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Introduction

This paper is devoted to the study of the following operator norm inequalities when an additional

seminorm is consider on a complex Hilbert space H:

(I) If V,W ∈ L(H) are semidefinite positive then ‖WtVt‖ � ‖WV‖t for every t ∈ [0, 1];
(II) If V,W, X ∈ L(H) then ‖WW∗X + XVV∗‖ � 2‖W∗XV‖;
(III) If S, R ∈ L(H) are invertible then ‖SXR−1 + (S∗)−1XR∗‖ � 2‖X‖ for every X ∈ L(H).
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Here, L(H)denotes thealgebraof all bounded linearoperators onH, T∗ denotes theadjoint operator
of T ∈ L(H) and ‖ · ‖ denotes the operator uniform norm. Inequality (I) is due to Cordes [8] (see also

the paper by Furuta [13] for another proof). Inequality (II) is due to McIntosh [17] and it is known

as the arithmetic–geometric-mean inequality. Different proofs of this property and its extension for

every unitarily invariant norm can be found in [4,5,15]. Finally, Corach et al. [7] gave the first proof of

inequality (III) for S = R invertible and selfadjoint operators, which is known as CPR-inequality. Later,

Kittaneh [16] proved the nonsymmetric version of it valid for every unitarily invariant norm, for all

X ∈ L(H) and all invertible S, R ∈ L(H). See [1] for several equivalent expressions of inequality (III).

Themaingoal of this article is to study theseproperties ifweconsider anadditional seminorm‖ · ‖A,

defined by means of a positive semidefinite operator A ∈ L(H) by ‖ξ‖2
A = 〈ξ , ξ〉A = 〈Aξ , ξ〉, ξ ∈ H,

and we replace the operator norm in inequalities (I), (II) and (III) by the quantity

‖T‖A = sup{‖Tξ‖A : ‖ξ‖A = 1}.
The extension of these properties is not trivial sincemany difficulties arise. For instance, itmay happen

that ‖T‖A = ∞ for some T ∈ L(H). In addition, not every operator admits an adjoint operator for the

semi-inner product 〈 , 〉A.
The contents of the paper are the following. In Section 1 we set up notation, terminology and we

describe the preliminary material on operators which are bounded for the A-seminorm. In Section 2

we study the concept of an A-positive operator and we extend Cordes inequality for the seminorm in

matter. In Section 3 we generalize the arithmetic–geometric-mean inequality for this seminorm and,

as a consequence, we obtain different extensions of the CPR-inequality. At the end of this section we

describe the classes of operators which satisfy these extensions.

1. Preliminaries

Along this work H denotes a complex Hilbert space with inner product 〈 , 〉. L(H) is the algebra of

all bounded linear operators on H, L(H)+ is the cone of positive (semidefinite) operators of L(H), i.e.,
L(H)+ :={T ∈ L(H) : 〈Tξ , ξ〉 � 0∀ξ ∈ H} and Lcr(H) is the subset of L(H) of all operatorswith closed

range. For every T ∈ L(H) its range is denoted by R(T), its nullspace byN(T) and its adjoint operator by

T∗. In addition, if T1, T2 ∈ L(H) then T1 � T2 means that T1 − T2 ∈ L(H)+. Given a closed subspaceS of

H, PS denotes the orthogonal projection onto S . On the other hand, T† stands for the Moore–Penrose

inverse of T ∈ L(H). Recall that T† is the unique linear mapping from D(T†) = R(T) ⊕ R(T)⊥ to H
which satisfies the four “Moore–Penrose equations”:

TXT = T, XTX = X, XT = PR(T∗), and TX = PR(T)|D(T†).

In general, T† /∈ L(H). Indeed, T† ∈ L(H) if and only if T ∈ L(H) has closed range [18]. On the other

hand, given T, C ∈ L(H) such that R(C) ⊆ R(T) then it holds T†C ∈ L(H) even if T† is not bounded.

Given A ∈ L(H)+, the functional

〈 , 〉A : H × H → C, 〈ξ , η〉A :=〈Aξ , η〉
is a semi-innerproductonH. By‖ · ‖Awedenote the seminorminducedby 〈 , 〉A, i.e.,‖ξ‖A = 〈ξ , ξ〉1/2A .

Observe that ‖ξ‖A = 0 if and only if ξ ∈ N(A). Then ‖ · ‖A is a norm if and only if A ∈ L(H)+ is an

injective operator. Moreover, 〈 , 〉A induces a seminorm on a certain subset of L(H), namely, on the

subset of all T ∈ L(H) forwhich there exists a constant c > 0 such that‖Tξ‖A � c‖ξ‖A for every ξ ∈ H.

In such case it holds

‖T‖A = sup
ξ /∈N(A)

‖Tξ‖A

‖ξ‖A

< ∞.

We denote

LA1/2(H) = {T ∈ L(H) : ‖Tξ‖A � c‖ξ‖A for every ξ ∈ H}.
It is easy to see that LA1/2(H) is a subalgebra of L(H). In [2] we study some properties of the operator

seminorm ‖ · ‖A. One of them shows the relationship between the A-seminorm and the operator
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uniform norm as follows: if T ∈ LA1/2(H) then A1/2T(A1/2)† is a bounded operator on D((A1/2)†).
Moreover, it holds

‖T‖A = ‖A1/2T(A1/2)†‖ = ‖A1/2T(A1/2)†‖ = ‖(A1/2)†T∗A1/2‖,
where A1/2T(A1/2)† denotes the unique bounded linear extension of A1/2T(A1/2)† to L(H).

Given T ∈ L(H), an operatorW ∈ L(H) is called an A-adjoint of T if

〈Tξ , η〉A = 〈ξ , Wη〉A for every ξ , η ∈ H,

or, which is equivalent, if W satisfies the equation AW = T∗A. The operator T is called A-selfadjoint

if AT = T∗A. The existence of an A-adjoint operator is not guaranteed. Observe that T admits an

A-adjoint operator if and only if the equation AX = T∗A has solution. This kind of equations can be

studied applying the next theorem due to Douglas (for its proof see [10] or [11]).

Theorem 1. Let B, C ∈ L(H). The following conditions are equivalent:
1. R(C) ⊆ R(B).
2. There exists a positive number λ such that CC∗ � λBB∗.
3. There exists D ∈ L(H) such that BD = C.

If one of these conditions holds then there exists a unique operator E ∈ L(H) such that BE = C and

R(E) ⊆ R(B∗).

Therefore, if we denote by LA(H) the subalgebra of L(H) of all operators which admit an A-adjoint

operator then

LA(H) = {T ∈ L(H) : T∗R(A) ⊆ R(A)}.
Furthermore, applying Douglas theorem we can see that

LA1/2(H) = {T ∈ L(H) : T∗R(A1/2) ⊆ R(A1/2)}.
In [14, Theorem 5.1], the following relationship between the above sets is proved:

LA(H) ⊆ LA1/2(H).

Moreover, it can be checked that the equality holds if and only if A has closed range.

If an operator equation BX = C has solution then it is easy to see that the distinguished solution of

Douglas theorem is given by B†C. Therefore, given T ∈ LA(H), if we denote by T� the unique A-adjoint

operator of T whose range is included in R(A) then

T� = A†T∗A.
Note that ifW is an A-adjoint of T thenW = T� + Z , with Z ∈ L(H) such that R(Z) ⊆ N(A). In the next

propositionwe collect some properties of T� whichwe shall use along this work. For its proof see [2,3].

Proposition 1.1. Let T ∈ LA(H). Then:
1. T� ∈ LA(H), (T�)� = PR(A)TPR(A) and ((T�)�)� = T�.

2. If W ∈ LA(H) then TW ∈ LA(H) and (TW)� = W�T�.

3. ‖T‖A = ‖T�‖A = ‖T�T‖1/2
A .

4. ‖W‖A = ‖T�‖A for every W ∈ L(H) which is an A-adjoint of T .

2. Cordes inequality for the A-seminorm

Cordes inequality [8] states that ifW, V are bounded positive operators then

‖WtVt‖ � ‖WV‖t (1)
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for every t ∈ [0, 1]. Furuta [13] gave an alternative proof of (1) and he proved that this inequality is

equivalent to the well-known Löwner-Heinz inequality:

if 0�W � V then Wt � Vt for every t ∈ [0, 1].
This section is devoted to obtain a version of the well-known Cordes inequality for the operator

seminorm ‖ · ‖A. In order to extend (1) we prove the following two technical lemmas. In the sequel

we say that T ∈ L(H) is an A-positive operator if AT ∈ L(H)+.

Lemma 2.1. Let A ∈ L(H)+ and T ∈ L(H). The following assertions are equivalent:
1. T is an A-positive operator;
2. T ∈ LA1/2(H) and A1/2T(A1/2)† ∈ L(H)+.

Proof. If AT ∈ L(H)+ then AT = T∗A and so T ∈ LA(H) ⊆ LA1/2(H). Then A1/2T(A1/2)† = (A1/2)†T∗
A1/2|D((A1/2)†) is a bounded positive operator on D((A1/2)†). Therefore, A1/2T(A1/2)† ∈ L(H)+. On the

contrary, if A1/2T(A1/2)† ∈ L(H)+ then (A1/2)†T∗A1/2 ∈ L(H)+. Hence we get A1/2(A1/2)†T∗A1/2A1/2

= PR(A)|D((A1/2)†)T
∗A = T∗A ∈ L(H)+. So T is an A-positive operator. �

Lemma 2.2. Let A, T ∈ L(H)+. The following assertions are equivalent:
1. T is an A-positive operator;
2. T is an A1/2-positive operator.

Proof. If T ∈ L(H)+ is an A-positive operator then AT = TA. So, AnT = TAn for every n ∈ N. Thus,

p(A)T = Tp(A) for every polynomial p. Now, consider f (t) = t1/2. Then there exists a sequence of

polynomials {pn} such that pn(t) −→
n−→∞ f (t) uniformly. So, pn(A) −→

n→∞ f (A) = A1/2. As a consequence

we get that A1/2T = TA1/2 and so T is an A1/2-positive operator. Conversely, if T ∈ L(H)+ is an A1/2-

positive operator then A1/2T = TA1/2. Therefore AT = A1/2TA1/2 is a positive operator. So, T is A-

positive. �

The next proposition is a restricted version of Cordes inequality for the A-seminorm.

Proposition 2.3. Let A, V ,W ∈ L(H)+. If V and W are A-positive operators then

‖W1/2V1/2‖A � ‖WV‖1/2
A .

Proof. First note that since W ∈ L(H)+ is an A-positive operator then, by Lemma 2.2, the operator

W1/2 is A-positive too. So,W,W1/2 ∈ LA1/2(H) and, by Lemma 2.1, we get that (A1/2)†WA1/2 ∈ L(H)+
and (A1/2)†W1/2A1/2 ∈ L(H)+. Now, observe that ((A1/2)†WA1/2)1/2 = (A1/2)†W1/2A1/2. The same

remarks hold for the operator V . Then we get,

‖W1/2V1/2‖A=‖A1/2W1/2V1/2(A1/2)†‖
=‖(A1/2)†V1/2A1/2(A1/2)†W1/2A1/2‖
=‖((A1/2)†VA1/2)1/2((A1/2)†WA1/2)1/2‖
� ‖(A1/2)†VA1/2(A1/2)†WA1/2‖1/2

=‖WV‖1/2
A ;

where the inequality holds by Cordes inequality for t = 1
2
. �
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In the following result we present a generalization of Cordes inequality for the A-seminorm. In

the proof, the concept of spectral radius of a bounded linear operator appears. Remember that, given

T ∈ L(H), the spectral radius of T is the number

r(T) = sup
λ∈σ(T)

|λ|;

where σ(T) denotes the spectrum of T . In addition, it holds that r(T) = limn→∞ ‖Tn‖1/n. From this

we get, r(T) � ‖T‖. On the other hand, if T = T∗ then r(T) = ‖T‖ and for every T, S ∈ L(H) it holds

r(TS) = r(ST). For a proof of the above facts the reader is referred to the books of Reed and Simon [19],

Conway [6] and Davidson [9]. The proof of the next theorem follows the idea of Fujii and Furuta [12].

Theorem 2.4. Let A, V ,W ∈ L(H)+. If V and W are A-positive operators then for every t ∈ [0, 1] it holds
‖WtVt‖A � ‖WV‖t

A. (2)

Proof. Note that since W ∈ L(H)+ is an A-positive operator then, a similar argument to that of the

proof of Lemma 2.2 shows thatWt is A-positive for every t ∈ [0, 1]. Now, we claim that it is sufficient

to prove the inequality (2) in a dense subset D of [0, 1]. In fact, let t0 ∈ [0, 1]. Then, there exists a

sequence {tk} ⊆ D such that tk −→
k→∞ t0. So, V

tkWtk −→
k→∞ Vt0Wt0 . On the other hand, since Wt and

Vt are A-positive for every t ∈ [0, 1] then, by Lemma 2.2, we get A1/2VtWt = VtWtA1/2 for every

t ∈ [0, 1]. In consequence, ‖WtkVtk‖A −→
k→∞ ‖Wt0Vt0‖A. Indeed,∣∣∣‖WtkVtk‖A − ‖Wt0Vt0‖A

∣∣∣= ∣∣∣‖(A1/2)†VtkWtkA1/2‖ − ‖(A1/2)†Vt0Wt0A1/2‖
∣∣∣

� ‖(A1/2)†
(
VtkWtk − Vt0Wt0

)
A1/2‖

=‖(A1/2)†A1/2
(
VtkWtk − Vt0Wt0

)
‖

� ‖VtkWtk − Vt0Wt0‖ −→
k→∞ 0.

Therefore, if the inequality (2) holds for every t ∈ D then

‖Wt0Vt0‖A = lim
k→∞ ‖WtkVtk‖A � lim

k→∞ ‖WV‖tk
A = ‖WV‖t0

A .

NowconsiderD =
{

m
2n

; m = 1, . . . , 2n, n ∈ N
}
which is adense subsetof [0, 1]. Note that the inequal-

ity (2) holds for t = 0, t = 1
2
and t = 1. Therefore, to prove that it holds for every element ofD it is suf-

ficient to show that if ‖WsVs‖A � ‖WV‖s
A and ‖WtVt‖A � ‖WV‖t

A for s, t ∈ D then ‖WrVr‖A � ‖WV‖r
A

for r = s+t
2

. Now, since AWrVr = WrVrA then

A1/2WrVr(A1/2)† = (A1/2)†WrVrA1/2. (3)

On theother hand, sinceWrV2rWr ∈ L(H)+ andAWrV2rWr = WrV2rWrA thenAWrV2rWr is positive

and so, by Lemma 2.1,

A1/2WrV2rWr(A1/2)† = (A1/2)†WrV2rWrA1/2 (4)

is positive too. Now, from equalities (3) and (4) we get

‖WrVr‖2
A=‖A1/2WrVr(A1/2)†‖2

=‖A1/2WrVr(A1/2)†(A1/2)†(WrVr)∗A1/2‖
=‖(A1/2)†WrVrA1/2(A1/2)†(WrVr)∗A1/2‖
=‖(A1/2)†WrV2rWrA1/2‖
= r((A1/2)†WrV2rWrA1/2).
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On the other hand, as WsVsA = AWsVs then (VsWs)� = PR(A)W
sVs. Therefore

‖VsWs‖A = ‖WsVs‖A.

Now, by properties of spectral radius and by the fact thatWr and V2r belong to LA1/2(H) we get

r((A1/2)†WrV2rWrA1/2)= r((A1/2)†WrA1/2(A1/2)†V2rA1/2(A1/2)†WrA1/2)

= r((A1/2)†V2rA1/2(A1/2)†W2rA1/2)

= r((A1/2)†VtWtA1/2(A1/2)†WsVsA1/2)

� ‖WtVt‖A‖VsWs‖A = ‖WtVt‖A‖WsVs‖A

� ‖WV‖t+s
A = ‖WV‖2r

A .

Therefore, the proof is complete. �

3. The arithmetic–geometric-mean inequality for the A-seminorm

We begin this section by presenting the following operator form of the so-called “arithmetic–

geometric-mean inequality”

‖WW∗X + XVV∗‖ � 2‖W∗XV‖,
valid for anyV,W, X ∈ L(H). Theabove inequality isdue toMcIntosh [17] and it alsoholds for everyuni-

tarily invariant norm (see [5,15]). But here, we only shall deal with the version ofMcIntosh’s inequality

for the operator uniform norm. In the following result we generalize the arithmetic–geometric-mean

inequality for the operator seminorm induced by A ∈ L(H)+.

Proposition 3.1. Let V,W ∈ LA(H) and X ∈ LA1/2(H). The following inequalities hold and they are

equivalent:
1. ‖W�WX + XV�V‖A � 2‖WXV�‖A;
2. ‖WW�X + XV�V‖A � 2‖W�XV�‖A;
3. ‖WW�X + XVV�‖A � 2‖W�XV‖A.

Proof. First let us prove that the inequality of item 1 holds. Note that A1/2W(A1/2)†, A1/2V(A1/2)† and
A1/2X(A1/2)† are bounded operators on D((A1/2)†). Now, it holds

‖W�WX + XV�V‖A=‖A1/2A†W∗AWX(A1/2)† + A1/2XA†V∗AV(A1/2)†‖
� 2‖A1/2W(A1/2)†A1/2X(A1/2)†(A1/2)†V∗A1/2‖
� 2‖A1/2W(A1/2)†A1/2X(A1/2)†(A1/2)†V∗A1/2|D((A1/2)†)‖
=2‖A1/2W(A1/2)†A1/2X(A1/2)†(A1/2)†V∗A(A1/2)†‖
=2‖A1/2WXA†V∗A(A1/2)†‖
=2‖WXV�‖A;

where the first inequality holds by the arithmetic–geometric-mean inequality. So item 1 holds.

1 → 2. Observe that

‖WW�X + XV�V‖A=‖PR(A)WPR(A)W
�X + XV�V‖A

=‖(W�)�W�X + XV�V‖A

� 2‖W�XV�‖A,

where the inequality holds by item 1. Then item 2 is obtained. Employing a similar argument to that

used above we prove implications 2 → 3 and 3 → 1. �
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3.1. CPR-type-inequalities for the A-seminorm

In this subsection we obtain a Corach–Porta–Recht (CPR) type inequality for the A-operator semi-

norm. The CPR-inequality [7] asserts that if S, X ∈ L(H) with S invertible and selfadjoint then

‖SXS−1 + S−1XS‖ � 2‖X‖.
Later, Kittaneh [16] proved it for general invertible R, S ∈ L(H), X ∈ L(H) and unitarily invariants

norms in L(H), that is

|||SXR−1 + (S∗)−1XR∗||| � 2|||X|||. (5)

Heproved this inequalityby showing that it is equivalent to thearithmetic–geometric-mean inequality.

Following the same lines of the Kittaneh’s proof, the inequality (5) can be extended to the case S, R

injective operators in Lcr(H) . In such case, for every X ∈ L(H) and every unitarily invariant norm it

holds

|||SXR† + (S∗)†XR∗||| � 2|||X|||. (6)

Remark 3.2. If S or R is not an injective operator then inequality (6) is false, in general. In fact, let

H = R2. Now take S =
(
1 1
1 1

)
, R = I (the identity operator) and X =

(
1/2 0
0 0

)
. It is easy to check

that S† =
(
1/4 1/4
1/4 1/4

)
. Now, observe that ‖SX + S†X‖2 =

∥∥∥(5/8 0
5/8 0

)∥∥∥2 = 50
64

. Therefore ‖SX + S†X‖ =√
50
64

< 1 = 2‖X‖.

In the next result we generalize the CPR-inequality for the A-seminorm in two different ways. The

proof follows the idea used in [16, Corollary 1].

Theorem 3.3. Let X ∈ LA1/2(H) and S ∈ Lcr(H) an injective operator such that S, S† ∈ LA(H). Then the

following assertions hold:
1. If R ∈ Lcr(H) is an injective operator such that R, R† ∈ LA(H) then:

‖SXR† + (S†)�XR�‖A � 2‖X‖A.

2. If R is a surjective operator such that R, R† ∈ LA(H) then:
‖SX(R†)� + (S†)�XR‖A � 2‖X‖A.

Proof. It is well-known that S ∈ Lcr(H) if and only if S∗ ∈ Lcr(H). Therefore S†, (S∗)† ∈ L(H) and

(S†)∗ = (S∗)†. Now, as S ∈ Lcr(H) is an injective operator such that S, S† ∈ LA(H) then S�(S†)� = PR(A).

1. Since R is injective then R†R = I. Thus

‖SXR† + (S†)�XR�‖A=‖SS�(S†)�XR† + (S†)�XR†RR�‖A

� 2‖S�(S†)�XR
†

R‖A = 2‖PR(A)X‖A

=2‖X‖A,

where the inequality holds by item 3 in Proposition 3.1.

2. Since R is surjective then R† ∈ L(H) and RR† = I. So (R†)�R� = PR(A). Now,

‖SX(R†)� + (S†)�XR‖A=‖SS�(S†)�X(R†)� + (S†)�X(R†)�R�R‖A

� 2‖S�(S†)�X(R†)�R�‖A = 2‖PR(A)XPR(A)‖A

=2‖X‖A,
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where the inequality holds by item 2 in Proposition 3.1. �

In the sequel we study the sets of operators which satisfy Theorem 3.3, namely,

Δ = {T ∈ Lcr(H) : T is injective and T, T† ∈ LA(H)}
and

Σ = {T ∈ L(H) : T is surjective and T, T† ∈ LA(H)}.
The description of Δ and Σ will be done by means of the matrix representation of operators of L(H)
induced by the decomposition H = N(A)⊥ ⊕ N(A). In such case, A ∈ L(H)+ has the representation

A =
(
a 0

0 0

)
, (7)

where a ∈ L(N(A)⊥)+ and N(a) = {0}.
Proposition 3.4. Let T ∈ Lcr(H) and A ∈ L(H)+ with the matrix representation (7). Then the following

assertions are equivalent:
1. T ∈ Δ;
2. T =

(
t1 0
t3 t4

)
; where t1 ∈ Lcr(N(A)⊥) is injective, t4 ∈ Lcr(N(A)) is injective, R(t∗1a) ⊆ R(a) and

R((t
†
1)

∗a) ⊆ R(a).

Proof. 1 → 2. Consider the following matrix representations of T and T† under the decomposition

H = N(A)⊥ ⊕ N(A),

T =
(
t1 t2
t3 t4

)
and T† =

(
r1 r2
r3 r4

)
.

Since T, T† ∈ LA(H) and N(a) = {0} then t2 = 0, r2 = 0, R(t∗1a) ⊆ R(a) and R(r∗1a) ⊆ R(a). Now, as

T†T = I then r1t1 and r4t4 are the identity operator on N(A)⊥ and N(A), respectively. So t1 and t4
are injective operators. Furthermore, since TT† is selfadjoint then r1 = (t1)

† and r4 = (t4)
†. Therefore

t1 ∈ Lcr(N(A)⊥), t4 ∈ Lcr(N(A)) and R((t
†
1)

∗a) ⊆ R(a).

2 → 1. Since T =
(
t1 0
t3 t4

)
andR(t∗1a) ⊆ R(a) thenR(T∗A) ⊆ R(A) and so T ∈ LA(H). On the other

hand, since t1 and t4 are injectiveoperators thenT is injective.As, in addition, t1 and t4 haveclosed range

then it is easy to check that T† =
(

t
†
1 0

−t
†
4t3t

†
1 t

†
4

)
. Furthermore, as R((t

†
1)

∗a) ⊆ R(a) then R((T†)∗A) ⊆
R(A). Therefore T† ∈ LA(H) and so T ∈ Δ. �

Proposition 3.5. Let T ∈ L(H) and A ∈ L(H)+ with the matrix representation (7). The following asser-

tions are equivalent:
1. T ∈ Σ;
2. T =

(
t1 0
t3 t4

)
; where t1 ∈ L(N(A)⊥) is surjective, t4 ∈ L(N(A)) is surjective, R(t∗1a) ⊆ R(a),

R((t
†
1)

∗a) ⊆ R(a) and R(t∗3 ) ⊆ R(t∗1 ).

Proof. 1 → 2. Consider the following matrix representations of T and T† under the decomposition

H = N(A)⊥ ⊕ N(A),

T =
(
t1 t2
t3 t4

)
and T† =

(
r1 r2
r3 r4

)
.
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Since T, T† ∈ LA(H) and N(a) = {0} then t2 = 0, r2 = 0, R(t∗1a) ⊆ R(a) and R(r∗1a) ⊆ R(a). Now, as

TT† = I then t1r1 and t4r4 are the identity operator on N(A)⊥ and N(A), respectively. So t1 and t4
are surjective operators. Furthermore, since T†T is a selfadjoint projection then r1 = (t1)

† and t∗3 r∗4 =
−t∗1 r∗3 . So R((t

†
1)

∗a) ⊆ R(a) and R(t∗3 ) = R(t∗3 r∗4 ) ⊆ R(t∗1 ).
2 → 1. Since T =

(
t1 0
t3 t4

)
and R(t∗1a) ⊆ R(a) then T ∈ LA(H). On the other hand, since t1 and t4

are surjective operators and R(t∗3 ) ⊆ R(t∗1 ) then it is easy to check that T† =
(

t
†
1 0

−t
†
4t3t

†
1 t

†
4

)
and, as

R((t
†
1)

∗a) ⊆ R(a) then T† ∈ LA(H). Therefore, as TT† = I, the operator T is surjective and then T ∈ Σ .

�

Remark 3.6

1. Given T ∈ Δ then T† ∈ Δ if and only if T ∈ Gl(H).
2. Given T ∈ Σ then T† ∈ Σ if and only if T ∈ Gl(H).
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