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Phenotypic screening is a powerful technique that allowed the discovery of

antimicrobials to fight infectious diseases considered deadly less than a century

ago. In high throughput phenotypic screening assays, thousandsof compounds are

tested for their capacity to inhibit microbial growth in-vitro. After an active

compound is found, identifying the molecular target is the next step. Knowing

the specific target is key for understanding its mechanism of action, and essential

for future drug development. Moreover, this knowledge allows drug developers to

design new generations of drugs with increased efficacy and reduced side effects.

However, target identification for a known active compound is usually a very

difficult task. In the present work, we present a powerful reverse virtual screening

strategy, that can help researchers working in the drug discovery field, to predict a

set of putative targets for a compound known to exhibit antimicrobial effects. The

strategy combines chemical similarity methods, with target prioritization based on

essentiality data, and molecular-docking. These steps can be tailored according to

the researchers’ needs and pathogen’s available information. Our results show that

using only the chemical similarity approach, this method is capable of retrieving

potential targets for half of tested compounds. The results show that even for a low

chemical similarity threshold whenever domains are retrieved, the correct domain

is among those retrieved inmore than 80% of the queries. Prioritizing targets by an

essentiality criteria allows us to further reduce, up to 3–4 times, the number of

putative targets. Lastly, docking is able to identify the correct domain ranked in the

top two in about two thirds of cases. Bias docking improves predictive capacity only

slightly in this scenario.Weexpect to integrate the presented strategy in the context

of Target Pathogen database to make it available for the wide community of

researchers working in antimicrobials discovery.
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Introduction

Antimicrobial resistance is nowadays one of the most

challenging public health issues. Strikingly, the World Health

Organization (WHO) recently revealed that there has been little

progress in the development of new antibiotics to tackle drug-

resistant infections. In this critical situation, the design of novel

antimicrobial agents or therapies is pressingly required.

Currently, it is accepted that the identification of appropriate

targets is a critical step in the design of new drugs. In the

postgenomic era, integrative computational approaches

facilitate the identification and prioritization of candidate

targets (Serral et al., 2021). Target-Pathogen (http://target.sbg.

qb.fcen.uba.ar) (Sosa et al., 2018) is a unique resource that helps

to achieve this task, combining structural druggability datasets,

essentiality analysis, metabolic context, genomic, and expression

data to rank gene/proteins according to their potential as novel

antimicrobial targets. Previous reports, from our and other

groups, used this tool to select and prioritize molecular targets

of several relevant pathogens such as M. tuberculosis (Defelipe

et al., 2016), K. pneumoniae (Ramos et al., 2018; Serral et al.,

2022), Bartonella bacilliformis (Farfán-López et al., 2020; Serral

et al., 2021), Trypanosoma cruzi (Osorio-Méndez et al., 2016;

Coutinho et al., 2021) and Schistosoma mansoni (Lobo-Silva et al.

, 2020). Once the target is selected, the challenge moves to the

identification of a small molecule that can inhibit the protein

target’s function, allows further pharmacological validation of

the target, and ultimately drives the development of a new

antibiotic.

Phenotypic screening for antimicrobial compounds is a

powerful technique that yielded over the last century many

molecules that became first-line drugs to treat infectious

diseases (Ribeiro da Cunha et al., 2019). For example,

Daptomycin, a fermentation product from Streptomyces

roseosporus now used to treat Gram-positive infections, was

discovered by a screening of compounds for antibiotic activity

in the 1980s and approved by the FDA in 2003 (Katz and Baltz,

2016). In high throughput phenotypic screening assays, usually

thousands (or even more) of compounds are tested for their

capacity to inhibit microbial growth in-vitro (Landeta and

Mejia-Santana, 2021). Most promising compounds are

further studied in different growth conditions and even in

animal models. Moreover, in the field of natural products,

crude extracts are routinely screened for their potential

antimicrobial activities, and positive results lead to active

compound molecular purification and characterization

(Harvey, 2007). Indeed, this is how penicillin, possibly the

world’s most important antimicrobial agent, was discovered

(Ligon, 2004).

Once an active compound is found, the next problem is to

identify its molecular target, the biological molecule of the host to

which the compound binds to perform its effect. Knowing a

compound’s molecular target is essential for understanding its

mechanism of action, and key for further medicinal chemistry

development, or in other words, for the active to become a lead

compound for therapeutic development (Davis, 2020). Possibly,

the most common antimicrobial drug targets are essential

proteins. These proteins usually perform a vital function for

the microorganism, such as an enzymatic reaction that, when

inhibited by the drug, leads to the pathogen’s death (Gerdes et al.,

2006).

Target identification for an active compound is however a

very difficult task. In the pre-genomic era, biological studies of

the compound effect on the host narrowed down their action

mechanism over the years, until the definitive target survived

scrutiny. For example, for Isoniazid, the first front-line drug

against TB, early studies in the fifties showed that it inhibited the

synthesis of cell division (Barclay and Ebert, 1953), and in the

following 20 years many hypotheses were put forward until

Winder et al. showed it inhibits mycolic acid biosynthesis, by

analyzing the lipid extracts using thin layer chromatography

(Winder and Collins, 1970). Consequently, several lipid-

metabolizing enzymes were proposed as targets. Davidson and

Takayama (1979) later showed that isoniazid inhibited a

desaturase involved in the synthesis of C24 and

C26 monounsaturated fatty acids. The final identification

came, however, only after the genetic characterization of

resistant strains (Vilchèze and Jacobs, 2007). Presently, a

powerful way to identify an active compound target at the

genomic scale is to induce the development of resistance,

either naturally or with some mutagen, and then compare the

parent and resistant strain genomes. Those genes with relevant

mutations are the candidate targets. This technique has been, for

example, successfully used to identify bedaquiline’s target in

mycobacteria, which to everybody’s surprise turned out to be

the ubiquitous ATP synthase (Andries et al., 2005; Kundu et al.,

2016). The process, however, is costly and time-consuming and

can fail for several reasons, such as the impossibility of obtaining

a resistance strain, or the difficulty in correctly identifying the

relevant resistance causing mutation (Farha and Brown, 2016). In

this context, several bioinformatic approaches have been

proposed and applied in order to aid researchers in the

identification of an active compound’s target (Hasan et al.,

2006; Shanmugam and Natarajan, 2010; Lee et al., 2011;

Rahman et al., 2014; Mondal et al., 2015; Neelapu et al., 2015;

Cloete et al., 2016; Defelipe et al., 2016; Kaur et al., 2017; Mohana

and Venugopal, 2017; Wadood et al., 2017; Oany et al., 2018;

Ramos et al., 2018; Uddin and Jamil, 2018; Shuvo et al., 2019;

Farfán-López et al., 2020; Karim et al., 2020; Lobo-Silva et al.,

2020; Aslam et al., 2021; Chakkyarath et al., 2021; Serral et al.,

2022).

Virtual Screening is usually referred to as the process by

which bioinformatic and chemoinformatic tools are used to

select compounds that potentially bind (and inhibit) the

desired protein target (Gimeno et al., 2019). In the first steps,

compounds can be selected based on chemical similarity to
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known binders of the desired target, or to similar proteins (Bajusz

et al., 2015; Radusky et al., 2017); or filtered according to the

presence of specific functional groups known to bind to the target

known pharmacophore. In a second, more precise step, selected

compounds (either from a preselected, as mentioned above, or

chemical diverse set) are docked to the target, and those predicted

to have binding energy below a selected threshold are passed for

experimental testing (Kumar et al., 2019). Many docking

programs include options to encourage the formation of

specific molecular interactions (Jones et al., 1997; Friesner

et al., 2004; Corbeil et al., 2012; Ruiz-Carmona et al., 2014).

In previous works from our group, we developed and thoroughly

tested such a bias strategy in the context of the

AutoDock4 program (Morris et al., 2009), which can be used

for pose prediction and Virtual Screening and is freely available

as AutoDock Bias (Arcon et al., 2019). The method is a powerful

and easy to use tool to improve docking performance, which can

be also applied in a high-throughput fashion for VS. It allows

guided docking towards pharmacophoric interactions and

precise localization of atoms or groups in a defined 3D region

relative to the target structure.

Finally, in some cases, a third step is performed, where a

smaller set of compounds is evaluated usingMolecular Dynamics

methods in order to obtain a more precise estimation of their

binding free energy, and only those with higher affinity are tested

(Sabe et al., 2021). In recent years, informatics approaches based

on Machine Learning (ML) have gained strength for drug

discovery (Lau et al., 2021), including the field of

antimicrobial discovery (Vamathevan et al., 2019; Lau et al.,

2021). For example, Halicin, an effective drug against many

multidrug resistant microbes, is one of the most notable

recently discovered antimicrobials using ML techniques

(Stokes et al., 2020). Furthermore, the increasing performance

of computers allows combining of molecular docking with more

computational-demanding approaches such as MD, machine

learning, and quantum mechanics QM calculations to further

improve overall project performance (Caballero, 2021).

Reverse virtual screening can thus be described as the

process where an already known active compound is

screened against a set of potential targets, using the same (or

similar) tools as those used for the typical case. For

antimicrobial compounds, found using phenotypic assays,

except for cases of compounds targeting DNA or the cell

membrane, the universe of potential targets can be

circumscribed to all the organism proteins and the aim is

thus to find a small group of potential protein targets to

study further and validate experimentally.

In the present work, we combined chemical similarity methods,

with target prioritization based on essentiality and expression data,

and knowledge-based docking to analyze the potential of reverse

virtual screening. We provide a comparison for different organisms,

with different proteome sizes and available information, and show

the potential and drawbacks of each reverse screening step.

The selected pathogens are Mycobacterium tuberculosis

(Mtb), Bartonella bacilliformis (Bb), Klebsiella pneumoniae

(Kp), and Trypanosoma cruzi (Tc), all corresponding to

important challenges for health care systems, particularly in

developing countries. Mtb is the causative agent of

tuberculosis (TB), an infectious disease that despite being

preventable and treatable, continues to be a global health

threat (World Health Organization 2021). It is estimated that

25% of the world population is infected with latent Mtb. These

individuals constitute a great reservoir of mycobacteria,

presenting between a 5%–10% probability of developing active

TB throughout life. TB is positioned as the 13th cause of death

worldwide, and until the pandemic caused by COVID19, the first

cause of death by a single infectious agent (World Health

Organization 2021). Bb is responsible for Carrion’s disease, an

ancient vector-borne biphasic illness dating from the pre-

Columbian era, restricted to the South American Andes,

including Ecuador, Peru, and Colombia (Gomes and Ruiz,

2018). Bb infectious causes two well-defined clinical phases.

The early stage, named Oroya fever, causes severe acute

hemolytic anemia. High fatality rates (40%–88%) have been

described in patients without any antibiotic treatment. Even

more, with adequate antibiotic treatment, the fatality rate is

around 11% (Farfán-López et al., 2020). The development of

dermal eruptions, known as Peruvian warts, and commonly

present on the extremities and the head is typical of the

chronic phase of Carrion’s disease. Although this phase is

hardly fatal, dermal eruptions can be accompanied by acute

pains in joints and bones, headache, fever, and

lymphadenopathy (Minnick et al., 2014). Kp is a Gram-

negative, non-motile, rod-shaped enterobacterium. From a

clinical perspective, it represents one of the most important

pathogenic bacterium (Podschun and Ullmann, 1998;

Podschun et al., 2001). It is commonly reported as an

etiologic agent of either bacterial pneumonia or community-

acquired urinary tract infections. However, it can cause any type

of infection in hospitals, including breaks in patients under

intensive care and newborns, which is likely associated with

its ability to spread fast in hospital settings. Finally, Tc is a

kinetoplastid protozoan that causes Chagas disease. This

infection affects 6–8 million people worldwide (Schofield et al.,

2006), most of them neglected populations (Schijman, 2018). Tc

traverses an acute phase, evolving to an asymptomatic or

symptomatic chronic phase, with different degrees of

progression and severity (Rassi et al., 2010). It is important to

remark that all these pathogens present antimicrobial resistance

for first and second-line treatments, and thus, new drugs are

urgently required (Mazzeti et al., 2021); (Van den Kerkhof et al.,

2020).

Based on the available genomic, proteomic, and ligand

binding information for the selected pathogens, our results

show that reverse virtual screening is a powerful tool for

predicting (or narrowing the number of) potential targets, for
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new compounds showing antimicrobial activity. We also provide

a detailed step-by-step pipeline that allows implementation of the

described strategy in other pathogens. Finally, further integration

of the proposed methodology in the context of the Target

Pathogen database is discussed and provided.

Materials and methods

Proteome sources and annotation

All proteomes were downloaded from Target Pathogen

(http://target.sbg.qb.fcen.uba.ar/patho/). Each protein was

blasted against Uniprot (The UniProt Consortium, 2018) to

obtain the corresponding Uniprot ID. Duplicated and

erroneous sequences were deleted.

Protein domain assignment

We assigned each protein sequence domain using HMMER

(http://hmmer.org/) and the PFAM domain database (Mistry

et al., 2021). Domains were assigned whenever the e-value was

below 1x10−5 (in order to obtain a reasonable and confident

number of domains for each protein to keep only highly reliable

domains), they score higher than the corresponding gathering

cutoff, and the protein sequence harbored over 60% of the

domain length.

Building of internal protein-domain-
ligand relational database

For each analyzed organism, we built an internal database.

This internal protein (domain)-ligand database consists mainly

of two connected tables, one containing PFAM domains and

their respective proteins, and the other, the ligands and their

associated PFAM domains. Therefore, for each ligand, the set of

known binding domains can be retrieved. The ligand-protein

(domain) connections are derived from either the PDB (Berman

et al., 2003) or ChEMBL (Gaulton et al., 2017). In the case of the

PDB, there are lots of complex structures harboring a protein and

its ligand. For each structure, the Pfam domains present in the

corresponding protein are annotated in the PDB database. We,

therefore, extracted from the PDB all annotated domain-ligand

pairs, and corresponding PDB ID, using a customized in-house

script. PDB database annotates as ligands not only drug-like

compounds but any non-protein molecule, such as salts, metals,

and cosolvents. Since we are interested only in drug-like

molecules, we filtered PDB-derived ligands using MOAD (Hu

et al., 2005), to keep only those that are classified as drug-like,

i.e., peptides of 10 amino acids or less, oligonucleotides of four

nucleotides or less, small organic molecules and cofactors.

Concerning ChEMBL, we first assigned PFAM domains to

each ChEMBL target using HMMER. Secondly, we retrieved all

ligands which are annotated as binding to a single protein (not

protein complexes) that contain at least one domain from the

pathogens proteome and have a pchembl value >6 (pchembl is a

measure of protein activity inhibition) (Bento et al., 2014).

Finally, since many ChEMBL targets harbored more than one

domain, we attempted to address which of these domains actually

binds the ligand. For this sake, we compared each of the

multidomain-target binding ligands to those retrieved from

the PDB using Chemical Similarity (see below). If one of

these multidomain-protein-binding ligands shares chemical

similarity (TI > 0.4) with a PDB ligand that binds a given

domain of the multidomain proteins, we assign this as the

corresponding ligand-binding domain in the ChEMBL table.

It is interesting to note, that contrary to what we expected,

although ChEMBL allows us to retrieve more ligands compared

to PDB, they show a relatively smaller number of targets. In other

words, ChEMBL has many ligands but fewer targets. Therefore,

the coverage or diversity of domains obtained from PDB is larger

than those from ChEMBL.

Chemical similarity

Chemical similarity between compound pairs was quantified

using the Tanimoto Index (T.I.), as previously described (Bajusz

et al., 2015). Briefly, starting from each compound SMILES we

obtained the corresponding Morgan Fingerprints (Morgan, 1965;

Rogers andHahn, 2010) (a series of binary digits that represent the

absence or presence of particular chemical substructures in the

ligands) using RDkit (Landrum, 2016). This index is computed as

Ti c
(a+b−c), where c corresponds to the substructures shared by both

compounds, while a and b are the total number of substructures

that compounds 1 and 2 have, respectively. This results in a score

between 0 (minimum similarity score) and 1 (both compounds are

identical) (Butina, 1999).

Characterization of possible candidate
target proteins

Metabolic information (betweenness-centrality and choke-

points) for each target was downloaded from Target Pathogen

(Sosa et al., 2018). From the metabolic perspective betweenness-

centrality, reflects the participation of a given reaction as an

intermediary in many transformations. It is assumed that the

blockage of proteins associated with high betweenness-centrality

would generate disequilibrium in many different pathways, and

thus be of high impact. Choke-points are reactions that uniquely

produce or consume a given product or substrate (Yeh et al.,

2004). Thereby, choke-point blockage may lead to the lack of

essential compounds or the accumulation of a potentially toxic
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metabolite in the cell. For this reason, proteins associated with

these reactions are supposed to be relevant for drug discovery.

To consider whether a protein was essential, we downloaded

available large-scale information from Target Pathogen. Since

genomic scale essentiality experiments were available only for

Mtb, we predicted which proteins of the other three organisms

are essential blasting each organism’s proteome using the

Database of Essential Genes (Zhang, 2004) (coverage> 80%,

e-value<1.10–10). If homologs proteins are found, it is possible

that the queried proteins are also essential, since functions

encoded by essential genes are broadly conserved in

microorganisms.

Molecular docking
Molecular docking calculationswere performed for each randomly

selected query ligand against the PDB structures that correspond to the

first 10 domains that bind the most chemically similar compounds to

the query (similar domains are ranked according to ligand T.I. as

described), excluding those that also bind organic cofactors. From the

selected PDB crystals, all hetatoms (solvent molecules and/or ligands)

were removed, except in those domains that harbor ionic cofactors that

display a key role in protein-ligand interactions. After that, we prepared

the PDB files for docking, adding hydrogen atoms and charges

information in the corresponding pdbqt files using AutoDockTools

version 4.2.6 (Morris et al., 2009).

The potential ligand binding site of the selected target

protein, was the one where the ligand (similar to the query)

binds to its corresponding domain. All docking calculations were

performed with AutoDockTools. The grid size was set to 15 ×

15 × 15 Å, with a grid spacing of 0.375 Å, and the grid center was

designated at the position where the corresponding ligand binds

the respective PDB structure. The following docking parameters

were adopted: ga_run = 100, rmstol = 2 Å.

Biased Docking
Molecular docking calculations were also performed using

the Bias docking protocol, a script-based method that allows the

introduction of different types of biases for fine-tuning

AutoDock calculations, developed in our group. Biases are

introduced as energy rewards for each ligand atom that

participates in previously identified protein-ligand relevant

molecular interactions, usually hydrogen bonds or

hydrophobic (Arcon et al., 2019). In the present case, key

protein-ligand interactions for the bias were derived from the

protein-ligand interactions observed in the complex structure of

the protein (harboring the same target domain) with its

corresponding ligand which is similar to the query compound.

Results and discussion

The results are organized as follows. First, we explore the

druggable genomes of four distinct microorganisms with

significantly different genome sizes, and available ligand and

target information. Secondly, we analyze the predictive capacity

of the proposed strategy using only chemical similarity and

domain information. Finally, we analyzed whether the use of

biological properties of each microorganism’s proteins (i. e,

metabolic context and essentiality) and molecular docking

allow us to select (or narrow) the most suitable target

candidates.

Exploring the druggable genome

The first step of our reverse virtual screening pipeline uses

chemical similarity to find potential targets of a given compound

(Figure 1). We used the same idea described in our previous

work, where we showed that using chemical similarity it is

possible to find a set of potential binders to a given target

protein by looking at compounds that are similar to those

known to bind to homolog proteins (Radusky et al., 2017). In

the present pipeline, we first search for compounds that are

effectively known to bind proteins (binder compounds), that are

chemically similar to the query inhibitor up to a user-defined

threshold (we will use the term query to refer to the phenotypic

active compound for which we are seeking the target). Therefore,

those proteins from the target organisms that are homologs to the

known targets of the binder compounds (i.e., those similar to the

query), are the query’s potential targets. In this scheme, the

success will depend on: 1) the number of potential different

targets, 2) the number and diversity of known binders to the

potential targets’ homologs, 3) the chemical similarity method

and threshold used, and 4) the method used to define the protein

homologs.

To analyze the impact of these parameters on the pipeline

predictive capacity we selected four pathogens, namely Mtb, Bb,

Kp, and Tc, with significantly different proteome sizes and

available ligand and target data (Table 1). To define homolog

proteins in our pipeline, we will work not with the whole proteins

(i.e., the full protein sequence), but with individual domains as

defined in the PFAM database (Mistry et al., 2021). As shown in

Table 1, although proteome sizes differ significantly, the total

number of unique domains is similar. We will use four categories

to define a homolog binder protein. The first (g1), most stringent,

group corresponds to proteins with a co-crystallized ligand (as

found in the PDB), and with over 95% identity to the potential

target (i.e., almost the same protein domain but from the same, or

another organism). The second (g2) corresponds to co-

crystallized ligands found in proteins from any organism,

binding to the same PFAM domain of the potential target. In

this group, thus, we are assuming that two proteins sharing the

same domain according to PFAM are homologs. Group 3 (g3)

and 4 (g4) correspond to the same identity thresholds but define

the known targets of the ligands using the Chembl database

(Gaulton et al., 2017).
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Table 1 shows the number of ligands-target pairs that can be

associated with each pathogen using the four mentioned group

categories. If we look at specific organisms domains (g1 and g3),

only Mtb displays a significant number of known ligands. This is

not unexpected since there is a long tradition in the study of Mtb

ligand-target pairs. For the other organisms, the number of known

ligands is virtually null. However, when the analysis is extended to

homolog domains (G2 and G4), now between 20% and 60% of the

domains can be assigned a tentative ligand. This moderately wide

coverage is the key to a successful reverse screening pipeline.

We now turn our attention to the ligand chemical-similarity

threshold and analyze the resulting predictive capacity of the

FIGURE 1
Reverse virtual screening pipeline.

TABLE 1 Total count of ligands-target pairs that can be associated in M tuberculosis, B bacilliformis, K pneumoniae and T cruzi, using PFAM and
Chembl data.

Organism Mycobacterium
tuberculosis

Bartonella
bacilliformis

Klebsiella
pneumoniae

Trypanosoma
cruzi

Number of total proteins 4081 1143 5491 10288

Total number of Pfam domains (cumulative from
every protein)

6293 1473 8737 8991

Total Number of unique Pfam Domains 2141 1068 2966 2335

Unique Pfam Domains that bind ligands (group I) 254 (11.9%) 0 (0.0%) 17 (0.57%) 16 (0.69%)

Unique Pfam Domains that bind ligands (group II) 1117 (52.2%) 674 (63.1%) 1287 (43.4%) 1131 (48.4%)

Unique Pfam Domains that bind ligands
(group III)

23 (1.1%) 0 (0.0%) 0 (0.0%) 8 (0.3%)

Unique Pfam Domains that bind ligands
(group IV)

365 (17.0%) 100 (9.4%) 364 (12.3%) 403 (17.3%)

Unique Pfam Domains that bind ligands (all
groups)

1157 (54.0%) 679 (63.6%) 1316 (44.4%) 1154 (49.4%)
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FIGURE 2
Mean of Pfam domains found per T.I. threshold (A). Percentage of query ligands with the correct Pfam domain obtained by each T.I. threshold
globally (B), and only when at least one candidate binding domainwas retrieved (C). Histogramof T.I. similarity ranking positions where the ligand that
binds the correct query’s interaction domain is obtained (D). Plots are built based on 1000 queries extracted either from the PDB (left) and ChEMBL
(right) datasets.
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pipeline first step. Figure 2A shows the number of different domains

that are retrieved on average as a function of their chemical

similarity threshold to the query. Ligand queries are obtained

from a random subset of 1000 PDB and Chembl ligands

respectively, and the compounds from our datasets (from which

we retrieve their respective binding domains) that present T.I. >
0.9 with the queries were excluded in the evaluations. The plot

shows, for example, that if we retrieve all targets whose ligands are

between 0.6–0.7 similar to the query compound, on average we find

only 2-3 different domains. As expected the smaller the threshold

(i.e., more dissimilar compounds) the more different domains are

retrieved, and it grows exponentially. The data shows that on average

the threshold should be no smaller than 0.5 which results in up to

about 10 different domains. Again, and consistent with previous

observations for the PDB dataset, more domains are found.

Figure 2B shows a first glimpse of the pipeline performance.

Here we evaluate for each chemical similarity threshold, the

percentage of query ligands that result in a positive identification

(or retrieval) of the correct target domain. Of course, the number

of retrieved domains increases as the threshold diminishes. For

the PDB set, the plot shows a linear relationship and that using a

threshold of T.I. = 0.5, the target is found for more than half of

the query compounds. Interestingly, for the Chembl set, the plot

shows that plateau/saturation is reached at a threshold of 0.6 of

chemical similarity, with about 80% of queries compound finding

the potential target domain.

Figure 2C is similar to 2B, but now we determine the

percentage of correct domain retrieval, considering only those

cases where for the given chemical similarity threshold, at least

one domain is retrieved. In other words, it measures the method’s

predictive value whenever a result is obtained. The results show

that even for a low chemical similarity threshold whenever

domains are retrieved, the correct domain is among those

retrieved in more than 80% of the queries for the PDB set

and 90% for the ChEMBL set.

Finally, Figure 2D shows the ranking capability of the

chemical similarity index regarding correct domain

identification. The results show that in around 60% of the

cases in the PDB datasets (and above 90% in the ChEMBL

ones), the most similar ligand (i.e., first ranked) results in

correct domain retrieval. This is consistent with our working

hypothesis, i.e., that more chemically similar ligands tend to bind

the same domains. It also shows that ranking the retrieved

domains by chemical similarity is a good first approach to

identify the correct domain.

Narrowing the list of most suitable target
candidates by using biological properties

We now turn our attention to the second step of our pipeline

which is related to each potential target’s biological properties.

We selected 10 drugs for each species whose binding target is

known and also known to cause growth inhibition of (or kill) the

respective bacteria. As we could not find 10 drugs with a known

active binder for Tc, this organism was discarded for further

analysis. For each drug, we determined the group of potential

binding domains (using the previously described chemical

similarity approach) and analyzed whether maintaining only

essential proteins or those associated with high centrality or

choke-point reactions could allow us to reduce the number of

potential targets while keeping the true target. The results,

displayed in Figure 3A, indicate that in almost every case the

correct target could still be found after filtering by essentiality.

This is not the case for centrality or choke points as filters,

showing that these two characteristics are not adequate for

FIGURE 3
Ligand - target pairs in which the correct binding domain remains, after filtering by corresponding protein features: Essentiality or involving a
choke point or a central reaction in a metabolic pathway (A). Mean number of potential protein domains after and before filtering by essentiality (B).
Data obtained from sets of 10 known drugs each, used to treat respectively M. tuberculosis, B. bacilliformis and K. pneumoniae.
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describing current drug targets. The effect of filtering by

essentiality is shown in Figure 3B, where for each species the

number of potential targets before and after essentiality filtering

are displayed. For both Mtb and Kp, a significant (3–4 times)

reduction in the number of potential targets results after filtering.

For Bb reduction is negligible, possibly due to lack of knowledge

of essential proteins, i.e., filter is useless. In conclusion,

essentiality was the only biological property that allowed us to

narrow the candidate target list without ruling out the putative

valid binders, so essential candidate genes/proteinas should be

given priority as the potential true targets.

Docking of query to the potential targets

The final step of the proposed pipeline aims to: 1) discard

domains that are not likely to bind the query, and 2) confirm

that one (or more) of the potential targets is (are) able to bind

the query, using Molecular Docking. After performing the

above-mentioned steps, for each query, we have a group of

usually less than 10 potential targets with their corresponding

known ligands. For those derived from PDB, we can take

advantage of the known protein-ligand complex structure and

the similarity between the query and bound ligand, to define

key protein-ligand interactions, which can be subsequently

used in the Bias Docking Scheme. An example of the idea is

presented in Figure 4.

Key to the present step is to be able to discern which of the

potential targets actually binds the query and which do not. In

order to compare all the possible binding domains evaluated

for a ligand, we transformed the Autodock results (Population

and estimated binding energy) to a Z-score which allows

comparing the results for different domains and ranking

each pose. Examples of the results are presented in Figure 5

FIGURE 4
Using known protein-ligand structure and query-ligand similarity to define potential ligand interactions for bias-docking. Comparison between
PMM (query ligand example) and 22D (similar compound retrieved, that interacts with the correct binding domain) (A). Key atoms from residues that
interact with the ligand 22D in the crystal 6OFW, which are used to define the bias sites for the query (B). Structural alignment of both structures that
share the same Pfam domain containing respectively 22D (6OFW, in orange) and PMM (1EYE in blue), where the structural similarity between
both proteins is shown (C). Query ligand (PMM) correctly docked in the structure 6OFW, with coincident interactions with the bias sites (D).
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A and B for the ligands 9OR, which binds PF01070 (present in

the structure 6A21) and 89U, which interacts with PF00091

(in the crystal 5XLZ). The obtained representing crystal for

PF01070 is 2ZRV (that has the compound FNR, similar to

9OR by a T.I. of 0.63) and 5LYJ (that contains the ligand 7BA,

that shares a T.I. of 0.49 with 89U) for PF00091.

The results from Figure 5 clearly show how the docking

allows selection of the correct domain, and a corresponding

good quality model of the ligand bound structure. Proper

ligand pose is evidenced as an upper-left outlier dot in the

Z-score normalized population vs. binding energy plot, which

consistently displays low RMSD values of the query ligand

heavy atoms with respect to the corresponding reference

structure. Wrong domains, on the contrary, lack or have

less significant (in terms of Z-score) outliers. The summary

of the results presented in Figure 6, shows that in both cases

(either with queries derived from PDB or ChEMBL) docking is

able to identify the correct domain in the first ranks (by

Z-score) in most, about two thirds, of cases. Bias docking

improves predictive capacity only slightly in this scenario

(more detailed information in Supplementary Table S1).

Taken the results altogether, we can discuss the whole

pipeline and how each step contributes and can be used to

reach the desired target. It is clear from the first proteome

coverage and database comparison, that present knowledge

allows the identification of a known ligand at the domain scale

for a significant percentage (more than half) of a microbial

proteome. As more ligands and their targets are identified

these numbers can only increase. The first step of the proposed

strategy, using ligand chemical similarity to infer potential

targets, is already quite powerful. On average 50% of query

compounds result in positive target identification for a

chemical similarity index of 0.5. Moreover, the first ranked,

and thus most similar ligand, is actually a ligand of the correct

FIGURE 5
Z-normalized plot of binding free energy (x-axis) and cluster population of similar docked ligand’s poses (y-axis) comparing all the candidate
binding domains (represented by a structure for each) with the correct one indicated for the compounds 9OR (A) and 89U (B).
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target domain in 80% of cases. Higher chemical similarities (>
0.7) result in a close to a unique and positive identification of

the binding domain but are expected for about 10%–20% of

tested ligands. On the other end, for those queries where

retrieved domains result from lower chemical similarity

(0.2–0.4 range), tens of domains are retrieved and thus a

high rate of false positives is expected. This scenario is

where the following steps of the strategy are relevant. The

second step is just a filter due to potential target

characteristics. Since we are expected to look for targets

that actually kill the microbial, it is expected that an

essentiality filter allows reducing the number of potential

targets. For this filter to be effective it is key to be able to

determine which proteins are essential for the microbe, either

through direct observation or by homology with essential gene

lists.

The last, the molecular docking proposed step, is relevant

when several potential domains are retrieved by chemical

similarity. Our results show that docking is capable of selecting

the true binding domain among others. Indeed, the presence of a

clear outlier in the z-score population vs. binding energy plot not

only highlights the true binding domain, but also yields a model of

the corresponding protein domain-ligand structure. This model

structure can be used, for example, to design single point mutants

that would prevent binding of the compound, yielding a valuable

tool for experimental confirmation. Also, the lack of a proper

outlier possibly hits to the fact that none of the retrieved domains is

the true target, and therefore that the ligand possibly binds to one

which lacks a known similar binder.

Application of our proposed reverse VS.
strategy to recently discovered
antimicrobials that are not in PDB or
ChEMBL databases

To perform an application of the proposed strategy, we run

through the pipeline a set of 776 compounds developed by GSK

that were shown to kill Mtb in a phenotypic screening assay

(Hersey, 2013), and whose targets are largely unknown. Our

results show that 69% of the drugs are similar to at least one

ligand from our binders database with a TI greater than 0.4. The

predicted target domains are presented in SI Supplementary

Table S2.

Previous work used in-silico methods to predict potential

binding domains (Martínez-Jiménez et al., 2013), for 31 of the

mentioned GSK compounds. In 19 cases our prediction has

coincidences with that reported previously. More importantly,

for 42 GSK set drugs, targets were experimentally validated

(Mugumbate et al., 2015; Trofimov et al., 2018). Most of them

(30) were shown to bind Dihydrofolate reductase (DHFR). Our

methodology was able to correctly predict the binding domain

for 18 of these 30 ligands. DHFR’s domain (PF00186) was

retrieved as the top result (the most similar binder compound

in the database) for nine of these drugs, among the top 10 results

for another three compounds, and between the best

20 candidates for the last six ligands. For the remaining

11 molecules, those that do not bind DHFR, we predicted the

corresponding binding-domains for only two of them, that bind

to KasA (Pfam PF00109 and PF02801), and MmpL3 (Pfam

FIGURE 6
Histogram showing the positions where the correct binding domain was found in the biased and conventional docking z-score rankings made
for the 20 compounds evaluated from the PDB dataset (A) and the 10 tested ligands from the ChEMBL dataset (B).
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PF03176) respectively. In both cases, the closest binder

compound corresponds to the true target (Supplementary

Table S3).

Finally we applied our chemical-similarity approach to a recently

discovered antibiotic (Fabimycin), whose mechanism of action was

also determined (Parker et al., 2020, 2022). This is an interesting

example, because Fabymycin is not present in eitherChEMBLor PDB

at themoment of the present work, whichmakes it eligible as proof of

concept for our strategy. This drug is active against Gram negative

bacteria (including Klebsiella pneumoniae) and acts as an inhibitor of

the enzyme FabI, that corresponds to the domain Enoyl-Acyl carrier

protein reductase (Pfam PF13561). According to our results, the most

similar ligand of Fabimycin present in chemical databases is

CHEMBL1652621 (with TI of 0.78) which is bound to FabI

protein of Staphylococcus aureus and Burkholderia pseudomallei.

This protein, as expected, belongs to the PF13561 domain (Enoyl-

(Acyl carrier protein) reductase), present in FabI protein of Klebsiella

pneumoniae. In conclusion our methodology was able to correctly

retrieve the FabI as the target in Klebsiella pneumoniae.

Conclusion

Our bioinformatic strategy allows, starting from a compound

(the query) which is known to kill (or show any other clear

phenotypic effect) against a given target organism, to determine

potential domains and corresponding target organism’s proteins

that are likely to be molecular targets of the query. The pipeline

consists of three steps (chemical similarity, essentiality filter, and

molecular docking) that can be tailored according to the researchers’

needs and available information. Overall, we show that potential

targets can be retrieved for half of the tested compounds with a

0.5 chemical similarity index. Whenever a potential target is

retrieved there is more than an 80% chance that the actual target

is among the handful of retrieved domains. We expect to integrate

the presented strategy in the context of Target Pathogen database

(Sosa et al., 2018) to make it available to the wide community of

researchers pursuing the development of novel antimicrobials.
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