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Abstract We present the first quantitative three-dimensional (3D) tomographic reconstruc-
tions of electron density from coronagraph measurements of the K-corona’s total bright-
ness (B) made by LASCO-C2 on SOHO. This is possible because new calibrations of the
LASCO-C2 images in both polarized brightness (pB) and B have now been made for the en-
tire mission. The B and pB reconstructions are compared, and the differences are explained
in terms of line of sight weighting functions in Thomson scattering. We conclude that the
LASCO-C2 B archive, which is vastly larger than the pB archive, will be a very valuable re-
source for determining the 3D electron density throughout the SOHO mission which started
taking data in 1996.
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1. Introduction

The Large Angle and Spectrometric Coronagraph Experiment (LASCO) on the SOHO
spacecraft has been operating nearly continuously since late 1995 (Brueckner et al., 1995),
and the two coronagraphs C2 and C3 provide an invaluable data set spanning more than
a full solar cycle. The Laboratoire d’Astrophysique de Marseille [formerly Laboratoire
d’Astronomie Spatiale (LAS)] has recently determined the calibration for both the total
coronal brightness (B) and the polarized brightness (pB)1 of the K-corona for the entire
LASCO-C2 data set, making C2 the best characterized space-based, white-light corona-
graph in history, with the possible exception of the single-pixel Ultraviolet Coronagraph
Spectrometer (UVCS) White Light Channel (Kohl et al., 1995). This effort required mod-
eling the contributions to the signal made by the F-corona, stray light, and a number of
other instrumental effects (e.g., spatial variation in the transmission of the polaroid sheets,
polarization by the folding mirrors). The C2 instrument has taken vastly more unpolarized
images than pB sequences (each of which is a series of three images with the polarizers ori-
ented at 60◦ from each other, with an additional image without the polarization filters), with
only one pB sequence per day made throughout most of the mission. Thus, this calibration
makes possible quantitative photometric analysis of a comprehensive data set containing
many images per day going back to the year 1996. As discussed in Frazin et al. (2007),
the standard pB cadence of one per day limits the spatial resolution that can be achieved
with tomographic reconstruction. Thus, the addition of these new data has the potential to
increase significantly the detail available from tomographic methods.

While compromised by the Sun’s temporal variations, tomography is the only model-
independent way of determining the electron density (Ne) of the global corona. [For general
discussions of tomographic 3D reconstruction of the solar corona see Frazin and Janzen
(2002) and Frazin, Vásquez, and Kamalabadi (2009).] Knowledge of Ne is critical for con-
straining solar wind models (Vásquez et al., 2008), determination of the background solar
wind structure for CME propagation (Manchester et al., 2005), and spectroscopic diagnos-
tics (Frazin, Cranmer, and Kohl, 2003), to name a few. The problem of determining Ne from
B images was first considered by Hayes, Vourlidas and Howard (2001). They applied the
spherically symmetric inversion method invented by van de Hulst (1950) to C2 images, but
not with the calibration used here, and instead used a combined model of the stray light and
F-corona. Quémerais and Lamy (2002) used a more advanced instrument calibration (the
predecessor to the one used here) and an advanced F-corona removal scheme (again, the
predecessor to the one used here) to compute both cylindrically and spherically symmetric
inversions of both pB and B C2 images. They found the resulting electron densities from
the two types of images to be quite consistent with each other, validating the calibration and
F-corona model. Morgan, Habbal, and Lugaz (2009) and Morgan and Habbal (2010) applied
the backprojection technique to C2 B images to obtain qualitative 3D reconstructions, in the
latter case over a solar cycle.

In a theoretical study, Frazin and Kamalabadi (2005) considered the impact of the in-
formation contained in B images on tomographic reconstruction of the corona’s 3D density
distribution. The source of this extra information is the difference between the line of sight
(LOS) weighting of the electron density in the B and pB images. The conclusion of this
work was that if the K-corona B images have a signal-to-noise ratio comparable to, or bet-
ter than, that of the pB images (which requires an accurate F-corona model), the B images

1For the sake of convenience and convention, the nomenclature “pB” represents the product pKBK seen in
Equation (2) below.
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have about as much information as the pB images and the combination of B and pB images
can lead to improved estimates of the 3D Ne. Indeed, the information provided by this dif-
ference in the LOS weightings was exploited by Moran and Davila (2004) to estimate the
distance from the plane of the sky of a CME from a single pB sequence (which allows the
computation of both B and pB images).

2. Calibration and Separation of the K and F Coronae

The absolute calibration of the total intensity (BT) images relies on the photometry of the
stars present in the C2 field of view (FOV), and was implemented by Llebaria, Lamy, and
Danjard (2006). The absolute calibration of the pB images is obtained by relating the BT

image calculated from the triplet of polarized images to the BT unpolarized image which
brackets the triplet. The temporal variation of the ratio between the resulting BT images
(probably resulting from the differential aging between the polarizer channels and the neutral
one) is taken into account.

The observed total intensity (i.e., the first component of the Stokes vector) BT seen by
the LASCO-C2 coronagraph amounts to

BT = BK + BF + BS, (1)

where BK is the K-corona total intensity, and BF is the F-corona total intensity. The stray
light BS mostly results from light diffracted by the various occulters, apertures and stops,
and it is therefore axially symmetric (except for a narrow sector corresponding to the pylons
supporting the occulters) and unpolarized (the polarized fraction of the stray light pS = 0)
to first order. The polarized part of the total intensity pTBT (i.e., the second component of
the Stokes vector in the appropriate coordinate system) therefore involves only the K and F
components of the corona:

pTBT = pKBK + pFBF, (2)

where pK is the K-corona polarized fraction. Equation (2) shows that, in its most general
form, the problem of separating BK and BF using Equations (1) and (2) is intractable. We
therefore make use of the classical assumption that the polarized fraction of the F-corona
intensity pF = 0, which is valid in the FOV of C2, so that the observed polarized intensity is
simply

pTBT = pKBK. (3)

The F-corona introduces some polarization at larger elongations. The elongation at which
the F-corona contribution to the polarization becomes significant has been claimed to be
as low as four solar radii (Rs) (Hayes, Vourlidas, and Howard, 2001), although Blackwell
and Petford (1966a, 1966b) claim it is much higher. The fractional polarization of the F-
corona is discussed in Koutchmy and Lamy (1985) and values are given. At this point, we
have to assume a model of pK and this is justified by the robust “asymptotic” behavior of
pK(r) beyond 2.2 Rs, which is almost independent of the coronal electron density profiles.
Therefore our first determination of BK is given by:

BK = pTBT/pK. (4)

This separation is not perfect and significant traces of the K-corona are present in the
other component which, in the ideal case, should only be a superposition of the F-corona
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and stray light. This situation mostly results from the inherent limitations of using three
(imperfect) polarizers. In order to construct an F-corona model free of K-corona traces, we
proceed following the method described by Llebaria, Loirat, and Lamy (2010). We assume
an F-corona model whose spatio-temporal variation can be described by a small number
of parameters. Spatially, it is specified by an exponential functions of few parameters, and
temporally, the variation, mostly due to orbital geometric effects on the line of sight, is
specified by at most nine Fourier components. Using related methods, Morgan and Habbal
(2007) argue that the F-corona exhibits a high degree of temporal stability. Like the F-
corona, the stray light varies during the year, but at a different level and with a different
profile. This fact, as well as the assumed central symmetry of the mean F-corona is exploited
to separate the F-corona from the stray light. Finally, with the variable stray light and with
the restored variable F-corona accurately determined for each day, we obtain a second much
more accurate determination of the K-corona by subtraction of the F-corona and stray light
from the high-cadence series of LASCO-C2 images.

3. LOS Weighting

In the Thomson scattering process, the light scattered by the free electrons (K-corona) is
polarized with the polarization vector tangent to the limb in polarized images. Schuster
(1897) was the first to calculate the polarized scattering from the K-corona, taking into
account integration over the solid angle subtended by the Sun (including limb-darkening),
and his work was later corrected by Minnaert (1930). The scattering discussion by Altschuler
(1979) is relatively easy to follow. The resulting formulae of the weighting of the LOS
integral are complicated, but, for heights above about 2 Rs, there is little numerical difference
between these expressions and much simpler ones that consider the Sun to be a point source.
In order to provide physical insight, we provide the point source expressions below.

Consider a point source with luminosity 4πL, and a LOS with a distance of closest
approach p (impact parameter), as depicted in Figure 1. The small volume of scattering
material under consideration is a distance r from the luminous point source and a distance
l from the point of closest approach of the LOS. Thus, the segments with lengths p and l

form the legs of a right triangle with hypotenuse r = √
p2 + l2, with l being distance along

the LOS. It is convenient to define a scattering angle sin θ ≡ p/r . The point source emits
unpolarized light, so the radiation impinging upon the scattering material is represented
by two polarization components, each containing 1/2 of the energy flux and perpendicular
to the hypotenuse of the triangle. The first polarization component is directed out of the
triangle’s plane (i.e., the plane of Figure 1) and the second is in the plane. The free electrons
in the volume re-radiate the same polarizations that excite them with efficiency proportional
to the density of free electrons Ne times the Thomson cross section σe. The radiation seen by
the observer does not have any polarization component parallel to the LOS. One determines
the polarization-dependent LOS weighting simply by taking the polarization incident on the
scattering volume and removing the component parallel to the LOS. Note that it is the out-
of-plane component that is seen as the tangential component by the observer and it is the

Figure 1 The scattering
geometry for Section 3.
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in-plane component that is seen as the radial component. The tangential intensity incident
on the volume is simply L/2r2 = (L/2p2)(p2/r2) = (L/2p2) sin2 θ , where the 1/2 factor
accounts for the fact that 1/2 of the incident radiation is polarized out of the plane. This
polarization component is also perpendicular to the LOS, so it is scattered into the LOS
without any projection effect. Thus, the tangential emissivity is

ηt = 3σe

8

L

2r2
Ne = 3σe

16

L

p2
sin2 θ Ne. (5)

The incident, in-plane component is the same as the incident tangential component,
(L/2p2) sin2 θ , but this component is itself resolved into two components, one parallel to
and the other perpendicular to the LOS. The parallel component does not get scattered into
the LOS, so a cos2 θ factor must applied, resulting in

ηr = 3σe

8

L

2p2
sin2 θ cos2 θ Ne. (6)

Now, the total brightness B is the LOS integral of ηt + ηr, and the polarized brightness pB
is the LOS integral of the difference ηt − ηr, and we have:

B = 3σe

8

L

p2

∫ ∞

−∞
dl Ne(l)

(
sin2 θ(l) − 1

2
sin4 θ(l)

)
, (7)

pB = 3σe

16

L

p2

∫ ∞

−∞
dl Ne(l) sin4 θ(l). (8)

Thus, the LOS weighting for pB is much more confined to small values of l (i.e., θ near
90◦) because sin4 θ is much more sharply peaked than sin2 θ . Figure 2 shows the difference
between the weightings for pB and B scattering at 1.5 and 5 Rs. The figure was calculated
using the full expressions, not the point source approximations in Equations (7) and (8),
although the differences are negligible for the 5 Rs curve.

Figure 2 Normalized weighting
of the LOS integrals for the
polarized and unpolarized
K-corona signal at projected radii
of b = 1.5 and b = 5.0 Rs. The
x-axis is the distance along the
LOS and y-axis is normalized by
the maximum value of the
weighting function.
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4. The FOV Effect

Tomographic reconstruction of the solar corona in white light is complicated by the occul-
ter, which prevents views from projected radii rp < ro, where rp is the projected distance
from the Sun center in a coronagraph image and ro is the occultation radius (effectively
≈2.2 Rs for C2). Images with this property are known as hollow projections in the tomog-
raphy literature. Mathematically, it is possible to uniquely reconstruct the density a dis-
tance r from the center of the Sun given projection data (i.e., LOS integrals of the object)
at rp > r , covering 180◦ of view angles (Louis and Natterer, 1983). Strictly speaking, in
other applications of tomography (e.g., medicine) where the object to be reconstructed is
contained within a distance rs from the center (i.e., the object support), one needs data with
projection radii out to rs to reconstruct it. Restricting the data to rp < rs does not provide
enough information for unique reconstruction for any part of the object. The corona, for
the purposes considered here, has infinite extent and therefore any coronagraph with a fi-
nite FOV cannot, strictly speaking, provide the required data to uniquely reconstruct any of
the corona. In the medical tomography literature, this is known as the interior reconstruc-
tion problem, and it has been addressed with a variety of methods (Faridani et al., 2001;
Anastasio et al., 2007).

To put these considerations in terms of the specific problem of tomographic recon-
struction from LASCO-C2 images, we must consider that the “coronal” plasma extends
to a vast distance and fills the solar system. Thus, each pixel of the coronagraph im-
ages sees emission from a LOS that contains non-negligible contributions from a path
length of tens of solar radii, while the C2 FOV extends only to about 6.1 solar radii.
The fact that the density decreases rapidly with distance from the Sun (exponentially at
low heights where it is essentially hydrostatic and quadratically at larger heights where
the velocity is constant), allows practical reconstruction. The tomographic model has an
arbitrary computation domain, and simulation experiments not reported here show that
the reconstructions are improved over our previous efforts by extending the computa-
tion sphere to rc = 8.0 Rs. Our previous efforts had the outer radius of the computa-
tion sphere set to rc = 6.1 Rs, the same radius as the C2 FOV (Frazin et al., 2007;
Vásquez et al., 2008). The larger radius greatly reduces the build-up of material between
5.5 and 6.1 Rs in the reconstruction, although there is little meaning to the solutions be-
yond 6.1 Rs.

It is expected that artifacts due to the finite FOV will be more pronounced in recon-
structions from B images than those with pB images due to the broader LOS weighting in
Equation (7) than in Equation (8). One way to understand this is as follows: obviously, the
measured pB and B values come from integrating the LOS over the corona/heliosphere that
is vast in extent. Now consider the Sun’s corona as it is, except multiplied by 0 in the region
r > rc. The pB and B integrals calculated for this case cannot match the measured values
due to the truncation. However, the pB values calculated in this case will be closer to the
measured pB values, than the so-calculated B values will be to the measured B values. This
is because the pB integrals are more heavily weighted toward the 90◦ scattering point, as
can be seen in Figure 2. Thus, we can expect some superior performance from tomographic
density determination from pB because finite computation grid allows for a more accurate
model of the relationship between the intensity and electron density. A comprehensive study
of FOV effects in tomography of the corona is well beyond the scope of this paper and is the
subject of a forthcoming study by Frazin and colleagues.
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5. Data and Results

In order to create a pB image, C2 takes three exposures of the corona, each through a linear
polarizer with a different orientation of the fast axis. For calibration purposes, an unpolarized
exposure of same size completes the set. This sequence of three plus one exposures is known
as a pB sequence. A pB sequence allows calculation of both a pB image and a B image.
B images are also measured directly with no polarization elements (after BF and stray light
subtraction), and this type of measurement is much more common for C2. The data used
for the reconstructions shown here are taken from a high-cadence set of pB sequences, with
about 4 images per day (as opposed to the usual rate of one per day). The data set used
consists of 52 pB sequences, roughly evenly spaced in time, starting at about 21:00 UT on
15 March 2009 and ending at about 15:00 UT on 29 March, which falls within Carrington
Rotation 2081. Each pB sequence was used to calculate both a pB and B image.

Figures 3 through 5 show slices of the first quantitative tomographic determinations of
the coronal Ne from B images. The tomographic grid used is a hollow sphere with grid cells
equally spaced in radius, latitude and longitude (Frazin et al., 2007; Vásquez et al., 2008).
The minimum radius of the grid is 2.3 Rs, and the maximum is 8.0 Rs, which is greater than
the C2 FOV. Extending the volume in this way greatly reduces the density “pile up” at the
edge, as described in Section 4. The grid has 60 radial bins (0.095 Rs each), 60 latitude bins
and 120 longitude bins. The most recent description of this tomographic inversion scheme
and other details about the computation can be found in Frazin, Vásquez, and Kamalabadi
(2009).

The top panel of Figure 3 shows Ne derived from tomographic analysis of the B images
on a spherical shell with radius 2.5 Rs as a function of latitude and longitude. The zero
density regions near the streamer belt are artifacts due to the Sun’s dynamics, and they were

Figure 3 Upper panel: Ne (units
cm−3) at 2.5 Rs as a function of
latitude and longitude from
tomography based on B images.
Lower panel: At the same height,
�Ne, i.e., the Ne value derived
from tomographic inversion of B

images minus that from pB
images. The data used for the
tomographic reconstruction are
for Carrington Rotation 2081.
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Figure 4 Similar to Figure 3,
except at 4 Rs.

first identified in Frazin and Janzen (2002).2 The bottom panel also shows a spherical shell
with radius 2.5 Rs as a function of latitude and longitude, but of the difference of the two
tomographic reconstructions: Ne(B)−Ne(pB). In this notation, Ne(B) is the density derived
from the B images (as in the top panel), and Ne(pB) is the density derived from pB images.
We have chosen to display the difference because the Ne(B) and Ne(pB) reconstructions
have very similar visual appearances. The color scale of this difference image is also in
units of cm−3. Figures 4 and 5 are similar to Figure 3, except at heights of 4.0 and 5.5 Rs,
respectively.

For more quantitative comparisons, we define the solid angle average of the density from
pB images at a given radius r as:

MpB(r) ≡ 1

4π

∫ π/2

−π/2
dθ cos θ

∫ 2π

0
dφ Ne(pB)(r, θ,φ), (9)

where θ and φ are the Carrington latitude and longitude, respectively, and Ne(pB)(r, θ,φ)

is the reconstruction from pB data. The quantity MB(r) has a similar definition, except
Ne(B)(r, θ,φ) is replaced with Ne(B)(r, θ,φ). Both MB(r) and MpB(r) are proportional
to the mass of the plasma in a finite-width spherical shell of radius r . Equation (9) cannot
be used directly on the tomographic quantities for two reasons. The first, and most obvious,
is that the tomographic quantities are defined on grid, so the integrals must be replaced by
appropriate sums. The second issue is that the reconstructions have zero density artifacts,
and these regions should not be included in any type of analysis. To calculate the functions
MB(r) and MpB(r), we excluded voxels where Ne(B) < 100 cm−3 or Ne(pB) < 100 cm−3

(the normalization of the integral was appropriately adjusted). Such voxels, in which either

2Such defects in the reconstructions, called zero density artifacts, are due to the fact that the tomographic
process does not take coronal dynamics into account (Frazin and Janzen, 2002; Butala et al., 2010).
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Figure 5 Similar to Figure 3,
except at 5.5 Rs.

Figure 6 The mean fractional
difference in the mass of
spherical shells of the B and pB
reconstructions as a function of
distance from Sun center [see
Equation (9)]. This shows that
below about 5.5 Rs the spherical
shells from the pB
reconstructions have slightly
more mass than those of B .
Above that height edge effects
make the shells of the B

reconstruction more massive.

reconstructed density is below 100 cm−3, represent about 7.5% of the population (consider-
ing only the portion of the tomographic grid between 2.3 and 6.1 Rs). Figure 6 compares the
fractional differences of the total masses in a given spherical shell of the B and pB recon-
structions. Clearly, below about 5.5Ne(pB) is about 1 – 5% greater, but beyond, the average
Ne(B) goes up to about 25% greater than the average Ne(pB). This density excess at the
edge of the FOV, although mitigated by extending the grid to 8.0 Rs, is most likely due to
the effect of FOV truncation and the difference in the LOS weighting between pB and B

scattering, as described in Section 4.
Another measure of agreement between the two reconstructions at given voxel defined

by coordinates (r, θ,φ), called the absolute fractional difference, is:

δ(r, θ,φ) ≡ 2
‖Ne(B)(r, θ,φ) − Ne(pB)(r, θ,φ)‖
Ne(pB)(r, θ,φ) + Ne(B)(r, θ,φ)

. (10)
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Figure 7 A histogram of the
absolute fractional differences in
the pB and B reconstructions at
4 Rs. The y-axis is the number of
voxels (on the shell of the of the
spherical grid containing the
sphere of radius 4 Rs) and the
x-axis is the absolute fractional
difference δ in Equation (10).
This distribution is roughly
exponential in character. The
histograms for the other radial
bins all have this shape, but the
width varies (see Figure 8).

Figure 8 The mean (solid red
curve) and median (dashed black
curve) value of the distributions
of the absolute fractional
deviation δ between B and pB
reconstructions [see
Equation (10)], as function of
radius. These curves are derived
from histograms made at each
radius, an example of which is
shown in Figure 7.

For Figures 7 and 8, we excluded voxels where Ne(B) < 100 cm−3 or Ne(pB) < 100 cm−3,
as above. Figure 7 shows a histogram of the δ values for the voxels centered at 4.0 Rs.
This distribution is roughly exponential in appearance, as are the corresponding distribu-
tions for all of the other radial bins below 6.1 Rs (above that height, the reconstructions
have little meaning, as discussed in Section 4). For each radial bin in the tomographic grid,
we made a histogram similar to that shown in Figure 7, and plotted the mean (median)
of the distributions as the solid red (black dashed) curve in Figure 8. For most heights,
median of the δ distribution is about 0.1, meaning that 50% of the voxels of the two re-
constructions agree to 10% or better, and the mean is about 25%, indicating that some
voxels have larger disagreements. These values can be understood by examining Figure 7.
Above about 5.5 Rs the mean and median increase, and this is due to the “pile-up” ef-
fect described in Section 4. The increase near 2.3 Rs in Figure 8 is most likely caused by
the difficulty in determining the stray light level in the B images due to the diffraction
rings.
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6. Conclusions

Due to the extensive effort made by the Laboratoire d’Astrophysique de Marseille to char-
acterize LASCO-C2 and model the F-corona, we were able to perform the first quantitative
tomographic reconstructions of Ne based on K-corona total intensity (B) images. This ca-
pability is important because the B images outnumber the pB images by more than an order
of magnitude and have fewer gaps. We compared the 3D tomographic Ne reconstructions
based on both B and pB data. Since B has a broader scattering function than pB does, we
expect the FOV effects to be more important in reconstructions from B than pB. The ef-
fects of FOV truncation and the angular width of the scattering functions on tomography
is the subject of a forthcoming study. As Figure 6 shows, the typical difference between
the two determinations of the mass in a given spherical shell is less than 5%, except above
about 5.5 Rs. Above that height, a complicated interaction between the effects of corona-
graph FOV truncation and the difference between the angular scattering functions of B and
pB has a more obvious effect. While the shell masses are in good agreement, and Figure 8
shows that most of the voxels’ absolute fractional differences [δ in Equation (10)] agree to
within 10%, there is a significant population of voxels with much larger disagreement mak-
ing the mean value of δ about 25%. The δ values are larger above 5.5 Rs due to edge effects,
and they are also larger below 2.5 Rs due to some difficulty in determining the stray light
contributions to the B images where diffraction rings are prominent.

It is our intention to utilize this new data set to produce high quality, quantitative, 3D
reconstructions of Ne for the full LASCO mission. In order to lessen the impact of coro-
nal dynamics on the reconstructions, we intend to apply a time-dependent formulation of
tomographic reconstruction (Frazin et al., 2005; Butala et al., 2009; Butala et al., 2010).
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