
JID:YJMAA AID:15199 /FLA [m3G; v 1.45; Prn:13/08/2010; 8:31] P.1 (1-16)

J. Math. Anal. Appl. ••• (••••) •••–•••
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and
Applications

www.elsevier.com/locate/jmaa

Strongly smooth paths of idempotents

Esteban Andruchow a,b,∗
a Instituto de Ciencias, Universidad Nacional de Gral. Sarmiento, J.M. Gutierrez 1150, (1613) Los Polvorines, Argentina
b Instituto Argentino de Matemática, CONICET, Saavedra 15, 3er. piso, (1083) Buenos Aires, Argentina

a r t i c l e i n f o a b s t r a c t

Article history:
Received 16 April 2010
Available online xxxx
Submitted by M. Putinar

Keywords:
Curves of idempotents
Projections, and conditional expectations

It is shown that a curve q(t), t ∈ I (0 ∈ I) of idempotent operators on a Banach space X ,
which verifies that for each ξ ∈ X , the map t �→ q(t)ξ ∈ X is continuously differentiable,
can be lifted by means of a regular curve Gt , of invertible operators in X :

q(t) = Gtq(0)G−1
t , t ∈ I.

This is done by using the transport equation of the Grassmannian manifold, introduced
by Corach, Porta and Recht. We apply this result to the case when the idempotents are
conditional expectations of a C∗ algebra A onto a field of C∗-subalgebras Bt ⊂ A. In this
case the invertible operators, restricted to B0, induce C∗-isomorphisms between B0 and Bt .
We examine the regularity condition imposed on the curve of expectations, in the case
when these expectations are induced by discrete decompositions of a Hilbert space (also
called systems of projectors in the literature).

© 2010 Elsevier Inc. All rights reserved.

1. Introduction: the transport equation

In the study of the Grassmann manifold of a Hilbert space H, one may choose to identify closed subspaces with orthog-
onal projections,

S ⊂ H ↔ pS ∈ B(H),

where pS denotes the orthogonal projection onto S and B(H) is the algebra of all bounded and linear operators in H.
This identification allows one to compute all relevant geometric quantities in terms of operators. For instance, the parallel
transport equation (of the Levi–Civita connection of the Grassmann manifold): if p(t), t ∈ [0,1], is a curve of projections,
then the unique solution of the differential equation{

ġ = [ṗ, p]g,

g(0) = 1

([ , ] is the conmutator of operators) is a curve g(t) of unitary operators in H which performs the parallel transport: if x is
a tangent vector at p(0) (it is a self-adjoint operator acting in H in this framework), then its parallel transport along p(t) is
g(t)xg(t)∗ . This operator theoretic point of view was introduced in the papers [7,8,3] by G. Corach, H. Porta and L. Recht, for
abstract Banach and C∗-algebras (remarkably, no need to refer to any underlying vector space). The topology (and smooth
structure) considered in their work is the one provided by the spectral norm of the algebra.
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The purpose of this paper is the study of the transport equation under weaker or more general conditions. Namely, given
a Banach space X and a curve q(t) of idempotent operators in X (q2(t) = q(t)), t ∈ I (0 ∈ I), such that for each ξ ∈ X , the
map I � t �→ q(t)ξ ∈ X is C1, consider the following analogous to the transport equation:{

γ̇ (t) = [
X(t),q(t)

]
γ (t),

γ (0) = ξ0

where γ takes values in X , ξ0 is fixed and X(t) is the field of operators obtained by differentiating q, i.e.

X(t)ξ = d

dt
q(t)ξ.

In order to apply the theory of linear differential equations in Banach spaces, one must first check that the commutators
[X(t),q(t)] are bounded, and that for each ξ ∈ X , the map t �→ [X(t),q(t)]ξ is continuous.

Once these facts are established, it is shown that the propagator of this equation, that is, the field Gt of invertible
operators acting in X , given by Gt(ξ0) = γ (t), where γ is the unique solution of the above equation with initial condition
γ (0) = ξ0, satisfies the following lifting property (as in the operator algebra context which motivated this study):

Gtq(0)G−1
t = q(t), t ∈ I.

Also, by construction, for each ξ ∈ X , the map I � t �→ Gt(ξ) ∈ X is C1.
Next this paper considers a special case, when X = A is a C∗-algebra and the idempotents are conditional expectations

Et : A → Bt ⊂ A onto C∗-subalgebras of A. It is shown that in this particular case, the propagators Gt are unital, ∗-
preserving maps, which restricted B0 give ∗-algebraic isomorphisms between B0 and Bt .

In the last section a particular case of this situation is examined, when the conditional expectations arise from orthogonal
decompositions, or systems of projections, of a Hilbert space. A system of projections is a finite or infinite collection

P = (p1, p2, . . .),

such that pi p j = δi j pi and p1 + p2 + · · · = 1 (strongly). A system P gives rise to a conditional expectation E P from B(H)

onto the subalgebra of operators which commute with all the pi :

E P (x) =
∑
i�1

pi xpi .

This expectation preserves the ideal K(H) of compact operators, and we shall restrict it there. A curve P (t) of systems of
projectors gives rise then to a curve of conditional expectations in K(H). We characterize what regularity condition must
be verified, in order that the differential equation above makes sense (i.e. the curve of idempotents is smooth in the sense
discussed above). Namely, for each ξ ∈ H, each map I � t �→ pi(t)ξ ∈ H must be C1, and for each closed and bounded
interval J ⊂ I , there exists a constant Cξ, J such that∑

i�1

∥∥ṗi(t)ξ
∥∥2

< Cξ, J < ∞.

The properties of the propagators Gt are studied. For example it is shown that they preserve the Schatten ideals B p(H). For
p = 2, Gt induces a unitary operator in B2(H).

2. Strongly smooth paths of idempotents

Let I ⊂ R be an interval (0 ∈ I), X a Banach space and q(t), t ∈ I , a path in B(X ) whose values are idempotents. We
shall suppose that q(t) is strongly continuously differentiable, which we shall abreviate strongly smooth, and which means
that for every ξ ∈ X , the map

I � t �→ q(t)ξ ∈ X
is continuously differentiable. Such a map defines a map of derivatives t �→ X(t), given by X(t)ξ = q̇(t)ξ . The operators X(t)
are linear and everywhere defined, and as a consequence of the Uniform Boundedness Principle (UBP), they are bounded.
Let us state and prove this fact.

Lemma 2.1. With the above hypothesis, for every t ∈ I , X(t) ∈ B(X ).

Proof. Fix t ∈ I . For an integer n � 1, consider cn ∈ B(X ) given by

cn(ξ) = n

{
q

(
t + 1

)
− q(t)

}
ξ.
n
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Apparently, for each ξ ∈ X , cnξ → X(t)ξ as n → ∞. Then for each ξ ∈ X , there exists Cξ such that ‖cnξ‖ � Cξ . Therefore,
by the UBP there exists C such that ‖cnξ‖ � C‖ξ‖. In particular, this implies that ‖X(t)ξ‖ � C‖ξ‖. �

Also it is apparent that the map t �→ X(t) is strongly continuous. The main result in this section is that idempotents
belonging to such curves are pairwise similar. More precisely, there exists a curve of invertible operators Gt , smooth in the
above sense, such that q(t) = Gt X(0)G−1

t .

Lemma 2.2. Let q(t), t ∈ I , be a strongly smooth path of idempotents, and let X(t) = q̇(t). Then for any ξ ∈ X and t ∈ I , one has

X(t)ξ = q(t)X(t)ξ + X(t)q(t)ξ.

Proof. Since q(t)q(t) = q(t), it follows that for ξ ∈ X ,

X(t)ξ = lim
h→0

1

h

(
q(t + h)q(t + h)ξ − q(t)q(t)ξ

)
= lim

h→0

1

h
q(t + h)

{
q(t + h)ξ − q(t)ξ

} + lim
h→0

1

h

{
q(t + h)q(t)ξ − q(t)q(t)ξ

}
.

The second summand converges to X(t)q(t)ξ . On the other hand, if h → 0, then q(t + h) → q(t) strongly, and 1
h {e(t + h)ξ −

e(t)ξ} → X(t)ξ in H. Moreover, the norms ‖q(t + h)‖ are bounded (on bounded intervals), again by an elementary applica-
tion of the UBP: by strong continuity of q(t), for each ξ ∈ X , and h in a bounded interval, ‖q(t + h)ξ‖ � Mh < ∞.

These facts imply that

1

h
q(t + h)

{
q(t + h)ξ0 − q(t)ξ

} → q(t)X(t)ξ. �
Let [ , ] denote the commutator of operators, [a,b] = ab − ba. Note that for each ξ ∈ H, the map

t �→ [
X(t),q(t)

]
ξ ∈ X

is continuous. This is apparent, because the operators q(t) are uniformly norm bounded, ‖q(t)‖ � M , on closed bounded
sub-intervals of I . We shall consider the following linear differential equation in X : for a given strongly smooth curve of
idempotents q(t), t ∈ I (0 ∈ I), and for fixed ξ ∈ X , s ∈ I ,{

γ̇ (t) = [
X(t),q(t)

]
γ (t),

γ (s) = ξ.
(1)

Note that this equation has a unique solution γs , defined in the interval I , taking values in X . Indeed, this is a classical
result in the theory of linear differential equations in Banach spaces [5]. There exists a two parameter family of invertible
operators G(s, t), s, t ∈ I , such that:

1. G(r, s)G(s, t) = G(r, t).
2. G(t, t) = 1.
3. G(s, t) is jointly strongly continuous in s, t .
4. The unique solution γs of (1) is given by

γs(t) = G(t, s)ξ.

The family G(s, t) is called the propagator of the equation.
Denote Gt := G(t,0).

Lemma 2.3. Let γ be a solution of Eq. (1). Then q(γ ) is also a solution. In particular, if γ (t0) ∈ R(q(t0)) for some t0 , then γ (t) ∈ R(q(t))
for all t.

Proof. By an argument similar to the one given in the above lemma, the map t �→ q(t)(γ (t)) is C1, and the Leibniz rule
holds:

d

dt
q(t)

(
γ (t)

) = X(t)
(
γ (t)

) + q(t)
(
γ̇ (t)

)
.

Then, since γ is a solution,

d
q(t)

(
γ (t)

) = X(t)
(
γ (t)

) + q(t)
(

X(t)q(t)γ (t) − q(t)X(t)γ (t)
)
.

dt
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By Lemma 2.2, q(t)X(t)q(t) = 0 and X(t) − q(t)X(t) = X(t)q(t). Then

d

dt
q(t)

(
γ (t)

) = X(t)q(t)γ (t).

On the other hand, by the same lemma

[
X(t),q(t)

]
q(t)γ (t) = X(t)q(t)γ (t),

and q(γ ) is a solution. If γ (t0) ∈ R(q(t0)), then q(t0)(γ (t0)) = γ (t0), and thus q(γ ) and γ are two solutions satisfying the
same initial condition. �
Theorem 2.4. Let q(t), t ∈ I , be a strongly smooth curve of idempotents. Then q(t) are pairwise similar. More specifically, q(t) =
Gtq(0)G−1

t . The curve Gt is strongly C1 .

Proof. Let us compare q(t)Gt(ξ) and Gtq(0)(ξ) for an arbitrary ξ ∈ X . By the lemma above, α(t) = q(t)Gt(ξ) is a solution
of (1), and then

d

dt
α = X(t)α(t).

Note that α(0) = q(0)ξ On the other hand, β(t) = Gtq(0)(ξ) is another solution, with initial condition q(0)ξ . Therefore
α = β . �

Note that the requirement that the curve q(t) be strongly smooth is necessary. There are elementary examples of strongly
continuous curves of projections linking non-similar projections. For instance, consider q(t) the multiplication operator in
L2(0,1) by the characteristic function χ[0,t] of the interval [0, t]. Then q(t) are projections, with q(0) = 0 and q(1) = 1. The
curve q(t) is strongly continuous: if ξ ∈ L2(0,1),

∥∥q(t + r)ξ − q(t)ξ
∥∥2

2 =
∣∣∣∣∣

t+r∫
t

∣∣ξ(s)
∣∣2

ds

∣∣∣∣∣ → 0 (h → 0).

In certain special cases more can be said. If X = H is a Hilbert space and q(t) = e(t) are self-adjoint projections, then
Gt = Ut are unitary operators. This follows by noting that in this case X(t) are self-adjoint, and therefore the commu-
tators [X(t), e(t)] (being the commutant of self-adjoint operators) are skew-hermitian. Thus the propagators are unitary
operators [10]. Let us state this as a corollary.

Corollary 2.5. Let e(t), t ∈ I , be a strongly smooth curve of self-adjoint projections. Then e(t) are pairwise unitarily equivalent. More
specifically, e(t) = Ute(0)U∗

t . The curve Ut is strongly C1 .

Next we shall consider a special class of idempotents, namely conditional expectations in C∗-algebras. See [1] for the ba-
sic facts on conditional expectations. Let A be a unital C∗-algebra and suppose that for t ∈ I one has subalgebras 1 ∈ Bt ⊂ A
and conditional expectations Et : A → Bt . The smoothness assumption states that for each a ∈ M , the map t �→ Et(a) ∈ A
is continuously differentiable. Denote by dEt : A → A the derivative of Et : dEt(a) = d

dt Et(a). For each fixed t , the operator
dEt : A → A is bounded. For each t ∈ I and a ∈ A, one has

dEt
(

Et(a)
) + Et

(
dEt(a)

) = dEt(a).

Therefore we may consider the analogous differential equation, for a ∈ A, s ∈ I{
α̇(t) = [dEt, Et]

(
α(t)

)
,

α(s) = a.
(2)

In this case, the propagators Gt have the following properties:

Theorem 2.6. The invertible operators Gt : A → A have the following properties:

1. For each a ∈ A, the map I � t �→ Gt(a) ∈ A is C1 .
2. Gt(a∗) = Gt(a)∗ .
3. Gt ◦ E0 ◦ G−1

t = Et .
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4. From the preceding point, it follows that Gt maps B0 onto Bt . Moreover,

Gt |B0 : B0 → Bt

is a ∗-isomorphism. In particular, Gt(1) = 1.
5. If A is a finite von Neumann algebra, Bt are von Neumann subalgebras, τ is a tracial normal and faithful state, and Et are the

unique τ -invariant expectations onto Bt , then Gt is isometric for the ‖ ‖2 norm given by τ , therefore it extends to a unitary
operator in H = L2(A, τ ).

Proof. Given a ∈ A, let α(t) = Gt(a). The first fact is clear. Since Et and dEt are ∗-preserving, it follows that α∗(t) is a
solution, with initial condition α∗(0) = a∗ , and then Gt(a∗) = Gt(a)∗ .

The fact that Gt intertwines E0 and Et follows from the general result in the previous section.
Let us show that Gt |B0 is an isomorphism, i.e. that it is multiplicative. To that purpose note that if the initial data

a = α(0) in Eq. (2) belongs to B0, then, by Lemma 2.3, α(t) = Gt(a) ∈ Bt . Therefore, under this assumption, this equation is
equivalent to the condition

Et
(
α̇(t)

) = 0.

Indeed, differentiating Et(α(t)) = α(t), one obtains

dEt
(
α(t)

) + Et
(
α̇(t)

) = α̇(t) = dEt
(

Et
(
α(t)

)) − Et
(
dEt

(
α(t)

))
.

In the right hand term, dEt(Et(α(t))) = dEt(α(t)) and Et(dEt(α(t))) = 0 (as remarked above, Et ◦ dEt ◦ Et = 0). Thus

Et
(
α̇(t)

) = 0,

and viceversa. Therefore if a1,a2 ∈ B0 and α1 and α2 are the solutions of (2) with these initial conditions, then, using that
Et are Bt -valued conditional expectations,

Et

(
d

dt

{
α1(t)α2(t)

}) = Et
(
α̇1(t)α2(t)

) + Et
(
α1(t)α̇2(t)

)
,

Et
(
α̇1(t)

)
α2(t) + α1(t)Et

(
α̇2(t)

) = 0.

That is, α1(t)α2(t) is a solution of (2), with initial condition a1a2, hence

Gt(a1a2) = α1(t)α2(t) = Gt(a1)Gt(a2).

Suppose that A is a finite von Neumann algebra with trace τ , and that Et are τ -invariant. Then α(t) can be regarded as
a curve in the completion H of A, which is differentiable in H, because it is C1 with the structure given by the norm of A.
The conditional expectations extend to self-adjoint projections in H, and their derivatives dEt define symmetric operators,
whose domains include A ⊂ H. Since Et(A) ⊂ A and dEt(A) ⊂ A, the commutators [dEt , Et] are defined in A, and are
skew-symmetric operators. Then

d

dt

〈
α(t),α(t)

〉 = 〈
α̇(t),α(t)

〉 + 〈
α(t), α̇(t)

〉 = 〈[dEt , Et]α(t),α(t)
〉 + 〈

α(t), [dEt, Et]α(t)
〉 = 0,

and therefore 〈α(t),α(t)〉 = 〈a,a〉, i.e. ‖Gt(a)‖2 = ‖a‖2. Thus Gt extends to an isometry of H, whose image contains the
dense subspace A ⊂ H, and therefore is a unitary operator. �
Remark 2.7. As seen above, if the initial value belongs to the range of E0, then at time t the solution remains inside the
range of Et . The same is true for the kernels. Pick z0 ∈ ker E0. Then Et(Gt(z0)) = Gt(E0(z0)) = 0. Also Eq. (2) has a simpler
form in this case,

[dEt , Et]
(
Gt(z0)

) = −Et
(
dEt

(
Gt(z0)

))
.

Using the identity dE = dE(E) + E(dE), the above term equals −dEt(Gt(z0)). Thus if the initial value z0 belongs to the
kernel of E0, Eq. (2) transforms into{

ż(t) = −dEt
(
z(t)

)
,

z(0) = z0.

Remark 2.8. In the above theorem, when A is a finite von Neumann algebra with a finite faithful and normal trace τ , acting
by left multiplication in H = L2(A, τ ), the ∗-isomorphism

Gt |B0 : B0 → Bt,
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can be extended to a surjective isometry

Vt : L2(B0, τ ) → L2(Bt, τ ),

which implements the isomorphism: Gt(b) = VtbV ∗
t , or more precisely, LGt (b) = Vt Lb V ∗

t , for b ∈ B0 (and Lb = left multipli-
cation by b in L2(Bo, τ )). Indeed, for x ∈ Bt dense in L2(Bt , τ ),

Vt Lb V ∗
t (x) = Gt

(
bG−1

t (x)
) = Gt

(
G−1

t

(
Gt(b)x

)) = Gt(b)x = LGt (b)(x).

In [11], C. Skau established the one to one correspondence between subalgebras B ⊂ A and what he called finite pro-
jections in H, associated to the algebra A and a cyclic and separating vector ξ0 ∈ H. If we fix here ξ0 equal to the unit
element 1 ∈ A ⊂ H (regarded as a vector in H). The correspondence is given by

B ←→ pB the orthogonal projection onto L2(B, τ ),

i.e. this projection pB is the completion of the trace invariant conditional expectation E B (also called the Jones projection
of the inclusion B ⊂ A).

In the notation of the above remark, if one extends trivially Vt as 0 on L2(B0, τ )⊥ ⊂ L2(A, τ ), then it becomes a partial
isometry which verifies

Vt V ∗
t = pBt and V ∗

t Vt = pB0 .

Moreover, the linear isomorphisms Gt : A → A extend to unitary operators Ut : H → H. These verify

Ut pB0 U∗
t = pBt .

Indeed, if one evaluates this identity in elements a ∈ A ⊂ H, it is the intertwining property of Gt .

3. Decompositions of a Hilbert space

3.1. Expectation onto the commutant of a decomposition

Let I ⊂ R be an interval containing the origin, and for each t ∈ I , a system of orthogonal projections

P (t) = (
p1(t), p2(t), . . .

)
in H is defined. Recall that a system of projections P = (p1, p2, . . .) is a collection of self-adjoint projections in H such that
pi p j = δi j pi and

∑
i�1 pi = 1. See [2] and [4] for related results on systems of projections. We make the assumption that

pi(t) are strongly continuously differentiable, i.e for each fixed ξ ∈ H and i � 1, the map

I � t �→ pi(t)ξ ∈ H
is continuously differentiable. Furthermore, we shall make the following boundedness assumption: For each ξ ∈ H, and each
closed bounded sub-interval J ⊂ I , there exists a constant Cξ, J < ∞ such that∑

i�1

∥∥ṗi(t)ξ
∥∥2 � Cξ, J < ∞, (3)

for all t ∈ J .

Remark 3.1. For a fixed t ∈ I , consider the Hilbert space H+ = ⊕
i�1 Hi , where Hi = pi(H), and the linear map

πt : H → H+, πt(ξ) = (
ṗ1(t)ξ, ṗ2(t)ξ, . . .

)
.

Hypothesis (3) above implies that πt is well defined. It has an everywhere defined adjoint, namely

σt : H+ → H, σt(η1, η2, . . .) =
∑
i�1

ṗi(t)ηi,

where the series above is weakly convergent in H. Therefore πt is bounded [9]. Moreover, hypothesis (3) means that for
any closed bounded sub-interval J ⊂ I , there exists Cξ, J such that∥∥πt(ξ)

∥∥ � C1/2
ξ, J

for t ∈ J . Therefore, by the uniform boundedness principle, there exists a constant C J > 0 such that ‖πt‖ � C J for all t ∈ J .
Therefore, hypothesis (3) is equivalent to
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∑
i�1

‖ṗiξ‖2 � C J ‖ξ‖2, (4)

with C J independent of ξ and t ∈ J .

A system of projections in H gives rise to a conditional expectation in B(H), namely

E(X) =
∑
i�1

pi Xpi .

Moreover, if X is compact, then also E(X) is compact. Indeed, denote by ξ ⊗ η the rank one operator given by ξ ⊗ η(v) =
〈v, η〉ξ . Then

E(ξ ⊗ η) =
∑
i�1

pi(ξ ⊗ η)pi =
∑
i�1

piξ ⊗ piη.

Clearly this series is absolutely convergent in B(H), because ‖piξ ⊗ piη‖ = ‖piξ‖‖piη‖, and the sequences ‖piξ‖ and ‖piη‖
are square summable, by Parseval’s identity. It follows that the operator E(ξ ⊗ η) is compact. Therefore E maps finite rank
operators into compact operators, and thus compacts into compacts.

Therefore the mapping t �→ P (t), induces a curve of conditional expectations t �→ Et . We may regard each Et acting in
B(H), or in the algebra K(H) of compact operators. The range of Et consists of all operators which commute with the
projections pi(t) in the system P (t). In the compact case, they are compact.

Our main result regarding this example, is that hypothesis (3) above is precisely what is required in order that, for each
operator X ∈ K(H), the map t �→ Et(X) ∈ K(H) is continuously differentiable.

Let us show the following:

Theorem 3.2. Hypothesis (3) holds if and only if there exists a curve t → Ωt of unitary operators, which is strongly continuously
differentiable, and such that

Ω0 = 1 and Ωt pi(0)Ω∗
t = pi(t), for all t ∈ I and i � 1.

Proof. Suppose first that there exists a strongly C 1 curve Ωt of unitaries in H such that Ω0 = 1 and Ωt pi(0)Ω∗
t = pi(t) for

all t ∈ I , i � 1. Then∥∥ṗi(t)ξ
∥∥ = ∥∥Ω̇t pi(0)Ω∗

t ξ + Ωt pi(0)Ω̇∗
t ξ

∥∥ �
∥∥Ω̇t pi(0)Ω∗

t ξ
∥∥ + ∥∥pi(0)Ω̇∗

t ξ
∥∥.

Thus it suffices to show that both sequences∥∥Ω̇t pi(0)Ω∗
t ξ

∥∥ and
∥∥pi(0)Ω̇∗

t ξ
∥∥

are square summable. First note that since t �→ Ωtξ is C 1, if J ⊂ I is a closed bounded interval, then set of operators
{Ω̇t : t ∈ J } is bounded at each ξ ∈ H: ‖Ω̇tξ‖ � kξ < ∞ for all t in J . Thus, by the uniform boundedness principle, it follows
that

sup
t∈I

‖Ω̇t‖ � k < ∞.

Consider the first sequence:∑
i�1

∥∥Ω̇t pi(0)Ω∗
t ξ

∥∥2 � k2
∑
i�1

∥∥pi(0)Ω∗
t ξ

∥∥2
,

which by Bessel’s inequality is bounded by

k2
∥∥Ω∗

t ξ
∥∥2 = k2‖ξ‖2.

The second sequence, again using Bessel’s inequality, is bounded by the same constant:∑
i�1

∥∥pi(0)Ω̇∗
t ξ

∥∥2 �
∥∥Ω̇∗

t ξ
∥∥2 � k2‖ξ‖2.

Conversely, assume that hypothesis (3) holds. Fix t ∈ I . Then for each ξ ∈ H, the sum
∑

i�1 pi(t)ṗi(t)ξ is convergent

in H. Indeed, the terms of this sum are orthogonal vectors, and ‖pi(t)ṗi(t)ξ‖2 � ‖ṗi(t)ξ‖2, i.e. their norms are square
summable. Thus the series is convergent. Let us denote by t the operator

t : H → H, tξ =
∑

pi(t)ṗi(t)ξ. (5)

i�1
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Note that this operator is bounded. Its adjoint is defined by the weakly convergent series

∗
t η =

∑
i�1

ṗi(t)pi(t)η.

Indeed, the equality

〈tξ,η〉 =
∑
i�1

〈
pi(t)ṗi(t)ξ,η

〉 = ∑
i�1

〈
ξ, ṗi(t)pi(t)η

〉 = 〈
ξ,∗

t η
〉
,

proves both assumptions. Therefore t is bounded. Next note that it is anti-hermitian. For each i � 1 and each pair of
vectors ξ,η ∈ H, differentiating the identity

pi(t)ξ = pi(t)pi(t)ξ

one obtains〈
pi(t)ṗi(t)ξ,η

〉 + 〈
ṗi(t)pi(t)ξ,η

〉 = 〈
ṗi(t)ξ,η

〉
.

In particular, this implies that the series
∑

i�1〈ṗi(t)ξ,η〉 is convergent. Since
∑

i�1 pi(t) = 1 (strongly) for all t ∈ I , then∑
i�1〈ṗi(t)ξ,η〉 = 0. Therefore adding the equalities above one has

0 =
∑
i�1

〈
pi(t)ṗi(t)ξ,η

〉 + 〈
ṗi(t)pi(t)ξ,η

〉 = 〈tξ,η〉 + 〈
∗

t ξ,η
〉
.

Finally, let us show that for each fixed ξ ∈ H, the curve I � t �→ tξ ∈ H is continuous. As remarked above, if s, t ∈ I both
series

∑
i�1 pi(s)ṗi(s)ξ and

∑
i�1 pi(t)ṗi(t)ξ are convergent in H, and moreover, by hypothesis (3), they are uniformly con-

vergent if s, t lie on a closed sub-interval J . Thus their tails tend, uniformly with respect to s, t , to zero. Therefore it suffices
to check continuity of the finite sums t �→ ∑N

i=1 pi(t)ṗi(t)ξ . This follows from the strongly continuous differentiability of
the maps pi(t).

We may consider, for each ξ0 ∈ H the linear differentiable equation{
ω̇(t) = −tω(t),

ω(0) = ξ0.
(6)

Since t �→ t is a strongly continuous map of skew-hermitic operators, the general theory of linear differential equations in
Hilbert spaces [10] implies the existence of the unitary propagator

I � t �→ Ωt,

which is strongly continuously differentiable, verifying that the unique solution of (6) is ωξ0 (t) = Ωtξ0. Therefore

d

dt

〈
Ω∗

t p j(t)Ωtξ,η
〉 = d

dt

〈
p j(t)Ωtξ,Ωtη

〉
= 〈

ṗ j(t)Ωtξ,Ωtη
〉 + 〈

p j(t)Ω̇tξ,Ωtη
〉 + 〈

p j(t)Ωtξ, Ω̇tη
〉

= 〈
ṗ j(t)Ωtξ,Ωtη

〉 − 〈
p j(t)tΩtξ,Ωtη

〉 − 〈
Ωtξ, p j(t)tΩtη

〉
= 〈

ṗ j(t)Ωtξ,Ωtη
〉 − 〈

p j(t)ṗ j(t)ξ,Ωtη
〉 − 〈

Ωtξ, p j(t)ṗ j(t)η
〉

= 〈(
ṗ j(t) − p j(t)ṗ j(t) − ṗ j(t)p j(t)

)
Ωtξ,Ωtη

〉 = 0,

by identity (5).
It follows that, for all t ∈ I ,

Ω∗
t p j(t)Ωt = Ω∗

0 p j(0)Ω0 = p j(0). �
Using this result we may characterize when a curve Et of conditional expectations in K(H), arising from a system of

projectors, is smooth in the sense of the previous section. First, the following elementary lemma will be useful.

Lemma 3.3. Suppose that f (t), g(t) ∈ H are vector valued continuously differentiable functions for t ∈ I . Then the map t �→ f (t) ⊗
g(t) is continuously differentiable, with values in K(H). Its derivative is

t �→ f ′(t) ⊗ g(t) + f (t) ⊗ g′(t).
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Proof.∥∥∥∥1

h

(
f (t + h) ⊗ g(t + h) − f (t) ⊗ g(t)

) − f ′(t) ⊗ g(t) − f (t) ⊗ g′(t)
∥∥∥∥

�
∥∥∥∥1

h

(
f (t + h) ⊗ g(t + h) − f (t) ⊗ g(t + h)

) − f ′(t) ⊗ g(t + h)

∥∥∥∥
+

∥∥∥∥1

h

(
f (t) ⊗ g(t + h) − f (t) ⊗ g(t)

) − f (t) ⊗ g′(t)
∥∥∥∥ + ∥∥ f ′(t) ⊗ g(t + h) − f ′(t) ⊗ g(t)

∥∥.

The first term equals∥∥∥∥
{

1

h

(
f (t + h) − f (t)

) − f ′(t)
}

⊗ g(t + h)

∥∥∥∥ =
∥∥∥∥1

h

(
f (t + h) − f (t)

) − f ′(t)
∥∥∥∥∥∥g(t + h)

∥∥,

and tends to 0 as h → 0. The second and third terms are dealt similarly. It is apparent that the derivative

I � t �→ f ′(t) ⊗ g(t) + f (t) ⊗ g′(t) ∈ K(H)

is continuous. �
Theorem 3.4. The map

I � t �→ Et(X) ∈ K(H)

is continuously differentiable for every compact operator X, if and only if hypothesis (3) holds.

Proof. Suppose first that hypothesis (3) holds. There exist orthogonal systems of vectors {ξk} and {ηk}, such that X =∑
k�1 ξk ⊗ ηk . Denote by XN = ∑N

k=1 ξk ⊗ ηk . Clearly XN → X in norm, in K(H). We claim that the map

I � t �→ Et(XN) ∈ K(H)

is C 1. To prove this it suffices to prove that t �→ Et(ξ ⊗ η) is C 1 for any pair of vectors ξ,η ∈ H. As shown above

Et(ξ ⊗ η) =
∑
i�1

pi(t)ξ ⊗ pi(t)η.

First note that, by the above lemma, each term pi(t)ξ ⊗ pi(t)η is a K(H)-valued C 1 function. Indeed, by hypothesis, the
map t �→ pi(t)v is C 1 for each fixed v ∈ H. Note that

∑
i�1 pi(t)ξ ⊗ pi(t)η is absolutely and uniformly summable, on closed

and bounded sub-intervals, by the inequalities of Bessel and Hölder,∑
i�1

∥∥pi(t)ξ ⊗ pi(t)η
∥∥ =

∑
i�1

∥∥pi(t)ξ
∥∥∥∥pi(t)η

∥∥ � ‖ξ‖‖η‖.

Therefore the sum
∑

i�1 pi(t)ξ ⊗ pi(t)η is continuous in t . By a similar computation, using the hypothesis that∑
i�1 ‖ṗi(t)ξ‖2 � Cξ < ∞, the series of derivatives converges absolutely and uniformly:∑

i�1

∥∥ṗi(t)ξ ⊗ pi(t)η + pi(t)ξ ⊗ ṗi(t)η
∥∥ �

∑
i�1

∥∥ṗi(t)ξ ⊗ pi(t)η
∥∥ + ∥∥pi(t)ξ ⊗ ṗi(t)η

∥∥
=

∑
i�1

∥∥ṗi(t)ξ
∥∥∥∥pi(t)η

∥∥ + ∥∥pi(t)ξ
∥∥∥∥ṗi(t)η

∥∥ � 2C‖η‖‖ξ‖,

where the constant C comes from the equivalent form (4) of hypothesis (3). Therefore the series of derivatives
∑

i�1 ṗi(t)ξ ⊗
pi(t)η + pi(t)ξ ⊗ ṗi(t)η defines a continuous function, which is the derivative of the former series (see for instance Theo-
rem 7.2 in [6]). Therefore t �→ Et(XN) is C 1. Let us prove that t �→ Et(X) is C 1. First note that Et(X) is continuous:∥∥Et(X) − Et(XN)

∥∥ = ∥∥Et(X − XN)
∥∥ � ‖X − XN‖.

That is, Et(X) is the uniform limit of the functions Et(XN ), which are C 1. To prove that it is differentiable, we exhibit first
its derivative. Put

Ft(X) =
∑

ṗi(t)Xpi(t) + pi(t)X ṗi(t), X ∈ K(H).
i�1
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Note that since the ranges of pi are pairwise orthogonal, for any ξ ∈ H,∥∥∥∥∑
i�1

pi(t)X ṗi(t)ξ

∥∥∥∥
2

=
∑
i�1

∥∥pi(t)X ṗi(t)ξ
∥∥2 � ‖X‖2

∑
i�1

∥∥ṗi(t)ξ
∥∥2 � ‖X‖2C‖ξ‖2.

The operators

X �→
∑
i�1

pi(t)X ṗi(t)

are everywhere defined, and bounded by C1/2, for all t ∈ I ,∥∥∥∥∑
i�1

pi(t)X ṗi(t)

∥∥∥∥ � C1/2‖X‖.

Then also the adjoints are bounded by the same constant: ‖∑
i�1 ṗi(t)Xpi(t)‖ � C1/2‖X‖. This proves that Ft(X) is conver-

gent, and that it is the uniform limit of Ft(XN ):

∥∥Ft(X) − Ft(XN)
∥∥ �

∥∥∥∥∑
i�1

pi(t)(X − XN)ṗi(t)

∥∥∥∥ +
∥∥∥∥∑

i�1

ṗi(t)(X − XN)pi(t)

∥∥∥∥ � 2C1/2‖X − XN‖.

By the same argument as above (involving Theorem 7.2 of [6]), it follows that Et(X) is differentiable and that d
dt Et(X) =

Ft(X), which is continuous.
Conversely, suppose that the curve I � t �→ Et(X) ∈ K(H) is continuously differentiable. Then Theorem 2.6 applies: there

exist bounded linear isomorphisms

Gt : K(H) → K(H), t ∈ I,

with the following properties:

1. For each X ∈ K(H), I � t �→ Gt(X) ∈ K(H) is continuously differentiable.
2. Gt preserves adjoints.
3. Gt ◦ E0 ◦ G−1

t = Et .
4. Gt maps the commutant of P (0), B0 = K(H)∩{pi(0): i � 1}′ , onto Bt , the commutant of P (t), and it is a ∗-isomorphism

between these C∗-algebras.

The structure of the commutant algebras Bt is apparent:

Bt =
⊕
i�1

Bi,t,

where the factors Bi,t are

Bi,t = K
(

R
(

pi(t)
))

,

i.e. the space of compact operators acting on the range of pi(t). Let B̂i,t be the unitization of Bi,t :

B̂i,t = Cpi(t) + Bi,t

(note that pi(t) is the unit element in the algebra of operators acting in R(pi(t))). The isomorphisms Gt extend canonically
to the unitizations, and the curve t �→ Gt(X) is continuously differentiable for each X ∈ B̂i,0. We claim that Gt(pi(0)) = pi(t).
Indeed, Gt maps each factor Bk,0 onto a factor of the decomposition of Bt , say Bk(t),t , with k(t) ∈ N0. Since pk(t) is the

unit element of the algebra B̂k,t , it follows that Gt(pk(0)) = pk(t)(t). A continuity argument shows that k(t) = k. To prove
this assertion, let ξ0 be a unit vector in the range of pk(0), and put ξt = pk(t)ξ0. Then if k(t) �= k, since the ranges of pk(t)
and pk(t)(t) are orthogonal, Gt(pk(0))ξt = pk(t)(ξ0) = 0. On the other hand the map t �→ Gt(pk(0))ξt is continuous in the
parameter t , and at t = 0 is equal to ξ0. Thus there exists r > 0 such that Gt(pk(0))ξt �= 0 if t ∈ [0, r]. It follows that k(t) = k
for t ∈ [0, r]. A similar argument shows that k(t) is locally constant at every t ∈ I , and therefore it is constant, and our claim
is proved. Then

ṗk(t) = d

dt
Gt

(
pk(0)

)
.

The curve of operators Gt is continuously differentiable at every X ∈ B̂i,0, therefore the operators Ġt are well defined,
as linear maps from B̂i,0 to B(H). By a standard argument involving the uniform boundedness principle (as in the first
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section), it follows that on closed bounded sub-intervals J ⊂ I , the norms ‖Ġt‖ are uniformly bounded by a constant C J .
Therefore, for any ξ ∈ H,∑

k�1

∥∥ṗk(t)ξ
∥∥2 �

∑
k�1

‖Ġt‖2
∥∥pk(0)ξ

∥∥2 � C2
J

∑
k�1

∥∥pk(0)ξ
∥∥2 = C2

J ‖ξ‖2,

i.e. hypothesis (3) is verified. �
The curve of unitaries Ωt obtained in Theorem 3.2 (under hypothesis (3)), which intertwine the systems of projections

P (t) and P (0) can be used to obtain a curve of inner automorphisms intertwinning the expectations Et and E0. Namely,

Ad(Ωt) : K(H) → K(H), Ad(Ωt)(X) = Ωt XΩ∗
t

clearly verifies that

Ad(Ωt) ◦ E0 ◦ Ad(Ωt)
−1 = Ad(Ωt) ◦ E0 ◦ Ad

(
Ω∗

t

) = Et .

Also the fact that t �→ Ωt is strongly continuously differentiable implies that for each X ∈ K(H), the curve t �→ Ad(Ωt)(X) ∈
K(H) is continuously differentiable (this fact will be proved below in Proposition 3.10).

It is a natural question if Ad(Ωt) and Gt coincide, and if not, what is the relation between these two maps. We emphasize
the fact that, a priori, Gt is not multiplicative in K(H). First we show that Ad(Ωt) and Gt coincide on the range of E0,

B0 = {
pi(0): i � 1

}′ ∩ K(H).

Proposition 3.5. The maps Gt and Ad(Ωt) coincide in the range of E0 .

Proof. Pick A in the range of E0. We must show that ω(t) = Ad(Ωt)(A) verifies{
ω̇(t) = [dEt , Et]ω(t),

ω(0) = A.

Clearly ω(0) = A because Ω0 = 1. Also it is apparent that since Ad(Ωt) intertwines E0 and Et , then ω(t) takes values in
the range of Et . As it was shown in Theorem 2.6, a curve ω(t) taking values in the ranges of Et is a solution of the above
equation if and only if

Et
(
ω̇(t)

) = 0.

In this case Et(ω̇(t)) = Et(Ω̇t AΩ∗
t + Ωt AΩ̇∗

t ). Recall that Ωt satisfies the equation

Ω̇t = −
∑
i�1

pi(t)ṗi(t)Ωt,

where the series converges strongly. Therefore for each j � 1, p j(t)Ω̇t = −p j(t)ṗ j(t)Ωt , and taking adjoints, Ω̇∗
t p j(t) =

−Ω∗
t ṗ j(t)p j(t). Then

Et
(−ω̇(t)

) =
∑
j�1

p j(t)
(
Ω̇t AΩ∗

t + Ωt AΩ̇∗
t

)
p j(t) = −

∑
j�1

p j(t)ṗ j(t)Ωt AΩ∗
t p j(t) + p j(t)Ωa AΩ∗

t ṗ j(t)p j(t).

The fact that ω(t) = Ωt AΩ∗
t lies in the range of Et means that it commutes with p j(t) for all j � 1. Thus this sum equals

−
∑
j�1

p j(t)ṗ j(t)p j(t)Ωt AΩ∗
t − Ωt AΩ∗

t

∑
j�1

p j(t)ṗ j(t)p j(t).

Recall from Section 1 that a strongly continuously differentiable curve of idempotents p j(t) verifies p j(t)ṗ j(t)p j(t) = 0 for
all t , and therefore the proof follows. �

Our next result shows that if the system P (t) consists of two projections, i.e. P (t) = (p(t),1 − p(t)), then Ad(Ωt) and Gt

coincide.

Proposition 3.6. If P (t) = (p(t),1 − p(t)), then Gt(A) = Ωt AΩ∗
t for all A ∈ K(H) and all t ∈ I .
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Proof. The proof is simpler if we refer to symmetries instead of projections: put ε(t) = 2p(t) − 1. A straightforward com-
putation shows that

[dEt, Et](X) = [
ṗ(t), p(t)

]
X + X

[
p(t), ṗ(t)

] = [[
ṗ(t), p(t)

]
, X

] = 1

4

[[
ε̇(t), ε(t)

]
, X

]
.

On the other hand the equation satisfied by Ω is also simplified:

t = p(t)ṗ(t) + (
1 − p(t)

)(−ṗ(t)
) = (

2p(t) − 1
)

ṗ(t) = 1

2
ε(t)ε̇(t),

and thus

Ω̇t = −1

2
ε(t)ε̇(t)Ωt .

As above, fix A ∈ K(H) and put ω(t) = Ωt AΩ∗
t . Note that since ε(t)2 = 1 and ε(t)∗ = ε(t), then ε̇(t)ε(t) + ε(t)ε̇(t) = 0.

Then [[
ε̇(t), ε(t)

]
,ω(t)

] = ε̇(t)ε(t)ω(t) − ε(t)ε̇(t)ω(t) − ω(t)ε̇(t)ε(t) + ω(t)ε(t)ε̇(t)

= −2ε(t)ε̇(t)Ωt AΩ∗
t − 2Ωt AΩ∗

t ε̇(t)ε(t).

Since ε(t)ε̇(t)Ωt = −2Ω̇t (and therefore, taking adjoints, Ω∗
t ε̇(t)ε(t) = −2Ω̇∗

t ), this expression above equals

4Ω̇t AΩ∗
t + 4Ωt AΩ̇∗

t = 4ω̇(t),

i.e. ω̇(t) = 1
4 [[ε̇(t), ε(t)],ω(t)]. �

For systems with more than two projections, Gt and Ad(Ωt) may differ, as the following example shows.

Example 3.7. Consider the system of projections in M3(C):

p1 =
⎛
⎝ 1 0 0

0 0 0
0 0 0

⎞
⎠ , p2 =

⎛
⎝ 0 0 0

0 1 0
0 0 0

⎞
⎠ , p3 =

⎛
⎝ 0 0 0

0 0 0
0 0 1

⎞
⎠ ,

and the curve of unitaries

Ut =
⎛
⎜⎝

cos2(t) cos(t) sin(t) − sin(t)

− sin(t) cos(t) 0

cos(t) sin(t) sin2(t) cos(t)

⎞
⎟⎠ ,

defined on any interval I with 0 ∈ I . Note that U0 = 1. Consider the system of projections pi(t) = Ut p1U∗
t , i = 1,2,3.

A straightforward computation shows that

U∗
t U̇t =

⎛
⎝ 0 1 − cos(t)

−1 0 − sin(t)

cos(t) sin(t) 0

⎞
⎠ .

The fact that U∗
t U̇t has zeros on the diagonal implies that pi U∗

t U̇t pi = 0 and thus

t = p1(t)ṗ1(t) + p2(t)ṗ2(t) + p3(t)ṗ3(t) = Ut p1U̇∗
t + Ut p2U̇∗

t + Ut p3U̇∗
t = Ut U̇∗.

Taking adjoints, −t = U̇t U∗
t , or equivalently U̇t = −t Ut . That is, in the notation above, Ut = Ωt , corresponding to this

system of projections. On the other hand, as in the previous proposition,

[dEt, Et](X) =
3∑

i=1

[
ṗi(t), pi(t)

]
Xpi(t) − pi(t)X

[
ṗi(t), pi(t)

]
.

Note that pi(t)ṗi(t) = Ωt piΩ̇
∗
t and ṗi(t)pi(t) = Ω̇t piΩ

∗
t . Then a straightforward computation shows that

[dEt, Et]
(
Ωt AΩ∗

t

) = d {
Ωt E0(A)Ω∗

t

} + Ωt E0
([

Ω∗
t Ω̇t, A

])
Ω∗

t .

dt
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Take for instance

A =
⎛
⎝ 0 0 1

0 0 0
0 0 0

⎞
⎠ .

A simple computation shows that if ω(t) = Ωt AΩ∗
t , then

ω̇(t) �= [dEt , Et]
(
ω(t)

)
,

i.e. Gt(A) �= Ωt AΩ∗
t .

Let us show that under the equivalent conditions of the previous theorem (hypothesis (3)), the invertible maps Gt

preserve also de p-Schatten ideals.

Remark 3.8. It is also well known that this type of conditional expectation, obtained by diagonal compression with a system
of projections, also preserves the p-Schatten classes B p(H) = {X ∈ K(H): tr(|X |p) < ∞}. For 1 � p < ∞, the set B p(H) is
a Banach space with the p-norm ‖X‖p = tr(|X |p)1/p . If Et is as above, then

Et
(

B p(H)
) ⊂ B p(H) and

∥∥Et(X)
∥∥

p � ‖X‖p .

We shall need the following lemma.

Lemma 3.9. Let Ut , Vt , t ∈ I , be strongly continuously differentiable curves of unitaries in H. Fix X ∈ B p(H), 1 � p � ∞. Then the
map

I � t �→ Ut X V ∗
t ∈ B p(H)

is continuously differentiable.

Proof. By the spectral theorem of compact self-adjoint operators and the polar decomposition, X can be written

X =
∑
i�1

ξi ⊗ ηi,

where {ξi} and {ηi} are orthogonal sequences with ‖ηi‖ = 1 and ‖ξi‖ p-summable (or tending to 0 if p = ∞). Let XN =∑N
i=1 ξi ⊗ ηi , so that ‖X − XN‖p → 0 as N goes to infinity. Clearly the map

t �→ Ut XN V ∗
t =

N∑
i=1

Utξi ⊗ Vtηi ∈ B p(H)

is continuously differentiable, and its derivative equals

t �→ U̇t XN V ∗
t + Ut XN V̇ ∗

t =
N∑

i=1

U̇tξi ⊗ Vtηi + Utξi ⊗ V̇ tηi .

Note that∥∥Ut X V ∗
t − Ut XN V ∗

t

∥∥
p = ‖X − XN‖p,

which implies that t �→ Ut X Vt is continuous in the p-norm, and that∥∥U̇t X V ∗
t + Ut X V̇ ∗

t − U̇t XN V ∗
t − Ut XN V̇ ∗

t

∥∥
p �

∥∥U̇t(X − XN)
∥∥

p + ∥∥(X − XN)V̇ ∗
t

∥∥
p .

The first term is bounded by ‖U̇t‖‖X − XN‖p . By yet another standard application of the uniform boundedness principle, the
norms ‖U̇t‖ are uniformly bounded on closed bounded sub-intervals of I . The other term is dealt similarly. Thus the series
of derivatives is also uniform convergent in the p-norm. Therefore [6, Theorem 7.2] the map t �→ Ut X Vt is differentiable,
and its derivative is t �→ U̇t X Vt + Ut X V̇t , which is continuous. �
Proposition 3.10. Let 1 � p < ∞. Under hypothesis (3), the maps Gt preserve the p-Schatten ideals, Gt(B p(H)) = B p(H), and
moreover, for any X ∈ B p(H), t �→ Gt(X) is continuously differentiable as a B p(H)-valued map.
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Proof. Let us show that the linear operators [dEt , Et] preserve the Schatten ideals, and that for any X ∈ B p(H), the map

t �→ [dEt, Et](X) ∈ B p(H)

is continuous in the p-norm. Let Ωt be as above, the strongly continuously differentiable curve of unitary operators obtained
as solutions of

Ω̇t = −tΩt, Ω0 = 1.

As shown before, these unitaries intertwine pi(0) and pi(t), and therefore

Et(X) = Ωt E0
(
Ω∗

t XΩt
)
Ω∗

t .

For any fixed X ∈ B p(H), by the above lemma the map I � t �→ Et(X) ∈ B p(H) is continuously differentiable. Therefore the
commutators t �→ [dEt , Et](X) are continuous in the p-norm, for any fixed X ∈ B p(H). Indeed, fix t and X and let h tend to
zero, then∥∥Et+h dEt+h(X) − Et dEt(X)

∥∥
p �

∥∥Et+h
(
dEt+h(X) − dEt(X)

)∥∥
p + ∥∥Et+h dEt(X) − dEt Et(X)

∥∥
p

�
∥∥dEt+h(X) − dEt(X)

∥∥
p + ∥∥Et+h dEt(X) − dEt Et(X)

∥∥
p,

which tend to zero. To deal analogously with dEt Et , note that (again) by the uniform boundedness principle, the operators
dEt have uniformly bounded norms, as operators on B p(H):

‖dEt‖ � C

on closed bounded sub-intervals of I . Then∥∥dEt+h Et+h(X) − dEt Et(X)
∥∥

p �
∥∥dEt+h

(
Et+h(X) − Et(X)

)∥∥
p + ∥∥dEt+h Et(X) − dEt Et(X)

∥∥
p

� C
∥∥Et+h(X) − Et(X)

∥∥
p + ∥∥dEt+h Et(X) − dEt Et(X)

∥∥
p .

It follows that, for any X ∈ B p(H), the differential equation{
α̇(t) = [dEt, Et]α(t),

α(0) = X

has a unique solution in B p(H), and defines continuously differentiable propagators, which by the uniqueness of the solu-
tion in K(H), are precisely Gt . �

For the special case p = 2 one has the following result:

Proposition 3.11. Under hypothesis (3), for any t ∈ I ,

Gt |B2(H) : B2(H) → B2(H)

is a unitary operator, which verifies Gt(X∗) = X∗ and Gt(1) = 1.

Proof. It suffices to show that the commutators [dEt , Et] are anti-hermitic. We omit the parameter t for brevity,〈[dE, E]X, Y
〉 = tr

(
Y ∗[dE, E]X

) =
∑
i�1

tr
(
Y ∗(ṗi pi Xpi + pi Xpi ṗi − pi ṗi Xpi − pi X ṗi pi)

)

=
∑
i�1

tr
((

pi Y
∗ ṗi pi + pi ṗi Y

∗pi − pi Y
∗ pi ṗi − ṗi pi Y

p
i

)
X
)

=
∑
i�1

tr
(
(pi ṗi Y pi + pi Y ṗi pi − ṗi pi Y pi − pi Y pi ṗi)

∗ X
) = −〈

X, [dE, E]Y 〉
.

The properties that Gt is unital and ∗-preserving hold in general (Theorem 2.6). �
Finally, note that Gt : K(H) → K(H) can be extended to linear ∗-preserving isomorphisms of B(H), and such that the

curve t �→ Gt(X) is w∗-C 1.
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Remark 3.12. It was shown in Proposition 3.10 that the curve t �→ Gt(Y ) is a C 1 B1(H)-valued curve for each Y ∈ B1(H).
Pick X0 ∈ B(H), it induces a curve of bounded linear functionals in B1(H), namely,

t �→ ϕt,X0 , ϕt,X0(Y ) = tr
(

X0Gt(Y )
)
, for Y ∈ B1(H).

Thus, by duality, there exist X0,t ∈ B(H) such that

tr(X0,t Y ) = ϕt,X0(Y ) = tr
(

X0Gt(Y )
)
.

Put Gt(X0) = X0,t . The properties of this extension are apparent.

3.2. Expectations onto algebras generated by the system

A system of projections is related to another type of C∗-algebra which is the range of a conditional expectation, that is,
the C∗-algebra generated by the system. This is a commutative algebra which consists of as many copies of C as there are
projections in the system, namely, if P = (p1, p2, . . .),

B =
⊕
i�1

piC.

A conditional expectation E : B(H) → B is of the form

E(X) =
∑
i�1

piΦi(pi Xpi),

where Φi is a state in pi B(H)pi = B(pi(H)). Let us suppose that we have a curve P (t) = (p1(t), p2(t), . . .) of systems of
projections as in the preceding section, and a curve of expectations Et : B(H) → Bt , where Bt is the C∗-algebra generated
by P (t). We first need to establish the following elementary fact.

Lemma 3.13. Suppose that I � t �→ At ∈ B(B(H)) is a curve of linear operators acting on B(H), such that for each X ∈ B(H) the
map t �→ At(X) ∈ B(H) is C 1 . If t �→ X(t) ∈ B(H) is a C 1 map, then

I � t �→ At
(

X(t)
) ∈ B(H)

is C 1 .

Proof. Fix t ∈ I , then 1
h {At+h(X(t + h)) − At(X(t))} equals

1

h

{
At+h

(
X(t + h)

) − At+h
(

X(t)
)} + 1

h

{
At+h

(
X(t)

) − At
(

X(t)
)}

.

The right hand term tends to Ȧt(X(t)) as h → 0 by hypothesis. The left hand term equals

At+h

{
1

h

(
X(t + h) − X(t)

)}
.

Clearly the arguments Yh = 1
h {X(t + h) − X(t)} → Ẋ(t) = Y0 as h → 0. Thus we need to show that if Yh → Y0, then

At+h(Yh) → At(Y0) as h → 0. To prove this, it suffices to show that the norms ‖At‖ are uniformly bounded on closed
bounded sub-intervals of I . This follows from the UBP. �
Proposition 3.14. Suppose that the curve of expectations is C 1 in the sense given before (for each X ∈ B(H), the map t �→ Et(X) ∈
B(H) is C 1). Then for each i � 1 and each X ∈ B(pi H), the maps

t �→ pi(t) ∈ B(H)

and

t �→ Φi,t
(

pi(t)Xpi(t)
) ∈ C

are C 1 (where Et(X) = ∑
i�1 pi(t)Φi,t(pi(t)Xpi(t))).

Proof. If the curve of expectations is C 1, then Theorem 2.6 applies, and there exists a C 1 curve Gt : B(H) → B(H) such
that Gt ◦ E0 ◦ G−1

t and Gt restricted to B0 is a ∗-isomorphism onto Bt . In particular, Gt maps each factor pi(0)C of B0 onto
a factor pi(t)C. By the same continuity argument as in the previous section, i(t) = i. That is, Gt(pi(0)) = pi(t). This implies
that the map t �→ pi(t) ∈ B(H) is C 1 in the norm topology. Therefore, for each j � 1 and each X ∈ B(H) the map



JID:YJMAA AID:15199 /FLA [m3G; v 1.45; Prn:13/08/2010; 8:31] P.16 (1-16)

16 E. Andruchow / J. Math. Anal. Appl. ••• (••••) •••–•••
t �→ p j(t)Et(X) = p j(t)Φ j,t
(

p j(t)Xp j(t)
) ∈ B(H)

is C 1. Then, by the above lemma, also the map

t �→ G−1
t

(
p j(t)Et(X)

) = p j(0)Φ j,t
(

p j(t)Xp j(t)
)

is C 1, which implies that t �→ Φ j,t(p j(t)Xp j(t)) ∈ C is C 1. �
4. Curves of states

A state ϕ in a unital C∗-algebra A is a special case of conditional expectation, where the range algebra is the subalgebra
C · 1, and E(a) = ϕ(a)1. Suppose that one has a curve of states in A, ϕt , t ∈ I , which is smooth in the sense above: for each
a ∈ A, I � t �→ ϕt(a) ∈ C is C 1. For instance, if ξt are unit vectors in a Hilbert space H on which A acts, they induce pure
states in A: ϕt(a) = 〈aξt , ξt〉. The smoothness condition is fulfilled if the curve t �→ ξt ∈ H is C1.

Theorem 2.6 states the existence of linear unital ∗-preserving linear isomorphisms Gt : A → A which intertwine ϕ0
and ϕt . In this case one can compute them explicitly. First note the following:

dEt
(

Et(a)
) = ϕ̇t

(
ϕt(a).1

)
.1 = ϕt(a)ϕ̇t(1).1 = 0,

because ϕt(1) = 1 for all t ∈ I . On the other hand

Et
(
dEt(a)

) = ϕt
(
ϕ̇t(a).1

) = ϕ̇t(a).ϕt(1) = ϕ̇t(a).

Thus the differential equation defining Gt is{
α̇ = −ϕ̇t(α).1,

α(0) = a.

Note that α̇ takes scalar values. This implies that α(t) = a + β(t).1. A straightforward computation shows then that α(t) =
a + (ϕt(a) − ϕ0(a)).1. That is

Gt(a) = a + (
ϕt(a) − ϕ0(a)

)
.1.

Note that Gt is not multiplicative.
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