSA
o (Def.)

e (a+f)-T=a-U+ [-9. Notice that a- ¥+ - ¥ is not typable in our calculus, so, this
equivalence will always be taken in the form (a +) - 0.

e a-(U1+th)=a-1+a- t5. Same as before: if - (U + U) is typable, then « -) + at is
not, and vice-versa. Hence, only one of this two forms will be valid at each time.

o (\r.t)v — t]x := v]. We have

Az:BFt: A Lam
FFXet:B— A Abv:B ,, and T AFfz=0]:A
AR (Qzt)v: A

Then,

32:34 A. Diaz-CARO AND

O. MALHERBE

Vol. 18:3

— T & A E[z::v] ’/g A
(F‘un\c\ of oj . (Lemmasl) g /
oo
i o /KA&““CY - (Naturality of ') i
[B,T®B]X B #7772 - ommmomev 1= (T —— » [B, A]K B
(Def)
(Oz.t)7

e x: 5 — 5. We have

Void
Fx:U AFS APureSeq and @,AF§:A
0,AFx*5: A
We write the () to stress the fact that there is a hidden x1, which can be projected out.
Then,
s 1&14 o
__- \d®EA
IKA 7 (Naturality of)
T TA e A /SA
BTN
e let (z,y) = (v,w) in § — Sz := v,y := w|. We have
F1FU1A FQF’LU:B Pair
I',Te b (v,w): Ax B Arx:Ay:BFS:C
PurelLet
I, To, Al let (z,y) = (v,w) in §: C
and
I',To, Ak Sz :=v,y:=w]:C
Then,
Sla=v,y:=w]
[Lemma 5.1) 1
Fl&FgﬁA ————— oRld ----> ATy KA ----35y: =uw]--- C +———
| (Naturality of X) |dx;md@ oI 5/ 2 T
v&w@;“‘ p@P - TTTTT AKX B X A (Naturality of €) £
‘ \6$ﬂ \ ~ i
L a0 |
[e . “c’%‘oﬂ e i
VARG e-"" l
(AKB)X[AX B, AR AX B] -------- IdR[ARB, 5] ------- » (ARKB)X [AX B, (]
(Def)
let (z,y)=(v,w) in §

Vol. 18:3 LAMBDA-S; AND ITS CATEGORICAL MODEL 32:35

e match inl(v) {inl(z1) — &1 | inr(zg) — Sa} — S1[z1 := v]. We have
F'~v:A InL
'Finl(v): A+ B Axi:AFS:C Axy:BFES:C
I'y A Fmatch inl(v) {inl(x1) — &1 | inr(za) — S2}: C

PureMatch

and
AR Sz i=0]: C
Then,
I'KA S1[z1:=v] 4 C
\\\:\‘-Z,Q/d \ (Lemma 5.1) & ’// ’
2, D, s T
0 T ama s O
A | N
S aRd
Nyov
(A+ B)XA
(Def)
“~———match inl(v) {inl(z1)—351 | inr(z2)—S2} ——
e match inr(v) {inl(z;) — &1 | inr(x2) — 82} — Ss]xe := v]. Analogous to previous
case.

The inductive cases are straightforward. However, we have to check the notation for
linear constructions, which give us the typing derivations using the “Unitary” rules.

Let ¥ = Z?:l Q- Uy, W= Z};nzl ﬁk * Wi, t_': 22:1 Yh - th, and §= 22:1 5[+ Sy.
o (U,@) := 35 ;B - (vj, wi).-

We have
FT:A Fw:B p,,
H(v,W): Ax B
F (0,w) : (A x B)
and

[vj - A F Wg - B Pai
(#hvk£e) (v, wg) L (v, we)) : AX B > ik lo; Be* =1

up
F ij Ozjﬂk : (vj,wk) : ﬁ(A X B)
((ﬂ,?ﬁ) R
— Il TR === === === mmmmmmmmmmmmm oo > AK B

| (%, %) = (22 @5 - a4, 22 Bk - br) |

n I I n

| (%, %) ———— >k Bk - (a5, bi) |

i i
USAIK1) -----mmmmmmmmom- Uk 0B S(0jRwy) =-mmmmmmmm oo - » US(AK B) «

)

~ Z]‘k a; B (vj,wg)

32:36 A. Diaz-CARO AND O. MALHERBE Vol. 18:3

e inl(¥) :== > " a; - inl(v;).

We have
Fu:A InL Cu A InL
Finl(¥): A+ B i and (h#k) F(vp Lvg): A+ B Zj\ajP:l .
. e up
Finl(9): (A + B) F > 5 inl(vj) : (A + B)
(inl(7) ~
— 1 e Fommmmmm - yA i —mmmmmmmmmmmm— o »y A+ B
i e > qjaj — inl(30; a; - aj) i
; | I ;
i i > @ - inl(a;) i
743 R U, - S1n1(07) - s US(A+ B) ¢
)

- >_; j-inl(v;)

e inr(v) := > ", a; - inr(v;). Analogous to previous case.

e t5:= 23:1 d¢ - tsg. In this case, there is only one way to type it, which is first doing the
Sup to type §, and then the App, because we cannot apply Sup on tsy, since these are not
values.

o {:5:= S 1 (ty; §). Since T F t: fU, because of the orthogonality restriction on rule
Sup the only possibility is p = 1. Thus, 1 = v and t; = t, with |y|? = 1.

Furthermore, in this case there is only one way to type it, which is first doing the Sup
to type ¢, and then the UnitarySeq, because we cannot use the rule Sup on ¢; §, which is
not a value.

e let (z,y) =t in §:=3"_ 7, (let (z,y) = t; in). In this case, there is only one way
to type it, which is first doing the Sup to type ¢, and then the UnitaryLet, because we
cannot superpose let terms since these are not values.

e match? {inl(z1) — 51 | inr(x2) > 85} == Y5 _ Y- (match ¢, {inl(x1) = 5 | inr(z2) —
5»}). In this case, there is only one way to type it, which is first doing the Sup to type £,
and then the UnitaryMatch, because we cannot superpose match terms since these are not
values.]

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

	1. Introduction
	2. Lambda-S1
	2.1. Terms
	2.2. Types

	3. Syntactic properties
	3.1. Progress
	3.2. Subject reduction
	3.3. Strong normalization
	3.4. Expressivity

	4. Denotational semantics
	5. Soundness and (partial) completeness
	6. Conclusion
	References
	Appendix A. Soundness

