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Hall-magnetohydrodynamic small-scale dynamos
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Magnetic field generation by dynamo action is often studied within the theoretical framework of magneto-
hydrodynamics (MHD). However, for sufficiently diffuse media, the Hall effect may become non-negligible.
We present results from three-dimensional simulations of the Hall-MHD equations subjected to random non-
helical forcing. We study the role of the Hall effect in the dynamo efficiency for different values of the Hall
parameter. For small values of the Hall parameter, the small-scale dynamo is more efficient, displaying faster
growth and saturating at larger amplitudes of the magnetic field. For larger values of the Hall parameter,
saturation of the magnetic field is reached at smaller amplitudes than in the MHD case. We also study energy
transfer rates among spatial scales and show that the Hall effect produces a reduction of the direct energy
cascade at scales larger than the Hall scale, therefore leading to smaller energy dissipation rates. Finally, we
present results stemming from simulations at large magnetic Prandtl numbers, which is the relevant regime in
the hot and diffuse interstellar medium. In the range of magnetic Prandtl numbers considered, the Hall effect
moves the peak of the magnetic energy spectrum as well as other relevant magnetic length scales toward the

Hall scale.
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I. INTRODUCTION

The generation of magnetic fields by dynamo activity
plays an important role in a wide range of astrophysical ob-
jects, ranging from stars to clusters of galaxies. The gas in
these objects is characterized by turbulent flows, as shown,
for instance, by scintillation observations of the interstellar
medium (ISM) [1,2] or from pressure maps in galaxy clus-
ters [3]. Mechanisms able to generate magnetic fields by dy-
namo action are often classified as large- and small-scale
dynamos, depending on the correlation length of the induced
magnetic field. In this context, large and small are referred to
the energy-containing scale of the turbulent hydrodynamic
flow. This classification is not rigid, as in many astrophysical
objects both dynamos may be at work, but it gives a useful
framework considering the limitations in the scale separation
that can be achieved in numerical simulations. Also, the
physical properties of the flows that can give rise to one or
the other are somewhat different.

Helical flows have proved efficient in generating large-
scale dynamos, i.e., on scales larger than the energy-
containing eddies of the flow [4-7]. It is now known that
large-scale dynamo action can also be produced by aniso-
tropic and inhomogeneous flows (e.g., flows with a large-
scale shear). On the other hand, nonhelical flows can be in-
strumental in generating small-scale dynamos [8], i.e., on
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sizes smaller than those of the energy-containing eddies
[9-11]. In recent years, the study of small-scale dynamos
with magnetic Prandtl number Pm=v/ 7 (the ratio between
the viscosity and the magnetic diffusivity of the plasma) dif-
ferent from unity has received special attention [12,13], both
for Pm> 1 [14] and for Pm<<1 [15,16]. Motivations to study
these regimes include recent experiments of dynamo action
using liquid sodium [17], as well as the fact that many astro-
physical plasmas are characterized by magnetic Prandtl num-
bers different from unity. For instance, the magnetic Prandtl
number is much smaller than 1 in the solar convective re-
gion, and it is typically much larger than 1 in the interplan-
etary medium and also in the ISM.

For sufficiently low-density media such as the one that
pervades the ISM, kinetic effects such as the Hall effect or
ambipolar diffusion might also become relevant [18]. The
potential relevance of ambipolar diffusion in astrophysical
dynamos was studied in Refs. [19,20]. The relevance of the
Hall effect has been recognized in various astrophysical ap-
plications [18,21,22], space plasmas [23-25], and also labo-
ratory plasmas [26—28]. The role of the Hall effect on large-
scale dynamos subjected to helical forcing has also been
addressed in the literature [29,30]. Less attention has re-
ceived the impact of kinetic effects on the small-scale dy-
namo. A theoretical model of the kinematic small-scale dy-
namo with Hall effect was presented in [31]. No numerical
studies of the nonlinear and saturated regime were
considered in the literature.

In this paper, we present results from three-dimensional
simulations of the Hall-magnetohydrodynamics (MHD)
equations subjected to random nonhelical forcing. The main
aim is to study the role of the Hall effect in the small-scale
dynamo efficiency for different values of the Hall parameter.
As a result of the study, we also discuss the impact of the
Hall effect on the dynamo saturation values and on magnetic
and total dissipation rates. The structure of the paper is as
follows. A brief introduction to the theoretical framework
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known as Hall-MHD is presented in Sec. II. The role of the
Hall effect in the efficiency of the dynamo is shown in Sec.
III. In Sec. IV we characterize the stationary regime that is
attained when the dynamo process saturates, showing the
corresponding energy power spectra. The energy transfer
rates participating in the nonlinear energy cascade are dis-
played in Sec. V. In Sec. VI, we explore the regime of large
magnetic Prandtl number (i.e., when the viscous dissipation
scale is larger than the resistive dissipation scale) which, as
mentioned, is particularly relevant in diffuse media such as
the ISM. Finally, the conclusions are summarized in Sec.
VII.

II. HALL-MHD EQUATIONS

For the sake of simplicity, we consider incompressible
flows, although compressible effects may be relevant, e.g., in
the ISM for the formation of structures [32]. Incompressible
Hall-MHD is described by the modified induction equation
(i.e., with the addition of the Hall current) and the equation
of motion (the Navier-Stokes equation),

B

EzVX[(U—EV X B) X B]+ 7V’B, (1)
ou B2 s
Ez—(U-V)U+(B-V)B—V P+? +F + VU,

(2)

where F denotes a solenoidal and nonhelical external force,
which is delta correlated in time. The velocity U and the
magnetic field B are expressed in units of a characteristic
speed Uy=\(U?), 7 is the magnetic diffusivity, and v is the
kinematic viscosity. The parameter € measures the relative
strength of the Hall effect and can be written as

¢ Uy
wpiLO Uo’

3)

where L, is a characteristic length scale, U,=\(B?)/4mnm,; is
the Alfven speed, and w,;= V4me’n/m; is the ion plasma
frequency (e is the electron charge; n=n,=n; are the particle,
electron, and ion densities, respectively; and m; is the ion
mass). Hereafter, we adopt Uy=U, as our typical velocity,
thus rendering the Hall parameter simply as e=c/(w),Lo),
i.e., a dimensionless version of the ion skin depth. These
equations are complemented by the solenoidal conditions for
both vector fields, i.e.,

V.-B=0=V.U. 4)

From a theoretical point of view, Hall-MHD corresponds
to a two-fluid description of a fully ionized plasma: a posi-
tively charged ion species of mass m; moving with the ve-
locity field U(r,t) and negatively charged massless electrons
with the velocity

U,=U-€V XB. (5)

Therefore, from Egs. (1)—(5) we obtain that in the ideal limit
(i.e., 7—0), the magnetic field is frozen to the electron flow.
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As a result, advection, stretching, and folding of magnetic
field lines (mechanisms relevant for dynamo action) are per-
formed by the electron flow rather than by the bulk flow,
resulting in potential modifications to magnetic field genera-
tion when the Hall effect is not negligible.

II1. LINEAR AND NONLINEAR DYNAMO EFFICIENCIES

We performed simulations of the Hall-MHD equations
with a spatial resolution of 256 grid points, using a pseu-
dospectral code [33]. The linear size of our numerical box is
2@L, (with L, as a unit length), and periodic boundary con-
ditions in the three Cartesian directions are assumed. We
apply the 2/3 dealiasing rule, and therefore the maximum
wave number resolved by the code is k,,,,=256/3~85. We
first consider simulations with magnetic Prandtl number
equal to unity (i.e., Pm=1). The coefficients of viscosity and
resistivity in these simulations are set to v=n=2X 1073,
which ensure that the dissipation scales are well resolved,
ie., at all times the dissipation wave numbers k,
=(w?) /)" and k,=((J*)/ 7*)"* remain smaller than
(here, @=V XU is the vorticity and J=V X B is the current
density). To evolve the equations in time we use a fully ex-
plicit second-order Runge-Kutta scheme. We note that for
Hall-MHD, and for velocity and magnetic fields of order
unity, the Courant-Friedrichs-Levy (CFL) condition becomes
At=(Ax)*/€ (due to the dispersive nature of the whistler
waves), which is more restrictive than the regular CFL con-
dition A7=Ax. As a result, the time step decreases quadrati-
cally with the spatial resolution and also decreases linearly
with the Hall parameter e. The Hall-MHD dynamo simula-
tions are therefore computationally more expensive than the
equivalent MHD runs, resulting in the modest spatial reso-
lution considered here.

We first generate stationary hydrodynamic turbulence by
integrating Eq. (2) subjected to random nonhelical forcing
(i.e., such that VXF LF) centered at wave numbers |k|
=~ kr=3 and delta correlated in time. Once the kinetic energy
reaches a stationary regime as a result of the balance between
the power delivered by the external force and viscous dissi-
pation, the hydrodynamic simulation is stopped. In a second
stage, a random and small magnetic field is introduced at
small scales, and the simulation is restarted with the full
Hall-MHD equations (1) and (2).

We performed simulations with different values of the
Hall parameter ¢, including a purely MHD case correspond-
ing to e=0. Whenever €+ 0, a new spatial scale is introduced
(the Hall scale), which in the spectral domain is character-
ized by k.=1/ €. In this paper, we consider the cases in which
k. falls in between the macroscopic scale kp (set by the ex-
ternal driver) and the dissipation scales k, and k,, which is
the relevant scenario for astrophysical plasmas such as the
interstellar media. In such media, the Hall scale is several
orders of magnitude smaller than the largest scales, and the
Hall effect can be expected to be relevant only at the smallest
dynamical scales. Note, however, that these arguments ought
to be regarded as motivations. Although the ordering of typi-
cal length scales is the correct one, a realistic separation of
scales is completely out of reach with present computing
power.

036406-2



HALL-MAGNETOHYDRODYNAMIC SMALL-SCALE DYNAMOS

E

energy
00 © 0000 O 0000 © 00
ON & 3ON B HON » 0
TTTRETTTITT i T

o
N
o

40 60
time

o3}
(@]

FIG. 1. Kinetic (thin lines) and magnetic (thick lines) energies
vs time for €=0, 0.05, and 0.10 (from top to bottom).

In Fig. 1 we show the statistically stationary time series
for kinetic energy (thin lines) for runs with different values
of the Hall parameter €. The magnetic energy in these runs
(thick line) is observed to rise until it saturates at values
which remain a moderate fraction of the corresponding ki-
netic energy. The viscous (thin line) and resistive (thick) dis-
sipation rates vs time are shown in Fig. 2 for three runs with
different values of the Hall parameter. In all these plots, the
magnetic dissipation rate is observed to grow until it be-
comes fully comparable to the corresponding viscous dissi-
pation rate (even when the kinetic energy is larger than the
magnetic energy).

The exponentially fast growth of magnetic energy is
shown using a linear-logarithmic scale in Fig. 3 for the same
three runs. Note that there is an initial stage where the mag-
netic field starts growing exponentially fast, regardless of the
particular value of the Hall parameter €. During this early
stage of the dynamo, the electron flow is still approximately
equal to the ion flow, i.e., U,~U [see Eq. (5)]. Keeping in
mind that the growing magnetic field remains approximately
frozen (note that this is strictly valid only in the limit #
—0) to the electron velocity field, we can anticipate that at
some point in time the electron and ion flows will start drift-
ing apart from one another. Therefore, a second stage arises
corresponding to a nonlinear dynamo (although still “kine-
matic,” in the sense that the magnetic field does not affect the
bulk velocity field) since the magnetic field is being advected
by the electron flow which at that point becomes a function
of the magnetic field itself. In Fig. 3 we see that although the
case €=0 can be approximated by a linear growth rate (indi-
cated by the dotted straight line) all the way up to the satu-
ration level, we cannot do the same for the cases €=0.05 and
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FIG. 2. Kinetic (thin lines) and magnetic (thick lines) dissipa-
tion rates vs time for €=0, 0.05, and 0.10 (from top to bottom).
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FIG. 3. Magnetic energy vs time, showing the exponential
growth rate during the early linear dynamo regime.

0.10 since there is a break in the corresponding growth rates.
This break occurs first for the case with larger Hall effect
(i.e., €=0.10), but the incremented slope is larger for the case
€=0.05. The fact that the dynamo efficiency improves up to
a certain value of the Hall parameter and then starts decreas-
ing is reminiscent of similar results reported in Ref. [33] for
large-scale Hall-MHD dynamos.

To show the relative importance of the Hall term in the
electron velocity field, in Fig. 4 we display the ratio between
€lJi| and |U,] at different labeled times, where |J;| and |U}]
are, respectively, the spectral intensities of the current den-
sity and of the velocity field at wave number k [note that
U,=U-€J from Eq. (5)]. The upper frame corresponds to the
run with €=0.05 and the lower frame to €=0.10. The vertical
gray line in each frame corresponds to the Hall scale k.
=1/€. In both cases, the Hall term becomes gradually non-
negligible and eventually dominant at the largest wave num-
bers of the system, i.e., €lJ;|>|U,| at k> k.. For the case €
=0.05 (upper panel), the Hall term €|J;| becomes comparable
to |U,| at the largest wave numbers by about =24, while a
similar situation arises for €=0.10 at =18 (lower panel).
These values of time are remarkably consistent with those
observed in Fig. 3 for the departure from the linear regime in
each of the runs.

During the linear dynamo regime, i.e., before the curves
cross the line €lJ,|/|U;|=1, they can be approximated by a
~k''6 power law. This result can easily be obtained, assum-
ing a relatively flat magnetic power spectrum [i.e., E,(k)
=£"] and a Kolmogorov power spectrum for the kinetic en-
ergy [E,(k)=k™>"*]. Furthermore, these curves collapse into
one if normalized by the square root of the magnetic energy
exponential growth e” (where o is the growth rate in the
MHD case). After the curves cross €J,|/|U;|=1, these two
features are gradually lost since the Hall term becomes non-
negligible. This further confirms the departure from MHD
behavior when the Hall current becomes on the order of the
bulk velocity or, in other words, when the electron velocity
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FIG. 4. Ratio between €|J,| and |U,| at different times (labeled).
The top frame corresponds to the run with €=0.05 and the bottom
frame to €=0.10. The vertical gray line in each frame corresponds
to the Hall wave number k.=1/€.

starts to differ from the bulk velocity. Also, at least during
the early stages of the dynamo (for which eJ,| <|U,|), the
ratio €|J;|/|U,| is simply proportional to €, reflecting the fact
that the dynamics of the fields is still approximately indepen-
dent of the Hall parameter.

In all these cases, there is a third and last stage, which
corresponds to the saturation of the dynamo. We discuss the
energy saturation levels in the next section.

IV. ENERGY SPECTRA

The distribution of kinetic and magnetic energies among
spatial scales can be observed in the energy power spectra Ej,
vs k displayed in Fig. 5 for three different values of the Hall
parameter (E; is defined such that the total energy is E
=[dkE,, and magnetic and Kinetic energies are such that
E,+E,=E). The thick line in all these runs corresponds to
the total-energy spectrum, which remains in a roughly statis-
tically stationary regime. Note that for these three runs, the
kinetic-energy spectrum remains close to Kolmogorov, i.e.,
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FIG. 5. Total-energy spectrum (thick trace) at t=72 for €=0.00
(top), €=0.05 (center), and €=0.10 (bottom). In each frame mag-
netic energy spectra at t=18,36,72 are also shown (corresponding
to the thin lines from bottom to top). The Kolmogorov and Kazant-
sev spectra are overlaid (dotted traces) for reference.

E, k™3, in the energy inertial range. The thin lines display
magnetic energy spectra at different times, showing the
growth of magnetic energy as a whole at early times, and
saturation of magnetic field growth at small scales at inter-
mediate and late times. Note that the peak of the magnetic
energy in all these cases remains at wave numbers larger
than the one where the external force operates (i.e., kp=3), as
expected for a small-scale dynamo.
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TABLE 1. Global results for runs with different values of the
Hall parameter €. E is the mean saturation level of the total en-
ergy, E,/E is the ratio of magnetic to total energy, k;, is the aver-
age wave number for the current density distribution, D is the
total dissipation rate, D/ D is the normalized dissipation rate, and
D,/ D is the ratio of magnetic to total dissipation rate.

€ E EJE ks D DIDy,  D,/D

0.00 0.37 0.14 23.1 0.13 0.88 0.48
0.05 0.35 0.13 19.4 0.11 0.78 0.39
0.10 0.33 0.13 17.4 0.10 0.73 0.34

The Kazantsev slope E,xk*? [8] provides a reasonable
approximation at small wave numbers for all these cases,
even though Kazantsev’s spectrum was originally derived for
the kinematic regime. Kazantsev’s dynamo theory [8] as-
sumes a random velocity field with Gaussian statistics, which
is spatially homogeneous and isotropic and & correlated in
time. Under these assumptions, the two-point magnetic field
correlation function can be analytically computed (see Ref.
[8], and also Ref. [34]), and a k*> power law is asymptoti-
cally expected for the magnetic energy spectrum at the low-
wave-number end. Even though Kazantsev’s model was de-
vised for pure MHD (no Hall effect) and for large magnetic
Prandtl numbers, our Hall-MHD simulations also reproduce
an E,xk*? magnetic spectrum equally well. This is to be
expected since the Hall effect becomes negligible at the low-
est wave numbers (i.e., at k<<k.=1/¢€). Kazantsev’s spectrum
has also been reported in simulations of small-scale MHD
dynamos at unity Prandtl numbers [11]. The extension of
Kazantsev’s model to Hall-MHD in Ref. [31] also recovers
this spectrum in the regime considered here.

In summary, a preliminary inspection of the magnetic en-
ergy power spectra at early times shows no noticeable differ-
ences between MHD and Hall-MHD. On the one hand this is
not surprising since the Hall effect is nonlinear in the mag-
netic field, and the magnetic energy at early times is much
smaller than the kinetic energy at all scales. On the other
hand, in what follows we show that this last conclusion is
somewhat premature since there are other aspects of these
turbulent dynamos that clearly show the consequences of the
Hall effect.

At saturation, the total magnetic energy reaches a sizable
fraction of the total kinetic energy, which can be estimated
within 10-20 %. More specifically, after taking time aver-
ages between r=60 and r=80 (see Figs. 2 and 3), we obtain
the energy ratios E,/E listed in Table I. Note that the satu-
ration level of these small-scale dynamos, defined as the
fraction of magnetic energy to total energy in the stationary
regime, decreases with the Hall parameter. Therefore, al-
though in the nonlinear dynamo regime the growth increases
with the Hall parameter €, the magnetic field reaches a
smaller saturation level.

As mentioned in Sec. III, the dynamics of the largest
wave numbers in our simulations is controlled by viscosity
and electric resistivity. Therefore, the dissipation of magnetic
energy mostly takes place in current sheets with a thickness
which can be expected to be close to the inverse of k,~ 85.
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FIG. 6. Spectral distribution of current density, i.e., kK>E,(k) vs k
for three different values of the Hall parameter (labeled). The dotted
trace corresponds to the Kazantsev slope k7. The arrows indicate
the average wave number k; [see Eq. (6)] for each distribution.

On the other hand, the width and the length of these current
sheets will vary from one to another [13,35]. We can obtain
a statistical average of the dimensions of our magnetic dis-
sipative structures by computing the power spectrum of the
electric current density, which is simply k?E, (k). In Fig. 6 we
show time averaged (between =60 and r=80) current den-
sity spectra for three different values of the Hall parameter
(labeled). All of these spectra are compatible with a Kazant-
sev law at low wave numbers. Note that the maximum of
these spectra shifts toward smaller wave numbers as the Hall
parameter increases. Since the peak of the spectrum can be
associated with an average thickness of the current sheets,
the above-mentioned shift can be interpreted as the current
sheets becoming relatively “thicker” as the Hall effect in-
creases. This result is in agreement with previous experimen-
tal and numerical results suggesting that in Hall-MHD the
thickness of the current sheets is given by the Hall scale
rather than by the Ohmic dissipative scale as in the MHD
case (see [36] for recent results in support of this interpreta-
tion).

For each of these runs, we also compute the magnetic
Taylor wave number k; given by

f dkkE,,(k)
[ P — ©6)

f dkE,(k)

which are indicated in Fig. 6 by arrows and are observed to
remain close, but somewhat to the left of the maximum for
the corresponding power spectrum. The magnetic Taylor
scale (i.e., the inverse of k;) can be interpreted as the mean
curvatures of the magnetic field lines [13] and of the ensuing
current sheets. The value of k; also moves toward smaller
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wave numbers as the Hall scale is increased. The values of k;
for each of these runs are listed in Table I. In Table I we also
list the time-averaged total dissipation rate D=D,+D,,
clearly showing a progressive reduction as the Hall param-
eter is increased. We also list the energy dissipation rate nor-
malized by Dy=U;/L,, where Uy=\(2E,/3) is the one-
dimensional rms velocity, and L is the integral scale of the
flow. This normalization is often used in the study of hydro-
dynamic turbulence, and the dissipation rate is then known to
asymptotically reach a value close to =0.5 [37] for Taylor-
based Reynolds numbers R, >200. The normalized dissipa-
tion rates here are larger than in the hydrodynamic case, and
this can be ascribed to two different causes. On one hand, we
have a lower resolution than the simulations in [37], and
moreover the asymptotic value of the dissipation rate in
MHD turbulence seems to be obtained for even larger values
of R, [38]. On the other hand, in MHD there is Ohmic dis-
sipation besides viscous dissipation, thus in principle allow-
ing for larger energy dissipation rates than in hydrodynamics.
So the normalization for the dissipation rate may require
extra contributions than just the estimated flux due to the
convective term. The ratio of magnetic to total dissipation
D,/D also reduces as € increases, going from approximate
equipartition in the MHD case to about 33% for €=0.10,
even though in all these simulations the relative content of
magnetic energy E,/E is comparatively much smaller.

V. ENERGY TRANSFER RATES

Interpretation of these results on the energy dissipation
rate requires a detailed analysis of the transfer and conver-
sion rate of energy among scales and between the velocity
and magnetic fields, in order to identify the sources of small-
scale dynamo action in MHD and in Hall-MHD turbulence.
Equations (1) and (2) are known [39] to have three ideal
invariants: energy, magnetic helicity, and hybrid helicity.
These are transferred between scales without losses by the
nonlinear terms in Egs. (1) and (2). In this paper we focus
our attention on the transfer and conversion of energy,

=% f &r(|UP +[B) = f dkE;, (7)

since the nonhelical dynamo does not generate helical mag-
netic fields. The dynamo process in this case is basically the
conversion of mechanical energy into magnetic energy by
induction to sustain the magnetic fields against Ohmic dissi-
pation. The nonlinear terms in Egs. (1) and (2) only redis-
tribute energy (and the other ideal invariants) among differ-
ent spatial scales, in such a way to guarantee the global
invariance except for dissipative losses. To study the energy
transfer in Fourier space, we follow the method of shell fil-
ters originally developed for MHD [40,41], which has more
recently been extended for Hall-MHD [42]. For a given vec-
tor field f(r), we define f,(r) to be the composition of all
wave numbers between « and «+1, i.e.,
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K+l

fdr) = 2 fle™r, (8)

[k|=x

so that f(r)=2"_f,(r). From Egs. (1) and (2) we can derive
detailed balance equations for the kinetic and magnetic en-
ergies in the « shell:

Advection Lorentz

f_/;\
&,EU(K)=fd3r E[— UK-(U-V)UQ+UK-(B-V)BQ]
(9]

Dissipation Injection

+wU-VU . +F U, ,

)

9 Ep(K) = J d%{}‘, [—BK- (U-V)By+B,-(B-V)U, ]
0 L\ ~ J J

Advection Induction

+7B-V’B,+€J,. (B XJQ)}.
\‘—V—J L_W—J

Dissipation Hall

(10)
All cubic terms in Egs. (9) and (10) (before summing over
Q) can be interpreted as energy transfer from the third field
in the Q shell to the first field in its « shell (except for the
Hall term, which corresponds to transfer of magnetic energy
in the Q shell to magnetic energy in the « shell), and asso-
ciated with different physical processes as indicated in the
equations. Note that if the sum is not performed, each term
depends on two wave numbers, « and Q. The two advection
terms preserve the energy by themselves, in the sense that all
energy received by the field on the left (in the shell ) is
provided by the field on the right (in the shell Q). This is also
true for the Hall term. The Lorentz and induction terms do
not preserve energy by themselves, and only preserve it
when considered together, as work done against the Lorentz
force in Eq. (9) corresponds to magnetic induction in Eg.

(10). This is expressed by the following relation [41]:

Jd3rBK-(B-V)UQ=—fd3rUQ-(B~V)BK, (11)

which states that the amount of energy received by the mag-
netic field in the « shell from the velocity field in the Q shell
is equal to the amount of energy removed from the velocity
field in the Q shell by the magnetic field in the « shell. As a
result, the Lorentz and induction shell-to-shell transfer func-
tions are in practice the same. If these functions are summed
over all wave numbers Q, the transfer functions discussed in
[6] (which depend only on k) are obtained.

Figure 7(a) shows the total shell-to-shell energy transfer
rate [i.e., the sum of all cubic terms in Egs. (9) and (10)] in
the steady state of the run with €=0.05. Light-gray (dark-
gray) contours correspond to positive- (negative-) energy
transfer regions on the («,Q) plane, located at fractions of
[0.001,0.010,0.100] of the maximum positive (minimum
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K

FIG. 7. Energy transfer rate contour plots on the (x,Q) plane for
the run with €=0.05 at the stationary regime. Both « and Q run
from zero to k,,,,=85. Light-gray filled contours correspond to lev-
els at [0.001,0.010,0.100] of the maximum positive value, while
dark-gray contours display the same levels at negative energy trans-
fer rates. The top frame shows the total transfer rate, with a peak
value of 0.36, and the bottom frame shows the Hall transfer rate,
with a peak value of 4 X 107,

negative) value. The first thing to notice is that the integral of
this function on the (x,Q) plane amounts to zero, which is
expected to be the case for any conserved quantity in the
ideal limit. The second aspect to notice is the high degree of
concentration around the region Q = k, which is indicative of
the mostly local nature of the direct cascade of total energy
in Hall-MHD, just as for MHD turbulence (for a detailed
study of local and nonlocal contributions to the cascade in
MHD and Hall-MHD, see Refs. [41,42]). In Fig. 7(b) we
show the same kind of plot for just the Hall cubic term [see
Eq. (10)]. The Hall transfer is nonlocal, although it is impor-
tant to emphasize that this term is much smaller than the total
transfer rate. The maximum value for the Hall transfer rate is
only 4% 107*, while the total transfer rate peaks at about
0.36.

The light-gray spot on the left part of Fig. 7(b), for x,Q
<k,=20, indicates that energy is transferred backward by
the Hall term from small scales to scales larger than the Hall
scale (light-gray means positive, indicating a gain in mag-
netic energy). On the other hand, the light spot below the
diagonal for «,Q>k.,=20 indicates that at scales smaller
than the Hall scale, the Hall term contributes to the direct
energy cascade increasing the transfer rate toward smaller
scales.
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We can also compute the energy flux at the wave number
|k|=k by simply performing

k
Mk =22 | @A-U, (U-V)Up+U,- (B-V)Bg
k=0 O

~B, (U-V)By+B, - (B-V)Uy+el,.- (BXJp]l
(12)

Each of the five terms on the right-hand side of Eq. (12) has
a straightforward interpretation. The first term (hereafter
called I1;,;) is a purely kinetic-energy flux, which is already
present in hydrodynamic turbulence, and is responsible of
the direct energy cascade in that particular case. The second
and fourth terms add to zero (i.e., [1;z+115,=0) since they
correspond to the exchange between kinetic and magnetic
energies by Lorentz forces and Faraday induction. The third
term (Ilgpz) is flux of magnetic energy associated with the
advection of magnetic field lines by the velocity field, al-
ready present in the MHD case. Finally, the fifth term (IT5a"

is also a flux of magnetic energy, but exclusively due to the
nonlinearity introduced by the Hall current. The first frame
of Fig. 8 shows the total-energy flux vs k for the runs with
€=0 (black line) and €=0.05 (gray line). The next three
frames disaggregate the energy flux into the various parts
listed above.

The energy fluxes displayed in Fig. 8 confirm the obser-
vation made when considering the shell-to-shell transfer
functions. Note that these energy fluxes have been normal-
ized by the (time-averaged) total dissipation rate to allow a
comparison between runs with different Hall parameter val-
ues. The flux associated with the Hall term slows down the
cascade of magnetic energy toward small scales for wave
numbers smaller than the Hall wave number since T144" is
negative in this range. At the same time, the Hall effect
speeds up the energy cascade at smaller scales, where Hgg”
becomes positive. Note that the change of sign takes place at
the Hall scale (see the dashed line in the lowest panel of Fig.
8). This result explains why the current spectrum was ob-
served to peak near the Hall scale and the associated de-
crease in the magnetic energy dissipation rate as the ampli-
tude of the Hall term was increased. The slowdown in the
transfer of magnetic energy toward small scales (where it
finally dissipates) is also responsible for the faster build up
of magnetic energy through dynamo action in the Hall-MHD
case.

Note that although the Hall transfer rate is three orders of
magnitude smaller than the total-energy transfer rate (see
Fig. 7), the contribution of the Hall term to the flux is not
negligible. This is the result of the strong nonlocality of the
Hall term: while the Hall transfer is small for each value of «
and Q, the flux at the wave number & results from summing
over all values of Q and over all values of k<<k. The slow
decay of the Hall transfer far from the diagonal k=0 in Fig.
7 (associated with the nonlocality) gives a substantial contri-
bution to the total flux.

The other fluxes are also modified by the Hall term. The
total (i.e., I1) and Il fluxes decay faster with increasing
wave number in the Hall-MHD case and show the buildup of
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FIG. 8. Energy fluxes vs k, normalized by the total dissipation
rate D. The black line corresponds to a time average at the station-
ary regime of the run with e=0, while the gray line is for €=0.05.

(mechanical) flows at scales larger than the forcing scale
(indicated by the negative value of Il for small wave num-
bers). Such an effect for Hall-MHD has been predicted from
theoretical models [43] and confirmed by numerical simula-
tions [33]. Also, the I1;; flux peaks at smaller wave numbers
in the Hall-MHD case.

The modification of the fluxes is consistent with the
changes in the global dissipation rates. As the Hall term re-
duces the transfer of magnetic energy to smaller scales at
scales larger than the Hall scale, the global dissipation of
magnetic energy decreases. Note that this result is compat-
ible with studies [44,45], which find faster reconnection rates
in Hall-MHD simulations with current sheets initially set up
at small scales. For spatial structures such as current sheets,
at scales smaller than the Hall scale, the Hall term increases
the transfer toward even smaller scales. As a result, the dis-
sipation rate at those particular scales is also increased,
which is opposite to the result obtained for the global dissi-
pation rate.
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FIG. 9. Total-energy spectrum (thick trace) at =72 for different
runs (as labeled). Magnetic energy spectra at t=18,36,72 (thin
lines from bottom to top in each panel) are also shown. The Kol-
mogorov and Kazantsev slopes are overlaid (dotted trace) for
reference.

VI. LARGE MAGNETIC PRANDTL NUMBER

We have so far considered the particular case Pm=1, i.e.,
n=v. However, there are several low-density and high-
temperature astrophysical plasmas which are characterized
by Pm=v/ 7> 1, such as the interstellar medium, intracluster
gas in between of galactic clusters, jets, or accretion disks.
We performed numerical simulations with Pm=10, so that
the viscous dissipation wave number k, becomes much
smaller than the resistive dissipation wave number k,. As a
result, magnetic fluctuations in this large-Pm regime may
grow at subviscous scales.
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FIG. 10. Magnetic energy vs time for the three runs as
labeled.

In Fig. 9 we show the energy spectra for three different
runs (labeled). In the top frame we repeat the spectra from
the purely MHD run with Pm=1 as a reference. In the cen-
tral frame we show the spectra for an MHD run (i.e., €=0),
but with Pm=10. The thick trace corresponds to the total-
energy spectrum at t=72, corresponding to the saturation of
the dynamo. The various thin curves correspond to the mag-
netic energy spectrum at the successive times #=18, 36, and
72 from bottom to top. In the large-Pm regime, the magnetic
field grows in the subviscous region of the spectrum. It is
apparent that for Pm=10 most of the energy at small scales
(i.e., large k’s) is magnetic. These results are consistent with
those reported in Ref. [11] from very similar nonhelical
simulations. The Kazantsev spectrum E,~k*? is also a good
approximation at large scales, although at large Pm it is less
surprising since the kinetic energy is more confined toward
the small-k spectral region.

The lower panel in Fig. 9 corresponds to a simulation
with moderate Hall value (e=0.05) and large magnetic
Prandtl number (Pm=10). By comparison with the case dis-
played in the central panel (e=0 and Pm=10), the dynamo
efficiency is larger in the presence of the Hall effect, as also
confirmed in Fig. 10.

Figure 10 shows the growth of magnetic energy in the
three simulations in linear-logarithmic scale. In the MHD

TABLE II. Global results for runs with different values of the
magnetic Prandtl number Pm. € is the amplitude of the Hall effect,
E,/E is the ratio of magnetic to total energy, k; is the magnetic
Taylor wave number for the current density distribution, D/Dy is
the normalized dissipation rate, and D,/ D is the ratio of magnetic
to total dissipation.

e Pm E EJE k D DID, D,/D

0.00 1 037 014 231 0.13 0.88 0.48
0.00 10 029 025 164 0.14 2.19 0.37
005 10 026 0.19 143 0.11 1.79 0.21
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FIG. 11. Spectral distribution of current density, i.e., k’E,(k) vs
k for three runs with different values of € and Pm (labeled). The
dotted trace corresponds to the Kazantsev slope k”. The arrows
indicate the average wave number k; [see Eq. (6)] for each of the
current density distributions.

case, the linear growth rate at large Pm (for the same mag-
netic diffusivity ) is somewhat larger than in the Pm=1
case, which can be expected as the flow is smoother in the
former case and turbulent magnetic diffusion is therefore
less effective. In the Hall-MHD case, the linear regime is
again found to be followed by a nonlinear stage when the
Hall effect becomes relevant and the magnetic field is ad-
vected by the electron velocity, as found in the simulations
with Pm=1.

Other features of the Hall-MHD small-scale dynamos re-
ported in the Pm=1 simulations can also be identified in the
Pm=10 case. As examples, Table II shows saturation values
of the total energy, total dissipation, and the ratios of mag-
netic to total energy and magnetic to total dissipation for the
runs in Figs. 9 and 10. In the MHD case, the increase in the
magnetic Prandtl number moves the peak of the current den-
sity spectrum toward smaller wave numbers (see the values
of k; in Table II and Fig. 11). As discussed in Sec. IV, the
Hall effect moves this peak further to larger scales.

VII. CONCLUSIONS

We present results from three-dimensional simulations of
small-scale dynamo action for magnetic Prandtl numbers
Pm=1 and 10 in conducting flows with the Hall effect. This
effect is believed to be non-negligible in sufficiently diffuse
media, and its relevance has been recognized in various as-
trophysical, space, and laboratory plasmas. As a first step
toward a better description of dynamo action in such media,
only the incompressible Hall-MHD equations were solved,
and the inclusion of compressible effects as well as other
kinetic effects such as ambipolar diffusion is left for future
studies.
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However, the inclusion of only the Hall effect acting at
the smallest relevant dynamical scales of the flow gives rise
to measurable differences with previous studies of dynamo
action. A magnetic nonlinear regime is identified when the
magnetic field (and the current density) becomes large
enough to differentiate the electron velocity from the bulk
flow velocity. After saturation, differences in the stationary
level of magnetic energy and in the total and magnetic en-
ergy dissipation rates are obtained (as well as the normalized
energy dissipation rates D/D,), depending on the amplitude
of the Hall effect. Finally, the peak of the current density
spectrum is found to be dependent on the strength of the Hall
term, with its peak moving toward larger scales (smaller
wave numbers) as the Hall scale is increased.

By studying the detailed transfer of energy among fields
and scales, we observe that the effect of the Hall term is

PHYSICAL REVIEW E 82, 036406 (2010)

twofold: it transfers energy toward larger scales for scales
larger than the Hall length, and it transfers energy toward
smaller scales for scales smaller than this length. The modi-
fication of the energy flux resulting from this transfer is con-
sistent with the observed changes in the saturation values of
energy and dissipation rate observed in our simulations.
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