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a b s t r a c t

The behavior of a new type of nonlinear dynamic vibration absorber is studied.

A distinctive characteristic of the proposed absorber is the impossibility to extend the

system to infinity. The mathematical formulation is based on a finite extensibility

nonlinear elastic potential to model the saturable nonlinearity. The absorber is attached

excitation. In order to solve the equations of motion and to analyze the frequency-

response curves, the method of averaging is used. The performance of the FENE absorber

is evaluated considering a variation of the nonlinearity of the primary system, the

damping and the linearized frequency of the absorber and the mass ratio. The numerical

results show that the proposed absorber has a very good efficiency when the nonlinearity

of the primary system increases. When compared with a cubic nonlinear absorber, for a

large nonlinearity of the primary system, the FENE absorber shows a better effectiveness

for the whole studied frequency range. A complete absence of quasi-periodic oscillations

is also found for an appropriate selection of the parameters of the absorber. Finally, direct

integrations of the equations of motion are performed to verify the accuracy of the

proposed method.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Linear dynamic vibration absorbers have been proven to be a very effective and efficient way to mitigate undesirable
vibration levels at certain (resonance) frequencies. Since the pioneering work of Frahm in 1909 [1] a large number of
papers has been devoted to studying, improving and testing these relatively simple devices in vibration suppression and
isolation. The theory of the linear vibration absorber is well documented in the literature [2,3] and is still a field of very
active research [4]. Nevertheless, most of these linear absorbers are efficient only over a very narrow band of excitation
frequencies. To overcome this, some researches started to study absorbers with nonlinear or piecewise linear
characteristics [5,6]. Examples of this can be observed in several studies on nonlinear dynamic vibration absorbers
(NDVAs) or nonlinear tuned mass dampers which have been carried out from the second half of the last century onwards.
It is worth mentioning the works of Robertson [7], Pipes [8], Soom and Lee [9] and Nissen et. al. [10]. The aim of
their works was to optimize these devices for vibration reduction either by maximizing the suppression bandwidth
. All rights reserved.

www.elsevier.com/locate/jsvi
www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2012.11.025
dx.doi.org/10.1016/j.jsv.2012.11.025
dx.doi.org/10.1016/j.jsv.2012.11.025
mailto:mfebbo@uns.edu.ar
dx.doi.org/10.1016/j.jsv.2012.11.025


M. Febbo, S.P. Machado / Journal of Sound and Vibration 332 (2013) 1465–14831466
or minimizing the maximum displacement of the main system. By applying several approximation methods, such as the
Ritz method or the Harmonic Balance Method they could calculate the steady-state responses. More recently, the works by
Rice [11] and Shaw et al. [12] extended those first reports pointing out that there is possibility of a combination instability
in the suppression region if damping is kept slow. They studied under which circumstances this occurs, observing the
coexistence of almost-periodic motion (due to Hopf bifurcations) and low-amplitude steady-state responses. Natsiavas
[13] further studied this phenomenon, indicating that a proper selection of the system parameters can avoid this
instability which can lead to dangerous effects. Oueini et al. [14] presented an approach for implementing an active
nonlinear vibration absorber for flexible structures that exploited the saturation phenomenon exhibited by multi-degree-
of-freedom systems with quadratic nonlinearities. And in a second work [15], they studied the dynamics of a nonlinear
active vibration absorber with cubic nonlinearities. The nonlinear dynamics of a two-degree-of-freedom system with
nonlinear damping and nonlinear spring were presented by Zhu et al. [16] with the aim of studying the effect of the
nonlinear damping in the steady-state response of a cubic NDVA. Also Alexander et al. presented two interesting
theoretical and experimental works [5,17] that explored the performance of a NDVA of cubic type in seismic isolation, and
the theoretical effects of energy pumping with external excitation. Targeted energy transfer (TET) in two degree-of-
freedom systems comprising a linear primary system and a nonlinear attachment has received a lot of attention in the field
of vibration control [18]. It was demonstrated that at certain ranges of parameters and initial conditions, passive TET
makes it possible that vibration energy initially localized in the linear oscillator gets passively transferred to the
attachment in an almost irreversible way [19]. Most of these models consider a stiff nonlinear cubic spring and a linear
damper attached to the primary system, but recently the use of nonlinear attachments with non-polynomial character-
istics has also been studied [20].

The aim of the present work is to present a new type of NDVA. It consists of a strong nonlinear oscillator with a
saturable nonlinearity which physically represents the impossibility to extend the system to infinity. The saturable
nonlinearity is modeled by a finite extensibility nonlinear elastic (FENE) potential, which has been previously studied by
one of the authors [21,22]. Additionally, some other authors [23,24] explored analytically and experimentally oscillators
with a similar type of saturable nonlinearity constructed from a negative stiffness mechanism for vibration isolation
purposes. The proposed NDVA is studied by coupling it to a harmonically driven linear/nonlinear oscillator (primary
system) to analyze its efficiency in mitigating the vibration amplitude of the primary system. It is expected that the
proposed NDVA presents a great efficiency for a strong nonlinear primary system. After an introductory section, Section 2
introduces the mathematical formulation of the problem. The following section (Section 3) presents the frequency-
response curve (FRC) for the steady-state response of the compound system. Section 4 presents the numerical results and
analyzes the FRCs in various cases. First we vary the degree of nonlinearity of the primary system in order to test the
efficiency of the FENE absorber (Section 4.1). Then we conduct a variation of the main parameters of the absorber:
damping ratio (Section 4.2.1), linearized frequency (Section 4.2.2)) and mass ratio (Section 4.2.3) to obtain a complete
characterization with the idea of a future optimization of its parameters. In order to compare the efficiency of the proposed
device with other well-known nonlinear absorbers [13], we perform a direct comparison with a cubic absorber in Section
4.3. Finally, Section 4.4 presents a direct numerical integration of the equations of motion to test the accuracy of the
proposed approximate solution. Concluding remarks are then presented and discussed in Section 5.

2. Mathematical model

The FENE potential is used in this work to model the saturable nonlinearity of the absorber which physically represents
the finite extensibility of the attached system. Mathematically, it is given by the following expression:

VFENEðxÞ ¼�
1

2
kF ln 1�

x

x0

� �2
 !

(1)

Consequently, the force is given by

f FENEðxÞ ¼�
dVFENEðxÞ

dx
¼ kF

x

1�
x

x0

� �2
(2)

where x represents the amplitude of the oscillator and x0 its maximum possible extension. The system studied is modeled
as a two-degree-of-freedom oscillator. A mechanical model of this system can be observed in Fig. 1. We consider a single
degree-of-freedom nonlinear cubic oscillator of mass m1 as the primary system. It is attached to a rigid boundary through a
linear viscous damper and a linear/nonlinear spring on the left side and with a FENE oscillator (absorber) on the right side.
As stated in the Introduction, the finite extensibility nonlinear oscillator acts as a dynamic vibration absorber of nonlinear
characteristics. The two equations of motion, which result after applying Newton’s second law, can be written as

m1 €x1þc1 _x1þk1x1þk1NLx3
1�k2F

ðx2�x1Þ

1�
x2�x1

x0

� �2
�c2ð _x2� _x1Þ ¼ f cosðotÞ (3)
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Fig. 1. Schematic representation of a FENE absorber attached to a nonlinear primary system.
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m2 €x2þc2ð _x2� _x1Þþk2F
ðx2�x1Þ

1�
x2�x1

x0

� �2
¼ 0 (4)

where m2 is the mass of the FENE absorber, k1, kNL and c1 are the linear and nonlinear stiffness and damping constant of
the primary system, respectively, and k2F and c2 are the coupling stiffness and damping constant for the FENE absorber.
Next, we define a normalized time t¼ot and the following parameters are introduced
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After these replacements, Eqs. (3) and (4) can be written in the following nondimensional form:
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where the prime represents differentiation with respect to t. The above two formulas can be written in matrix form as
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3. Method of analysis

In this section we present the analytical treatment of the equations of motion by the method of averaging or Krylov–
Bogoliubov–Mitropolsky technique [25]. We adopted this method over others, for example the Method of Multiple Scales [26],
because it captures the essential features of saturation phenomenon without requiring to go to very high orders in the
perturbation analysis (see Section 4).
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In the method of averaging, the steady-state response is assumed as

xðtÞ ¼ uðtÞ cosðtÞþvðtÞ sinðtÞ (9)

where the time dependence of u¼ ½usðtÞurðtÞ�T and v¼ ½vsðtÞvrðtÞ�T is taken to be ‘‘slow’’. Another condition of the method
requires the velocity to have a similar functional form to that of the linear case. A transformation of variables so defined is
called a Van der Pol transformation [25]. Thus

x0ðtÞ ¼ �uðtÞ sinðtÞþvðtÞ cosðtÞ (10)

Differentiating Eq. (9) and taking into account Eq. (10) we have

u0ðtÞcosðtÞþv0ðtÞ sinðtÞ ¼ 0 (11)

Using Eqs. (10) and (11) in evaluating x00 and substituting it in Eq. (8) gives

ðMv0�MuþCvþKuÞcosðtÞ�ðMu0 þMvþCu�KvÞ sinðtÞ ¼ fðu,v,tÞ (12)

Then, Eq. (11) is multiplied by M cosðtÞ and Eq. (12) is multiplied by �sinðtÞ. The resulting two equations are then
added together. To obtain the final expression, we need to integrate from 0 to 2p the last equation by assuming that u and
v are constants. As a result, we arrive at
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In the same way, Eq. (11) is multiplied by M sinðtÞ, Eq. (12) is multiplied by cosðtÞ and the two equations are added
together. After integration from 0 to 2p of the resulting equation we obtain
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where we have made use of the following definitions: xs ¼ as cosðt�fsÞ, with us ¼ as cosðfsÞ and vs ¼ as sinðfsÞ;
a2

s ¼ u2
s þv2

s , and xr ¼ ar cosðt�frÞ, with ur ¼ ar cosðfrÞ and vr ¼ ar sinðfrÞ; a2
r ¼ u2

r þv2
r . The details of the calculation are

presented in Appendix Appendix A.
In order to obtain the steady-state solution of Eqs. (13) and (14), one has to set the left-hand side of both equations

equal to zero. Then, after a lengthy but straightforward manipulation, we arrive at the amplitude–frequency relation:
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where AðarÞ ¼ ðo2
0F=o2Þ2=

ffiffiffiffiffiffiffiffiffiffiffiffi
1�a2

r

p
þ1�a2

r . Once the amplitude of the displacement of the relative coordinate has been
obtained (ar), the steady-state solutions for the primary system can be calculated from Eqs. (13) and (14). The final result is

as ¼ ar

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAðarÞ�1Þ2þ

l2
2

o2

s
(16)
4. Numerical comparisons and discussion

In this section we present the FRCs corresponding to the steady-state solutions of the system under study. The selected
values for the parameters used in Figs. 2, 4 and 6 are presented in Table 1.

The steady-state solutions are determined by setting u0 ¼ v0 ¼ 0 on the right-hand side of Eqs. (13) and (14) and solving
the nonlinear system. The stability analysis is then performed by judging the eigenvalues of the Jacobian matrix of the
linearized system calculated at the fixed points.

The aim of this section is to present the dynamic behavior of the proposed system under a variation of some of its
parameters and at the same time to study the efficiency of the FENE absorber as the nonlinearity of the primary system
increases. Additionally, we compare the performances of the present absorber with the most studied cubic absorber.
Finally, direct integration of the equations of motion is performed to verify the accuracy of the proposed solutions.



Fig. 2. Frequency–response curves of (a) as (amplitude of the displacement of the primary system) and (b) ar (amplitude of the displacement of the

relative coordinate) when E1 ¼ 0. Solid (dashed) lines denote stable (unstable) equilibrium solutions and thin solid lines denote unstable foci.

Table 1
System parameters for the FRCs of Figs. 2, 4 and 6.

Parameter l1 ðs
�1Þ x1 ¼

l1

2o10

� �
l2 ðs

�1Þ x2 ¼
l2

2o0F

� �
o10 ðs

�1Þ o0F ðs
�1Þ m f0 ðs

�2Þ m1 (kg) on1 ðs
�1Þ on2 ðs

�1Þ

Value 0.01 (0.005) 0.01 (0.005) 1 1 0.15 0.1 1 0.8249 1.2122
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4.1. Nonlinearity of the primary system

Here, we study the variation of nonlinearity of the primary system, E1, to evaluate the performance of the FENE
absorber on attenuating the vibration amplitude of the primary system. This is analyzed with the help of the FRCs shown
in Figs. 2, 4 and 6 considering a nonlinear cubic parameter E1 ¼ 0,8, and 35, respectively. The amplitudes as,r are obtained
as functions of the frequency of excitation o.

The FRCs exhibit an interesting behavior due to saddle-node bifurcations (SN where one of the corresponding
eigenvalues crosses the imaginary axis along the real axis from the left to the right-half plane) and Hopf bifurcations
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(H where one pair of complex conjugate eigenvalues crosses the imaginary axis transversely from the left to the right-half
plane). As a distinctive feature of all the curves, the amplitude of the indirectly excited relative coordinate ar never exceeds
its saturation value of 1, which is indicative of the dynamic behavior of proposed absorber.

When analyzing the case of a linear primary system (E1 ¼ 0) in Fig. 2(a) and (b), we find that for 0ooo1:129 the
response of the primary system is identical to that corresponding to a one degree-of-freedom linear system, and that it is
not much affected by the presence of the nonlinear absorber – in the sense that it is not bent by the nonlinearity – except
from the fact that the solution loses stability via a saddle-node bifurcation when o¼ 0:9292 (SN1). There the response
jumps down to another branch of the stable equilibrium solution, which is an example of the nonlinear ‘‘jump’’ effect.
From that point on, the nonlinear absorber strongly affects the amplitude and stability of the compound system with
respect to the response of a linear compound system, strongly attenuating the response of the higher resonance. As we
increase the excitation frequency up to o¼ 1:129, the amplitude decreases until the stable equilibrium solution loses
stability via a supercritical Hopf bifurcation at H1 (o¼ 1:129). This type of instability has been reported and analyzed in
previous works for a cubic nonlinear absorber [13,12], and it was shown to be characterized by a growth of the ‘‘linear’’
free oscillations of the two-degree-of-freedom system of frequencies on1 and on2. In that case, the Hopf bifurcation was
the result of a combination resonance of the type o� 1

2 ðon1þon2Þ. As for the FENE absorber, it is apparent that it also
exhibits this type of combination resonance due to the odd-parity characteristic of the nonlinear force exerted by the FENE
absorber on the primary system. In this regime, the steady-state oscillations are quasi-periodic motions involving possibly
much larger amplitudes of vibration than the unstable periodic solutions and they could, in extreme cases, lead to chaos.
From the viewpoint of the performance of the absorber in attenuating the response of the primary system, this result is
unfavorable.

Fig. 3(a) and (c) shows the variation of the steady-state amplitude of the primary system and the absorber which
undergo quasi-periodic motions for two different excitation frequencies in the range H1 : H2. In Fig. 3(a) an excitation
frequency of o¼ 1:213 is used, and we can observe that the amplitude of as presents an amplification factor of almost four
times the value of the corresponding unstable steady-state solution, at the same forcing frequency. Similarly, ar is also
larger than the unstable steady-state solution, but the effect is not so marked. Regarding the character of the limit cycle,
Fig. 3(b) shows a period-2 limit cycle involved for these parameters. On the other hand, a better situation from the
viewpoint of the performance of the absorber is observed in Fig. 3(c) for o¼ 1:497. There, the amplitudes of the quasi-
periodic solutions for as are only 60% larger than those of the unstable steady-state solution, and the increase for ar is only
about 15%. The limit cycle has also reduced its period to one-half compared to the value in Fig. 3(b) (see Fig. 3(d)).
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Fig. 3. Quasi-periodic solutions for frequencies in the region H1 : 1:129ooo1:579 : H2 of Fig. 2. (a) Time history of as and ar at (a) o¼ 1:213,
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Following with the analysis of Fig. 2(a) and (b), once the solution regains its stability via a reverse Hopf bifurcation at H2

(o¼ 1:579), the stable solution grows again in amplitude until arriving to a saddle-node bifurcation SN3 (o¼ 7:902),
resulting in the response jumping to another solution branch. On the other hand, above the stable branch which ends into
SN3 it appears an unstable solution branch which starts at the saddle-node bifurcation point SN4 (o¼ 1:408) and ends into
SN3 for increasing frequencies. The stable branch, which also starts in SN4, regains stability by decreasing its amplitude as
the frequency increases, behaving like a linear system.

The FRC of the system considering a nonlinear cubic parameter E1 ¼ 8 is presented in Fig. 4(a) and (b).
Compared with the previous case (Fig. 2(a)), the amplitude of the main resonance peak of the primary system is five

times smaller, evidencing a good performance of the absorber when the nonlinearity of the primary system increases. This
fact is observed in the peak bending towards the higher frequencies (hardening-spring type response), which makes not
only the peak smaller but also the whole FRC for the region of the primary resonance. The unstable solution limited by the
Hopf bifurcations exists between H1 : 1:129ooo1:825 : H2. Compared to the case of E1 ¼ 0, the foci solution increases its
range of existence.

Another region of quasi-periodicity limited by Hopf bifurcations exists for H3 : 4:154ooo7:925 : H4. It is remarkable
that this region does not appear in the case of E1 ¼ 0, or for a cubic oscillator, and it seems to be characteristic of this type
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of nonlinear absorber. In order to see the behavior of the system in this region, we plot in Fig. 5(a) the time history of as for
an excitation frequency of o¼ 4:362. As initial condition, the system is released from a point between the branches H3 : H4

and SN4 : SN3. Clearly the amplitude of the limit cycle, which starts to develop after a time of approximately 1000 s,
is limited by the unstable branch of solution (SN4 : SN3) and it does not grow much compared to the unstable steady-state
solution. Therefore, the absorber shows an acceptable behavior and there is no risk of an amplification of the vibration
levels as in the case of quasi-periodic oscillations in the region H1 : H2. An interesting question that may be asked is how
the behavior of the steady-state solution is for larger o’s. Although not shown here, we have carried out a study of the
quasi-periodic solutions that start in H3 using a numerical continuation of the limit cycle and we have found that the limit
cycle is still present until o¼ 4:369. There, it intersects the unstable steady-state solution and, after developing a transient
behavior, it finally evolves to the stable steady-state solution of low amplitude observed in Fig. 4(a).

For the limit case of strong nonlinearity of the primary system, E1 ¼ 35, the FRCs are shown in Fig. 6(a) and (b). It can be
observed that the behavior of the system becomes more and more complex. Multiple saddle-node and Hopf bifurcations
appear and disappear in the region under study (0ooo8). A very interesting feature in this case is seen for ar. In the
process of this parameter change (E1), the appearance of an almost detached curve that lies inside the resonance curve
indicates the existence of another response branch of the primary system. This is in fact confirmed in Fig. 6(b), where the
emerging solution branch is enclosed by the labels SN92SN10 and H72H8. Although the existence of a similar behavior for
nonlinear cubic absorbers has been previously reported [5,27] in those cases the bubble could lie outside the main
resonance response, resulting in larger steady-steady responses of the stable solutions. However, this is not possible in our
case due to the saturation phenomenon of the absorber. Hence, the presence of an almost detached curve that lies only
inside the FRC seems to be a distinctive feature of this type of absorbers. Focusing on the analysis of the response, we
observe that it presents multi-valued solutions for the range 1:574ooo3:871, where multiple saddle-node and Hopf
bifurcations appear simultaneously. The stable equilibrium solution loses and regains its stability in a nontrivial form
which is due to the strong nonlinearity of the system. There are four foci solution branches limited by Hopf bifurcations,
namely Branch I H1 : 1:129ooo1:403 : H2, Branch II H3 : 1:474ooo1:724oH4, Branch III H5 : 1:626ooo7:94 : H6

and Branch IV H7 : 2:254ooo3:868 : H8; and multiple saddle-node points namely, SN12SN2, SN32SN4, SN52SN6,
SN72SN8 and SN92SN10. Despite the complexity of the system in this region, it is important to highlight that the peak
magnitude of the main stable resonance branch strongly decreases compared to the case in Fig. 4(a) (almost 25%). The
disadvantage of this complex behavior is, naturally, the multiple regions of instability emerging from Hopf bifurcations
with quasi-periodic and possible chaotic motions.
4.2. Parameters of the absorber

In this section we analyze the effect of damping (l2), the variation of the linearized frequency (o0F) and the variation of
the mass ratio (m) on the dynamic behavior of the primary system. It is expected that a large value of damping of the
absorber, for a given value of its linearized frequency will turn the system more stable at the instability regions due to the
saddle-node or Hopf bifurcations. At the same time, changing the ratio r¼o0F=o01 will also tend to change the stability
character of the solutions potentially removing the unfavorable high amplitudes of the quasi-periodic motions according
to previous studies on cubic absorbers [13,28]. Lastly, modifying the mass ratio (m) may affect the effectiveness of the FENE
absorber. For the following analysis, we selected as fixed parameters those corresponding to the primary system, namely:
E1 ¼ 8, o10 ¼ 1; m¼ 0:15; l1 ¼ 0:01, m1 ¼ 1 and f0¼0.1. And for the absorber we also select l2 ¼ 0:01, o0F ¼ 1 unless some
of them are deliberately changed for the proposed studies.
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4.2.1. Damping

The effect of the damping of the absorber on the FRCs is examined in Figs. 7 and 8. The FRC presented in Fig. 4(a) and (b)
are compared with Fig. 7(a), (b) when l2 is increased from l2 ¼ 0:01-0:05. The first observed distinctive feature is the
increasing size of the instability region generated through Hopf bifurcations labelled by H1 : H2. This suggests that
increasing the damping ratio up to this value does not turn the system more stable and, conversely, enlarges the region of
quasi-periodic motions. Another characteristic aspect of the same figure is that the region H3 : H4 has disappeared and
only the branch limited by SN4 : SN3 still exists. Regarding the maximum value of as, which is important for the
performance of the absorber, a decrease in the magnitude of the main resonance peak (labelled SN1) can be observed,
compared to the same point in Fig. 4(a) from as � 2:07 to as � 1:64. This represents a reduction of more than 20%. Finally,
Fig. 7(b) presents the FRC for ar. Analyzing only the differences between this figure and Fig. 4(b), it can be noticed that the
second resonance branch has decreased, having a maximum value of o� 2:5 instead of o� 8 (SN3). Naturally, all branches
in this case remain bounded, due to the finite extension of the relative coordinate.

A larger value of l2 ¼ 0:3 is considered in Fig. 8(a) and (b). In this case, the second resonant branch straightens up in an
attempt to regain stability. As a result, the instability region H1 : H2 has decreased considerably, suggesting that an
increment of l2 from 0:05-0:3 makes the system more stable in this region. An expected limit case of this situation is
plotted in Fig. 8(c) and (d) where the FRCs for l2 ¼ 0:4 shows the absence of the region H1 : H2.



Fig. 7. Frequency–response curves of (a) as and (b) ar when E1 ¼ 8 and l2 ¼ 0:05.
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Using the same parameters as in Fig. 8(a) and (b), the limit cycle, which begins in H1 and ends in H2, is presented in
Fig. 9. It is interesting to observe that the generated limit cycle (solid circles) is stable and the value of as is not excessively
large (with a maximum of as¼0.3 for o� 1:32). This demonstrates, in a very illustrative way, that the developed instability
which causes quasi-periodic oscillations does not always give rise to uncontrollable large amplitudes for the primary
system. In this sense, the absorber shows a good performance for this set of parameters.
4.2.2. Linearized frequency

In the following section, we analyze the effect of the variation of the linearized frequency of the absorber on the FRCs
and how this variation possibly affects the stability of the observed steady-state solutions. To this end, we quote a well-
known fact from the theory of nonlinear absorbers: if one introduces internal resonances in the system, for example
on2 � 3on1 the unfavorable high amplitudes of the quasi-periodic motions can be reduced for the region of a combination
resonance [28]. The physical reason for this is that the amplitudes of the steady-state quasi-periodic motions can be
mitigated by an energy-sharing between the modes of the linearized system.

In order to explore this result for our nonlinear absorber, the first analysis is performed for o0F ¼ 2:55. The other
parameter values are the same as those used in Fig. 4(a) and (b). For these parameter values, the linearized natural
frequencies of the system are on1 ¼ 0:9235, on2 ¼ 2:7614, giving on2 � 3on1. The corresponding FRCs are shown in



Fig. 8. Different FRCs of (a) as and (b) ar when l2 ¼ 0:3 and (c) as and (d) ar when l2 ¼ 0:4.
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Fig. 10(a) and (b). There, it can be observed that the region of quasi-periodic solutions has disappeared and a region of low
amplitude stable solutions has emerged instead. A possible physical explanation appears to be related to the shift of the
frequency of maximum absorption to larger frequencies due to the detuning between on1 and on2. It is also important to
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point out that the peak magnitude of the main resonance does not suffer any change with respect to its counterpart in
Fig. 4(a), which shows certain robustness of the absorber under this change.

For our second analysis we consider o0F ¼ 2. In this case, the system is not under an internal resonance condition:
on2 ¼ 2:3798on1. The purpose of this analysis is to see whether the system is still able to maintain the stability in the
region of possible combination resonance 2o�on1þon2 ¼ 1:549. The resulting FRCs are shown in Fig. 11(a) and (b).
When we compare Fig. 11(a) with Fig. 4(a) it is clear that the region of quasi-periodic solutions H1 : H2 has again
disappeared, presenting a stable steady-state solution instead.

Summarizing, it can be concluded that the absence of quasi-periodic solutions for the selected set of parameters (which
is favorable from a vibration control viewpoint) can be achieved by a detuning between the primary system and the
absorber, not only for an internal resonance condition, but also in the case when the ratio between the linear frequency of
the absorber and the primary system is at least more than two.

4.2.3. Mass ratio

The effect of a variation of the mass ratio on the FRC of the primary system is shown in Fig. 12. We consider three
different values of m¼ 0:05 (black), 0.1 (red) and 0.2 (green). In order to vary only one parameter at a time, we set
r¼o0F=o01 ¼ 1 for all cases. The dynamical response is qualitatively similar in the three cases; however, an increase in
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the unstable foci solution can be observed as the mass ratio increases. For example, the largest size of the unstable foci
solution bounded by the two Hopf bifurcations H1 and H2, corresponds to m¼ 0:2 (green curve). Therefore the solution
loses and regains stability for a smaller and larger forcing frequency of approximately o¼ 1:11 and o¼ 1:87, respectively.
Also in the latter case, the stable periodic amplitudes are always larger in comparison with the other cases. As a conclusion,
it can be said that a larger mass ratio does not imply a better mitigation of the amplitude of vibration of the primary
system or a smaller region of quasi-periodic motions for the cases studied.

4.3. Comparison with a cubic absorber

In this section, the FRCs obtained for an absorber with cubic nonlinearity is evaluated in order to conduct a comparison
with the proposed FENE absorber. The mathematical model of the cubic absorber is presented in the following equations:

x00s þl1x0sþo
2
10xsþE1o2

10x3
s�ml2 _xr�mo2

0Fxr�ax3
r ¼ f 0 cosðtÞ (17)

x00r þl2x0rþo
2
0F xrþ

a
m x3

r ¼�x00s (18)
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where we define a ¼ a=o2 and a is the nonlinear parameter for the cubic absorber [26]. In order to perform a meaningful
comparison between the cubic and FENE absorber we adopt a¼ mo2

0F . Eqs. (17) and (18) are solved by means of the
method outlined in Section 3.

Figs. 13 and 14 show a comparison between both models, considering a nonlinear cubic parameter of the primary
system E1 ¼ 0 and 8, respectively. The FRC of the primary system for the cubic absorber is shown in black color, and that for
the FENE model in gray. It can be observed that the periodic branches, represented by saddle-node and Hopf bifurcations
are similar in both models. Furthermore, the unstable foci solution is present in both models for a similar frequency range.
For the case of E1 ¼ 0, in the stable region bounded by A and B the FENE absorber performs a larger attenuation than the
cubic absorber, whereas the unstable foci solution is larger for the FENE absorber. When the nonlinearity is increased to
E1 ¼ 8, it can be clearly observed that the FENE response is smaller for the whole considered frequency range in
comparison with the cubic absorber. It is remarkable to point out that the first resonance peak is almost two times smaller
in the proposed absorber. Taking all these considerations into account, the proposed model exhibits a better performance
in comparison with the cubic model for a strong a nonlinearity of the primary system (E1 ¼ 8).
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4.4. Numerical integration and comparisons

In this subsection we perform a direct numerical integration of the equations of motion equations (6) and (7) to verify
the accuracy of the proposed model. The numerical results were obtained by solving the corresponding differential
equations and calculating the amplitude of the time series solution of the steady-state response of as and ar. These are
shown in Figs. 15(a), (b) and 16. We use the symbol stars for as and circles for ar, and adopt the numerical values of Fig. 4(a)
and (b) for all cases. The computation was performed starting with o¼ 0 with initial conditions given by
½xs, _xs,xr , _xr� ¼ ½0,0,0,0�, and then the excitation frequency o was increased gradually at small incremental steps do up to
o¼ 6. For the initial conditions for the next driving frequency we selected the steady-state solution of the previous
frequency. We also performed the calculations for decreasing values of o to explore the hysteresis of the system.

For a better presentation of the results, we show them in three figures corresponding to three frequency regimes.
Fig. 15(a) shows the region of low frequencies 0ooo1:25 and Fig. 15(b) illustrates the region for high frequencies
1:25ooo6. Due to the complexity of the solutions obtained, we plot in Fig. 16 the middle frequency regime 1ooo1:85.
In the first region (Fig. 15(a)), it is possible to observe a perfect agreement between the numerical and the proposed
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solution for both amplitudes as and ar. However, there are two points where both methods differ. These points correspond to
the presence of superharmonic resonances, and they were not included in the proposed analytical formulation of the problem.
The first one is found at o¼ 0:275 and implies that 3o¼on1 and the second one, which is at o¼ 0:4, corresponds to
3o¼on2. The latter is clearly observed in response ar while in as the resonance conditions are slightly shifted to the right. This
is attributed to the amplitude-dependent character of the natural frequencies on1 and on2. For the high frequency regime,
Fig. 15(b), the numerical results are in good agreement with those predicted by the proposed model.

Finally, we arrive at the consideration of Fig. 16. Most of the results of the computations show a region of poor
agreement between both solutions. The reason for this is that the curves obtained by the proposed method give us the
amplitude of the periodic solutions (FRC) whereas the corresponding numerical solution shows the total response of the
system which may consist of periodic, quasi-periodic or even chaotic contributions to the response.
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Note that for these frequencies three solution branches coexist: one corresponds to a stable steady-state motion (high
amplitude) and the other two correspond to unstable motions. Of these last two, the one with lower amplitude is characterized by
a region of quasi-periodic oscillations and, in extreme cases, possible chaotic motions. To compute all these attractors, we selected
three different initial conditions (a–c) given by the following rules: (a) initial conditions equal to those in Fig. 15(a) and (b)
(referred to as previous in Fig. 16); (b) zero initial conditions, referred to as null, and (c) an intermediate initial conditions
(intermediate). As a first conclusion it is possible to observe that the amplitudes depend on the selected initial conditions. For
example, for the initial condition called (a), the amplitude remains above the higher (stable) solution branch for all the studied
frequencies. In contrast, (b) and (c) have amplitudes which fluctuate between the higher (stable) branch and the lower (unstable)
branch. To analyze this further, we studied the character of the solution for some selected points labelled C12C8 in Fig. 16. These
points correspond to some relative maxima. For the first point C1 : o¼ 1:14, the Fourier spectrum of the steady-state solution of
xs and its time domain response are plotted in Fig. 17(a) and (b), respectively. Fourier spectrum reveals two distinctive features of
the solution: the first one is that the steady-state response has a multi-frequency character and the second one is that the major
contributions come from two harmonic components of frequencies On1 � 0:98 and On2 � 1:319. Since they differ from the
linearized frequencies on1 andon2 due to the amplitude-dependent character of the natural frequencies of nonlinear systems, we
label them with capital letters. The time domain response of the solution is given in Fig. 17(b). There we can observe the
amplitude-modulated characteristic oscillation of the displacement amplitude ar (solid line) and as (dashed line) which
correspond to quasi-periodic motions. Following with the analysis, we observe that for points C2 : o¼ 1:175, C3 : o¼ 1:19,C4 :

o¼ 1:225,C5 : o¼ 1:27 and C7 : o¼ 1:4 the solutions are very similar to those shown for C1: they present two major
contributions from harmonic components of frequencies On1 and On2 (with different values compared to C1) and the response is
quasi-periodic. Nevertheless, the situation for C6 : o¼ 1:25 and C8 : o¼ 1:425 is rather different. Although the contributions to
the solution from frequencies On1 and On2 are still present, an almost continuum contribution from other frequencies appears in
the motion, clearly indicating a chaotic behavior for these frequencies. Fig. 18(a–d) shows the Fourier spectra of xs together with
the time domain response for points C6 (Fig. 18(a–b)) and C8 (Fig. 18(c–d)). There, the characteristic non-periodic and multi-
frequency character of the solution confirms the chaotic motion of the response.
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5. Conclusions

In this work we analyze the dynamics of a novel nonlinear dynamic vibration absorber attached to a linear/nonlinear
primary system. The method of averaging was selected to obtain the FRCs, which proved to be appropriate to model the
saturation phenomenon of the absorber. A distinctive feature of the dynamic behavior of the system is that the amplitude
of the indirectly excited relative coordinate never exceeds a maximum value of one (normalized amplitude). From the
studied cases, it is possible to draw the following main conclusions:
�
 The proposed absorber has a very good efficiency when the nonlinearity of the primary system increases. For example,
it was observed that in the case of E1 ¼ 8, the maximum amplitude recorded for the main resonance peak was five times
smaller compared with the linear case ðE1 ¼ 0Þ.

�
 A comparison with a cubic nonlinear absorber shows that the effectiveness of the FENE absorber exhibits a better

performance in comparison with the cubic model for a strong nonlinearity of the primary system ðE1 ¼ 8Þ.

�
 A possible disadvantage of nonlinear absorbers, and of our proposed absorber too, can be the presence of quasi-periodic

oscillations of high amplitudes coexisting with unstable periodic solutions. It was demonstrated for the studied cases
that it is possible to eliminate this effect by means of a detuning between the primary system and the absorber, for a
low damping of the absorber, or by adding a large amount of damping to the absorber.

Additionally, a parameter study of the proposed system yields the following results:
�
 When the nonlinearity of the primary system is increased, the number of dynamic instabilities (saddle-node and Hopf
bifurcations) increases, but the effectiveness of the absorber increases as well.

�
 An expected decrease (increase) in the amplitude of the primary system was observed for an increase (decrease) in the

amount of damping of the absorber. Regarding the persistence of the region of combination resonance H1 : H2, different
behaviors are observed depending on the amount of damping. For 0:01ol2o0:05 the region H1 : H2 grows. On the
other hand, for the value 0:05ol2o0:3 the region decreases and it finally disappears for l2 ¼ 0:4.

�
 A variation of the linear frequency of the absorber (for a lightly damped absorber) reveals the absence of Hopf

bifurcations and hence of quasi-periodic motions. This is observed not only for an internal resonance condition, but also
for non-commensurate frequencies. In the latter case, this effect is observed for a frequency ratio between the primary
system and the absorber larger than two.

�
 The increase in mass ratio produces an increase in the stable periodic amplitudes of the primary system and a widening

of the region of unstable foci.

Finally, as a result of direct comparison of the proposed solution with the direct integration of the equations of motion,
it can be concluded that a perfect agreement is observed in those cases, where neither secondary nor combination
resonances take place. In these cases an analytic continuation of the emerging limit cycle solutions is needed in order to
generate a more approximate solution.
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Appendix A. Derivation of some useful integrals

In applying the procedure to obtain Eqs. (13) and (14) we will find integrals of the following type:Z 2p

0
mo2

0F

xr

1�x2
r

cosðtÞ
sinðtÞ

( )
dt

Making the substitution xs ¼ as cosðt�fsÞ, with us ¼ as cosðfsÞ and vs ¼ as sinðfsÞ; a2
s ¼ u2

s þv2
s , and xr ¼ ar cosðt�frÞ, with

ur ¼ ar cosðfrÞ and vr ¼ ar sinðfrÞ; a2
r ¼ u2

r þv2
r , we finally can write:Z 2p

0
mo0F

X1
n ¼ 0

a2nþ1
r cosðt�frÞ

2nþ1
cosðtÞ
sinðtÞ

( )
dt

where we have used

x

1�x2
¼ x

X1
n ¼ 0

ðx2Þ
n
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The last integral can be evaluated by making a change of variable t�fr ¼ ar and using the following identities:

cos2nþ1ðtÞ ¼
Xn

k ¼ 0

an,k cosðð2n�2k�1ÞtÞ

and Z 2p�f2

�f2

cosðð2n�2kþ1ÞarÞ
cosðarÞ

sinðarÞ

( )
dar ¼

pdnk

0

	 


Finally, we arrive at Z 2p

0
mo2

0F

xr

1�x2
r

cosðtÞ
sinðtÞ

( )
dt¼ pmo2
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