Operator norm inequalities in semi-Hilbertian spaces

María Celeste Gonzalez *,1
Instituto Argentino de Matemática "Alberto P. Calderón" (IAM-CONICET), Saavedra 15, Piso 3 (1083), Buenos Aires, Argentina Departamento de Matemática, Facultad de Economía y Administración, Universidad Nacional del Comahue, Neuquén, Argentina

A R T I C L E I N F O

Article history:

Received 17 May 2010
Accepted 20 August 2010
Available online 22 September 2010
Submitted by R.A. Brualdi
Dedicated with much affection to the memory of Silvia Mercader.

AMS classification:

46C05
47A05
47A30

Keywords:
Semi-inner products
Norm inequality

Abstract

In this work we extend Cordes inequality, McIntosh inequality and CPR-inequality for the operator seminorm defined by a positive semidefinite bounded linear operator A.

© 2010 Elsevier Inc. All rights reserved.

Introduction

This paper is devoted to the study of the following operator norm inequalities when an additional seminorm is consider on a complex Hilbert space \mathcal{H} :
(I) If $V, W \in L(\mathcal{H})$ are semidefinite positive then $\left\|W^{t} V^{t}\right\| \leqslant\|W V\|^{t}$ for every $t \in[0,1]$;
(II) If $V, W, X \in L(\mathcal{H})$ then $\left\|W W^{*} X+X V V^{*}\right\| \geqslant 2\left\|W^{*} X V\right\|$;
(III) If $S, R \in L(\mathcal{H})$ are invertible then $\left\|S X R^{-1}+\left(S^{*}\right)^{-1} X R^{*}\right\| \geqslant 2\|X\|$ for every $X \in L(\mathcal{H})$.

[^0]0024-3795/\$ - see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.laa.2010.08.034

Here, $L(\mathcal{H})$ denotes the algebra of all bounded linear operators on \mathcal{H}, T^{*} denotes the adjoint operator of $T \in L(\mathcal{H})$ and $\|\cdot\|$ denotes the operator uniform norm. Inequality (I) is due to Cordes [8] (see also the paper by Furuta [13] for another proof). Inequality (II) is due to McIntosh [17] and it is known as the arithmetic-geometric-mean inequality. Different proofs of this property and its extension for every unitarily invariant norm can be found in [4,5,15]. Finally, Corach et al. [7] gave the first proof of inequality (III) for $S=R$ invertible and selfadjoint operators, which is known as CPR-inequality. Later, Kittaneh [16] proved the nonsymmetric version of it valid for every unitarily invariant norm, for all $X \in L(\mathcal{H})$ and all invertible $S, R \in L(\mathcal{H})$. See [1] for several equivalent expressions of inequality (III).

The main goal of this article is to study these properties if we consider an additional seminorm \| $\cdot \|_{A}$, defined by means of a positive semidefinite operator $A \in L(\mathcal{H})$ by $\|\xi\|_{A}^{2}=\langle\xi, \xi\rangle_{A}=\langle A \xi, \xi\rangle, \xi \in \mathcal{H}$, and we replace the operator norm in inequalities (I), (II) and (III) by the quantity

$$
\|T\|_{A}=\sup \left\{\|T \xi\|_{A}:\|\xi\|_{A}=1\right\}
$$

The extension of these properties is not trivial since many difficulties arise. For instance, it may happen that $\|T\|_{A}=\infty$ for some $T \in L(\mathcal{H})$. In addition, not every operator admits an adjoint operator for the semi-inner product \langle,\rangle_{A}.

The contents of the paper are the following. In Section 1 we set up notation, terminology and we describe the preliminary material on operators which are bounded for the A-seminorm. In Section 2 we study the concept of an A-positive operator and we extend Cordes inequality for the seminorm in matter. In Section 3 we generalize the arithmetic-geometric-mean inequality for this seminorm and, as a consequence, we obtain different extensions of the CPR-inequality. At the end of this section we describe the classes of operators which satisfy these extensions.

1. Preliminaries

Along this work \mathcal{H} denotes a complex Hilbert space with inner product $\langle,\rangle . L(\mathcal{H})$ is the algebra of all bounded linear operators on $\mathcal{H}, L(\mathcal{H})^{+}$is the cone of positive (semidefinite) operators of $L(\mathcal{H}$), i.e., $L(\mathcal{H})^{+}:=\{T \in L(\mathcal{H}):\langle T \xi, \xi\rangle \geqslant 0 \forall \xi \in \mathcal{H}\}$ and $L_{c r}(\mathcal{H})$ is the subset of $L(\mathcal{H})$ of all operators with closed range. For every $T \in L(\mathcal{H})$ its range is denoted by $R(T)$, its nullspace by $N(T)$ and its adjoint operator by T^{*}. In addition, if $T_{1}, T_{2} \in L(\mathcal{H})$ then $T_{1} \geqslant T_{2}$ means that $T_{1}-T_{2} \in L(\mathcal{H})^{+}$. Given a closed subspace \mathcal{S} of $\mathcal{H}, P_{\mathcal{S}}$ denotes the orthogonal projection onto \mathcal{S}. On the other hand, T^{\dagger} stands for the Moore-Penrose inverse of $T \in L(\mathcal{H})$. Recall that T^{\dagger} is the unique linear mapping from $\mathcal{D}\left(T^{\dagger}\right)=R(T) \oplus R(T)^{\perp}$ to \mathcal{H} which satisfies the four "Moore-Penrose equations":

$$
T X T=T, \quad X T X=X, \quad X T=P_{\overline{R\left(T^{*}\right)}}, \quad \text { and } \quad T X=\left.P_{\overline{R(T)}}\right|_{\mathcal{D}\left(T^{\dagger}\right)}
$$

In general, $T^{\dagger} \notin L(\mathcal{H})$. Indeed, $T^{\dagger} \in L(\mathcal{H})$ if and only if $T \in L(\mathcal{H})$ has closed range [18]. On the other hand, given $T, C \in L(\mathcal{H})$ such that $R(C) \subseteq R(T)$ then it holds $T^{\dagger} C \in L(\mathcal{H})$ even if T^{\dagger} is not bounded.

Given $A \in L(\mathcal{H})^{+}$, the functional

$$
\langle,\rangle_{A}: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{C}, \quad\langle\xi, \eta\rangle_{A}:=\langle A \xi, \eta\rangle
$$

is a semi-inner product on \mathcal{H}. By $\|\cdot\|_{A}$ we denote the seminorm induced by $\langle\text {, }\rangle_{A}$, i.e., $\|\xi\|_{A}=\langle\xi, \xi\rangle_{A}^{1 / 2}$. Observe that $\|\xi\|_{A}=0$ if and only if $\xi \in N(A)$. Then $\|\cdot\|_{A}$ is a norm if and only if $A \in L(\mathcal{H})^{+}$is an injective operator. Moreover, \langle,\rangle_{A} induces a seminorm on a certain subset of $L(\mathcal{H})$, namely, on the subset of all $T \in L(\mathcal{H})$ for which there exists a constant $c>0$ such that $\|T \xi\|_{A} \leqslant c\|\xi\|_{A}$ for every $\xi \in \mathcal{H}$. In such case it holds

$$
\|T\|_{A}=\sup _{\xi \notin N(A)} \frac{\|T \xi\|_{A}}{\|\xi\|_{A}}<\infty .
$$

We denote

$$
L_{A^{1 / 2}}(\mathcal{H})=\left\{T \in L(\mathcal{H}):\|T \xi\|_{A} \leqslant c\|\xi\|_{A} \text { for every } \xi \in \mathcal{H}\right\}
$$

It is easy to see that $L_{A^{1 / 2}}(\mathcal{H})$ is a subalgebra of $L(\mathcal{H})$. In [2] we study some properties of the operator seminorm $\|\cdot\|_{A}$. One of them shows the relationship between the A-seminorm and the operator
uniform norm as follows: if $T \in L_{A^{1 / 2}}(\mathcal{H})$ then $A^{1 / 2} T\left(A^{1 / 2}\right)^{\dagger}$ is a bounded operator on $\mathcal{D}\left(\left(A^{1 / 2}\right)^{\dagger}\right)$. Moreover, it holds

$$
\|T\|_{A}=\left\|A^{1 / 2} T\left(A^{1 / 2}\right)^{\dagger}\right\|=\left\|\overline{A^{1 / 2} T\left(A^{1 / 2}\right)^{\dagger}}\right\|=\left\|\left(A^{1 / 2}\right)^{\dagger} T^{*} A^{1 / 2}\right\|
$$

where $\overline{A^{1 / 2} T\left(A^{1 / 2}\right)^{\dagger}}$ denotes the unique bounded linear extension of $A^{1 / 2} T\left(A^{1 / 2}\right)^{\dagger}$ to $L(\mathcal{H})$.
Given $T \in L(\mathcal{H})$, an operator $W \in L(\mathcal{H})$ is called an \boldsymbol{A}-adjoint of T if

$$
\langle T \xi, \eta\rangle_{A}=\langle\xi, W \eta\rangle_{A} \text { for every } \xi, \eta \in \mathcal{H},
$$

or, which is equivalent, if W satisfies the equation $A W=T^{*} A$. The operator T is called \boldsymbol{A}-selfadjoint if $A T=T^{*} A$. The existence of an A-adjoint operator is not guaranteed. Observe that T admits an A-adjoint operator if and only if the equation $A X=T^{*} A$ has solution. This kind of equations can be studied applying the next theorem due to Douglas (for its proof see [10] or [11]).

Theorem 1. Let $B, C \in L(\mathcal{H})$. The following conditions are equivalent:

1. $R(C) \subseteq R(B)$.
2. There exists a positive number λ such that $C C^{*} \leqslant \lambda B B^{*}$.
3. There exists $D \in L(\mathcal{H})$ such that $B D=C$.

If one of these conditions holds then there exists a unique operator $E \in L(\mathcal{H})$ such that $B E=C$ and $R(E) \subseteq \overline{R\left(B^{*}\right)}$.

Therefore, if we denote by $L_{A}(\mathcal{H})$ the subalgebra of $L(\mathcal{H})$ of all operators which admit an A-adjoint operator then

$$
L_{A}(\mathcal{H})=\left\{T \in L(\mathcal{H}): T^{*} R(A) \subseteq R(A)\right\}
$$

Furthermore, applying Douglas theorem we can see that

$$
L_{A^{1 / 2}}(\mathcal{H})=\left\{T \in L(\mathcal{H}): T^{*} R\left(A^{1 / 2}\right) \subseteq R\left(A^{1 / 2}\right)\right\}
$$

In [14, Theorem 5.1], the following relationship between the above sets is proved:

$$
L_{A}(\mathcal{H}) \subseteq L_{A^{1 / 2}}(\mathcal{H})
$$

Moreover, it can be checked that the equality holds if and only if A has closed range.
If an operator equation $B X=C$ has solution then it is easy to see that the distinguished solution of Douglas theorem is given by $B^{\dagger} C$. Therefore, given $T \in L_{A}(\mathcal{H})$, if we denote by T^{\sharp} the unique A-adjoint operator of T whose range is included in $\overline{R(A)}$ then

$$
T^{\sharp}=A^{\dagger} T^{*} A .
$$

Note that if W is an A-adjoint of T then $W=T^{\sharp}+Z$, with $Z \in L(\mathcal{H})$ such that $R(Z) \subseteq N(A)$. In the next proposition we collect some properties of T^{\sharp} which we shall use along this work. For its proof see [2,3].

Proposition 1.1. Let $T \in L_{A}(\mathcal{H})$. Then:

1. $T^{\sharp} \in L_{A}(\mathcal{H}),\left(T^{\sharp}\right)^{\sharp}=P_{\overline{R(A)}} T P_{\overline{R(A)}}$ and $\left(\left(T^{\sharp}\right)^{\sharp}\right)^{\sharp}=T^{\sharp}$.
2. If $W \in L_{A}(\mathcal{H})$ then $T W \in L_{A}(\mathcal{H})$ and $(T W)^{\sharp}=W^{\sharp} T^{\sharp}$.
3. $\|T\|_{A}=\left\|T^{\sharp}\right\|_{A}=\left\|T^{\sharp} T\right\|_{A}^{1 / 2}$.
4. $\|W\|_{A}=\left\|T^{\sharp}\right\|_{A}$ for every $W \in L(\mathcal{H})$ which is an A-adjoint of T.

2. Cordes inequality for the A-seminorm

Cordes inequality [8] states that if W, V are bounded positive operators then

$$
\begin{equation*}
\left\|W^{t} V^{t}\right\| \leqslant\|W V\|^{t} \tag{1}
\end{equation*}
$$

for every $t \in[0,1]$. Furuta [13] gave an alternative proof of (1) and he proved that this inequality is equivalent to the well-known Löwner-Heinz inequality:
if $0 \leqslant W \leqslant V$ then $W^{t} \leqslant V^{t}$ for every $t \in[0,1]$.
This section is devoted to obtain a version of the well-known Cordes inequality for the operator seminorm $\|\cdot\|_{A}$. In order to extend (1) we prove the following two technical lemmas. In the sequel we say that $T \in L(\mathcal{H})$ is an \boldsymbol{A}-positive operator if $A T \in L(\mathcal{H})^{+}$.

Lemma 2.1. Let $A \in L(\mathcal{H})^{+}$and $T \in L(\mathcal{H})$. The following assertions are equivalent:

1. T is an A-positive operator;
2. $T \in L_{A^{1 / 2}}(\mathcal{H})$ and $\overline{A^{1 / 2} T\left(A^{1 / 2}\right)^{\dagger}} \in L(\mathcal{H})^{+}$.

Proof. If $A T \in L(\mathcal{H})^{+}$then $A T=T^{*} A$ and so $T \in L_{A}(\mathcal{H}) \subseteq L_{A^{1 / 2}}(\mathcal{H})$. Then $A^{1 / 2} T\left(A^{1 / 2}\right)^{\dagger}=\left(A^{1 / 2}\right)^{\dagger} T^{*}$ $\left.A^{1 / 2}\right|_{\mathcal{D}\left(\left(A^{1 / 2}\right)^{\dagger}\right)}$ is a bounded positive operator on $\mathcal{D}\left(\left(A^{1 / 2}\right)^{\dagger}\right)$. Therefore, $\overline{A^{1 / 2} T\left(A^{1 / 2}\right)^{\dagger} \in L(\mathcal{H})^{+} \text {. On the }}$ contrary, if $\overline{A^{1 / 2} T\left(A^{1 / 2}\right)^{\dagger}} \in L(\mathcal{H})^{+}$then $\left(A^{1 / 2}\right)^{\dagger} T^{*} A^{1 / 2} \in L(\mathcal{H})^{+}$. Hence we get $A^{1 / 2}\left(A^{1 / 2}\right)^{\dagger} T^{*} A^{1 / 2} A^{1 / 2}$ $=\left.P_{\overline{R(A)}}\right|_{\mathcal{D}\left(\left(A^{1 / 2}\right)^{\dagger}\right)} T^{*} A=T^{*} A \in L(\mathcal{H})^{+}$. So T is an A-positive operator.

Lemma 2.2. Let $A, T \in L(\mathcal{H})^{+}$. The following assertions are equivalent:

1. T is an A-positive operator;
2. T is an $A^{1 / 2}$-positive operator.

Proof. If $T \in L(\mathcal{H})^{+}$is an A-positive operator then $A T=T A$. So, $A^{n} T=T A^{n}$ for every $n \in \mathbb{N}$. Thus, $p(A) T=T p(A)$ for every polynomial p. Now, consider $f(t)=t^{1 / 2}$. Then there exists a sequence of polynomials $\left\{p_{n}\right\}$ such that $p_{n}(t) \underset{n \longrightarrow \infty}{\longrightarrow} f(t)$ uniformly. So, $p_{n}(A) \underset{n \rightarrow \infty}{\longrightarrow} f(A)=A^{1 / 2}$. As a consequence we get that $A^{1 / 2} T=T A^{1 / 2}$ and so T is an $A^{1 / 2}$-positive operator. Conversely, if $T \in L(\mathcal{H})^{+}$is an $A^{1 / 2}$ positive operator then $A^{1 / 2} T=T A^{1 / 2}$. Therefore $A T=A^{1 / 2} T A^{1 / 2}$ is a positive operator. So, T is A positive.

The next proposition is a restricted version of Cordes inequality for the A-seminorm.
Proposition 2.3. Let $A, V, W \in L(\mathcal{H})^{+}$. If V and W are A-positive operators then

$$
\left\|W^{1 / 2} V^{1 / 2}\right\|_{A} \leqslant\|W V\|_{A}^{1 / 2}
$$

Proof. First note that since $W \in L(\mathcal{H})^{+}$is an A-positive operator then, by Lemma 2.2, the operator $W^{1 / 2}$ is A-positive too. So, $W, W^{1 / 2} \in L_{A^{1 / 2}}(\mathcal{H})$ and, by Lemma 2.1, we get that $\left(A^{1 / 2}\right)^{\dagger} W A^{1 / 2} \in L(\mathcal{H})^{+}$ and $\left(A^{1 / 2}\right)^{\dagger} W^{1 / 2} A^{1 / 2} \in L(\mathcal{H})^{+}$. Now, observe that $\left(\left(A^{1 / 2}\right)^{\dagger} W A^{1 / 2}\right)^{1 / 2}=\left(A^{1 / 2}\right)^{\dagger} W^{1 / 2} A^{1 / 2}$. The same remarks hold for the operator V. Then we get,

$$
\begin{aligned}
\left\|W^{1 / 2} V^{1 / 2}\right\|_{A} & =\left\|A^{1 / 2} W^{1 / 2} V^{1 / 2}\left(A^{1 / 2}\right)^{\dagger}\right\| \\
& =\left\|\left(A^{1 / 2}\right)^{\dagger} V^{1 / 2} A^{1 / 2}\left(A^{1 / 2}\right)^{\dagger} W^{1 / 2} A^{1 / 2}\right\| \\
& =\left\|\left(\left(A^{1 / 2}\right)^{\dagger} V A^{1 / 2}\right)^{1 / 2}\left(\left(A^{1 / 2}\right)^{\dagger} W A^{1 / 2}\right)^{1 / 2}\right\| \\
& \leqslant\left\|\left(A^{1 / 2}\right)^{\dagger} V A^{1 / 2}\left(A^{1 / 2}\right)^{\dagger} W A^{1 / 2}\right\|^{1 / 2} \\
& =\|W V\|_{A}^{1 / 2} ;
\end{aligned}
$$

where the inequality holds by Cordes inequality for $t=\frac{1}{2}$.

In the following result we present a generalization of Cordes inequality for the A-seminorm. In the proof, the concept of spectral radius of a bounded linear operator appears. Remember that, given $T \in L(\mathcal{H})$, the spectral radius of T is the number

$$
r(T)=\sup _{\lambda \in \sigma(T)}|\lambda|
$$

where $\sigma(T)$ denotes the spectrum of T. In addition, it holds that $r(T)=\lim _{n \rightarrow \infty}\left\|T^{n}\right\|^{1 / n}$. From this we get, $r(T) \leqslant\|T\|$. On the other hand, if $T=T^{*}$ then $r(T)=\|T\|$ and for every $T, S \in L(\mathcal{H})$ it holds $r(T S)=r(S T)$. For a proof of the above facts the reader is referred to the books of Reed and Simon [19], Conway [6] and Davidson [9]. The proof of the next theorem follows the idea of Fujii and Furuta [12].

Theorem 2.4. Let $A, V, W \in L(\mathcal{H})^{+}$. If V and W are A-positive operators then for every $t \in[0,1]$ it holds

$$
\begin{equation*}
\left\|W^{t} V^{t}\right\|_{A} \leqslant\|W V\|_{A}^{t} . \tag{2}
\end{equation*}
$$

Proof. Note that since $W \in L(\mathcal{H})^{+}$is an A-positive operator then, a similar argument to that of the proof of Lemma 2.2 shows that W^{t} is A-positive for every $t \in[0,1]$. Now, we claim that it is sufficient to prove the inequality (2) in a dense subset \mathcal{D} of $[0,1]$. In fact, let $t_{0} \in[0,1]$. Then, there exists a sequence $\left\{t_{k}\right\} \subseteq \mathcal{D}$ such that $t_{k} \longrightarrow t_{k \rightarrow \infty}$. So, $V^{t_{k}} W^{t_{k}} \underset{k \rightarrow \infty}{\longrightarrow} V^{t_{0}} W^{t_{0}}$. On the other hand, since W^{t} and V^{t} are A-positive for every $t \in[0,1]$ then, by Lemma 2.2, we get $A^{1 / 2} V^{t} W^{t}=V^{t} W^{t} A^{1 / 2}$ for every $t \in[0,1]$. In consequence, $\left\|W^{t_{k}} V^{t_{k}}\right\|_{A} \xrightarrow[k \rightarrow \infty]{\longrightarrow}\left\|W^{t_{0}} V^{t_{0}}\right\|_{A}$. Indeed,

$$
\begin{aligned}
\left|\left\|W^{t_{k}} V^{t_{k}}\right\|_{A}-\left\|W^{t_{0}} V^{t_{0}}\right\|_{A}\right| & =\left|\left\|\left(A^{1 / 2}\right)^{\dagger} V^{t_{k}} W^{t_{k}} A^{1 / 2}\right\|-\left\|\left(A^{1 / 2}\right)^{\dagger} V^{t_{0}} W^{t_{0}} A^{1 / 2}\right\|\right| \\
& \leqslant\left\|\left(A^{1 / 2}\right)^{\dagger}\left(V^{t_{k}} W^{t_{k}}-V^{t_{0}} W^{t_{0}}\right) A^{1 / 2}\right\| \\
& =\left\|\left(A^{1 / 2}\right)^{\dagger} A^{1 / 2}\left(V^{t_{k}} W^{t_{k}}-V^{t_{0}} W^{t_{0}}\right)\right\| \\
& \leqslant\left\|V^{t_{k}} W^{t_{k}}-V^{t_{0}} W^{t_{0}}\right\| \xrightarrow[k \rightarrow \infty]{\longrightarrow} 0 .
\end{aligned}
$$

Therefore, if the inequality (2) holds for every $t \in \mathcal{D}$ then

$$
\left\|W^{t_{0}} V^{t_{0}}\right\|_{A}=\lim _{k \rightarrow \infty}\left\|W^{t_{k}} V^{t_{k}}\right\|_{A} \leqslant \lim _{k \rightarrow \infty}\|W V\|_{A}^{t_{k}}=\|W V\|_{A}^{t_{0}}
$$

Now consider $\mathcal{D}=\left\{\frac{m}{2^{n}} ; m=1, \ldots, 2^{n}, n \in \mathbb{N}\right\}$ which is a dense subset of $[0,1]$. Note that the inequality (2) holds for $t=0, t=\frac{1}{2}$ and $t=1$. Therefore, to prove that it holds for every element of \mathcal{D} it is sufficient to show that if $\left\|W^{s} V^{s}\right\|_{A} \leqslant\|W V\|_{A}^{s}$ and $\left\|W^{t} V^{t}\right\|_{A} \leqslant\|W V\|_{A}^{t}$ for $s, t \in \mathcal{D}$ then $\left\|W^{r} V^{r}\right\|_{A} \leqslant\|W V\|_{A}^{r}$ for $r=\frac{s+t}{2}$. Now, since $A W^{r} V^{r}=W^{r} V^{r} A$ then

$$
\begin{equation*}
\overline{A^{1 / 2} W^{r} V^{r}\left(A^{1 / 2}\right)^{\dagger}}=\left(A^{1 / 2}\right)^{\dagger} W^{r} V^{r} A^{1 / 2} \tag{3}
\end{equation*}
$$

On the other hand, since $W^{r} V^{2 r} W^{r} \in L(\mathcal{H})^{+}$and $A W^{r} V^{2 r} W^{r}=W^{r} V^{2 r} W^{r} A$ then $A W^{r} V^{2 r} W^{r}$ is positive and so, by Lemma 2.1,

$$
\begin{equation*}
\overline{A^{1 / 2} W^{r} V^{2 r} W^{r}\left(A^{1 / 2}\right)^{\dagger}}=\left(A^{1 / 2}\right)^{\dagger} W^{r} V^{2 r} W^{r} A^{1 / 2} \tag{4}
\end{equation*}
$$

is positive too. Now, from equalities (3) and (4) we get

$$
\begin{aligned}
\left\|W^{r} V^{r}\right\|_{A}^{2} & =\left\|A^{1 / 2} W^{r} V^{r}\left(A^{1 / 2}\right)^{\dagger}\right\|^{2} \\
& =\| \overline{A^{1 / 2} W^{r} V^{r}\left(A^{1 / 2}\right)^{\dagger}\left(A^{1 / 2}\right)^{\dagger}\left(W^{r} V^{r}\right)^{*} A^{1 / 2} \|} \\
& =\left\|\left(A^{1 / 2}\right)^{\dagger} W^{r} V^{r} A^{1 / 2}\left(A^{1 / 2}\right)^{\dagger}\left(W^{r} V^{r}\right)^{*} A^{1 / 2}\right\| \\
& =\left\|\left(A^{1 / 2}\right)^{\dagger} W^{r} V^{2 r} W^{r} A^{1 / 2}\right\| \\
& =r\left(\left(A^{1 / 2}\right)^{\dagger} W^{r} V^{2 r} W^{r} A^{1 / 2}\right) .
\end{aligned}
$$

On the other hand, as $W^{s} V^{s} A=A W^{s} V^{s}$ then $\left(V^{s} W^{s}\right)^{\sharp}=P_{\bar{R}(A)} W^{s} V^{s}$. Therefore

$$
\left\|V^{s} W^{s}\right\|_{A}=\left\|W^{s} V^{s}\right\|_{A} .
$$

Now, by properties of spectral radius and by the fact that W^{r} and $V^{2 r}$ belong to $L_{A^{1 / 2}}(\mathcal{H})$ we get

$$
\begin{aligned}
r\left(\left(A^{1 / 2}\right)^{\dagger} W^{r} V^{2 r} W^{r} A^{1 / 2}\right) & =r\left(\left(A^{1 / 2}\right)^{\dagger} W^{r} A^{1 / 2}\left(A^{1 / 2}\right)^{\dagger} V^{2 r} A^{1 / 2}\left(A^{1 / 2}\right)^{\dagger} W^{r} A^{1 / 2}\right) \\
& =r\left(\left(A^{1 / 2}\right)^{\dagger} V^{2 r} A^{1 / 2}\left(A^{1 / 2}\right)^{\dagger} W^{2 r} A^{1 / 2}\right) \\
& =r\left(\left(A^{1 / 2}\right)^{\dagger} V^{t} W^{t} A^{1 / 2}\left(A^{1 / 2}\right)^{\dagger} W^{s} V^{s} A^{1 / 2}\right) \\
& \leqslant\left\|W^{t} V^{t}\right\|_{A}\left\|V^{s} W^{s}\right\|_{A}=\left\|W^{t} V^{t}\right\|_{A}\left\|W^{s} V^{s}\right\|_{A} \\
& \leqslant\|W V\|_{A}^{t+s}=\|W V\|_{A}^{2 r} .
\end{aligned}
$$

Therefore, the proof is complete.

3. The arithmetic-geometric-mean inequality for the A-seminorm

We begin this section by presenting the following operator form of the so-called "arithmetic-geometric-mean inequality"

$$
\left\|W W^{*} X+X V V^{*}\right\| \geqslant 2\left\|W^{*} X V\right\|,
$$

valid for any $V, W, X \in L(\mathcal{H})$. The above inequality is due to McIntosh [17] and it also holds for every unitarily invariant norm (see [5,15]). But here, we only shall deal with the version of McIntosh's inequality for the operator uniform norm. In the following result we generalize the arithmetic-geometric-mean inequality for the operator seminorm induced by $A \in L(\mathcal{H})^{+}$.

Proposition 3.1. Let $V, W \in L_{A}(\mathcal{H})$ and $X \in L_{A^{1 / 2}}(\mathcal{H})$. The following inequalities hold and they are equivalent:

1. $\left\|W^{\sharp} W X+X V^{\sharp} V\right\|_{A} \geqslant 2\left\|W X V^{\sharp}\right\|_{A}$;
2. $\left\|W W^{\sharp} X+X V^{\sharp} V\right\|_{A} \geqslant 2\left\|W^{\sharp} X V^{\sharp}\right\|_{A}$;
3. $\left\|W W^{\sharp} X+X V V^{\sharp}\right\|_{A} \geqslant 2\left\|W^{\sharp} X V\right\|_{A}$.

Proof. First let us prove that the inequality of item 1 holds. Note that $A^{1 / 2} W\left(A^{1 / 2}\right)^{\dagger}, A^{1 / 2} V\left(A^{1 / 2}\right)^{\dagger}$ and $A^{1 / 2} X\left(A^{1 / 2}\right)^{\dagger}$ are bounded operators on $\mathcal{D}\left(\left(A^{1 / 2}\right)^{\dagger}\right)$. Now, it holds

$$
\begin{aligned}
\left\|W^{\sharp} W X+X V^{\sharp} V\right\|_{A} & =\left\|A^{1 / 2} A^{\dagger} W^{*} A W X\left(A^{1 / 2}\right)^{\dagger}+A^{1 / 2} X A^{\dagger} V^{*} A V\left(A^{1 / 2}\right)^{\dagger}\right\| \\
& \geqslant 2 \| \overline{A^{1 / 2} W\left(A^{1 / 2}\right)^{\dagger} A^{1 / 2} X\left(A^{1 / 2}\right)^{\dagger}\left(A^{1 / 2}\right)^{\dagger} V^{*} A^{1 / 2} \|} \\
& \geqslant 2 \| \overline{\left.A^{1 / 2} W\left(A^{1 / 2}\right)^{\dagger} A^{1 / 2} X\left(A^{1 / 2}\right)^{\dagger}\left(A^{1 / 2}\right)^{\dagger} V^{*} A^{1 / 2}\right|_{\mathcal{D}\left(\left(A^{1 / 2}\right)^{\dagger}\right)} \|} \begin{aligned}
& =2 \| \overline{A^{1 / 2} W\left(A^{1 / 2}\right)^{\dagger} A^{1 / 2} X\left(A^{1 / 2}\right)^{\dagger}\left(A^{1 / 2}\right)^{\dagger} V^{*} A\left(A^{1 / 2}\right)^{\dagger} \|} \\
& =2\left\|A^{1 / 2} W X A^{\dagger} V^{*} A\left(A^{1 / 2}\right)^{\dagger}\right\| \\
& =2\left\|W X V^{\sharp}\right\|_{A} ;
\end{aligned} .
\end{aligned}
$$

where the first inequality holds by the arithmetic-geometric-mean inequality. So item 1 holds.
$1 \rightarrow 2$. Observe that

$$
\begin{aligned}
\left\|W W^{\sharp} X+X V^{\sharp} V\right\|_{A} & =\left\|P_{\overline{R(A)}} W P_{\overline{R(A)}} W^{\sharp} X+X V^{\sharp} V\right\|_{A} \\
& =\left\|\left(W^{\sharp}\right)^{\sharp} W^{\sharp} X+X V^{\sharp} V\right\|_{A} \\
& \geqslant 2\left\|W^{\sharp} X V^{\sharp}\right\|_{A},
\end{aligned}
$$

where the inequality holds by item 1 . Then item 2 is obtained. Employing a similar argument to that used above we prove implications $2 \rightarrow 3$ and $3 \rightarrow 1$.

3.1. CPR-type-inequalities for the A-seminorm

In this subsection we obtain a Corach-Porta-Recht (CPR) type inequality for the A-operator seminorm. The CPR-inequality [7] asserts that if $S, X \in L(\mathcal{H})$ with S invertible and selfadjoint then

$$
\left\|S X S^{-1}+S^{-1} X S\right\| \geqslant 2\|X\| .
$$

Later, Kittaneh [16] proved it for general invertible $R, S \in L(\mathcal{H}), X \in L(\mathcal{H})$ and unitarily invariants norms in $L(\mathcal{H})$, that is

$$
\begin{equation*}
\left\|S X R^{-1}+\left(S^{*}\right)^{-1} X R^{*}\right\| \geqslant 2\|X\| . \tag{5}
\end{equation*}
$$

He proved this inequality by showing that it is equivalent to the arithmetic-geometric-mean inequality. Following the same lines of the Kittaneh's proof, the inequality (5) can be extended to the case S, R injective operators in $L_{c r}(\mathcal{H})$. In such case, for every $X \in L(\mathcal{H})$ and every unitarily invariant norm it holds

$$
\begin{equation*}
\left\|S X R^{\dagger}+\left(S^{*}\right)^{\dagger} X R^{*}\right\| \geqslant 2\|X\| \| . \tag{6}
\end{equation*}
$$

Remark 3.2. If S or R is not an injective operator then inequality (6) is false, in general. In fact, let $\mathcal{H}=\mathbb{R}^{2}$. Now take $S=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right), R=I$ (the identity operator) and $X=\left(\begin{array}{cc}1 / 2 & 0 \\ 0 & 0\end{array}\right)$. It is easy to check that $S^{\dagger}=\left(\begin{array}{ll}1 / 4 & 1 / 4 \\ 1 / 4 & 1 / 4\end{array}\right)$. Now, observe that $\left\|S X+S^{\dagger} X\right\|^{2}=\left\|\left(\begin{array}{ll}5 / 8 & 0 \\ 5 / 8 & 0\end{array}\right)\right\|^{2}=\frac{50}{64}$. Therefore $\left\|S X+S^{\dagger} X\right\|=$ $\sqrt{\frac{50}{64}}<1=2\|X\|$.

In the next result we generalize the CPR-inequality for the A-seminorm in two different ways. The proof follows the idea used in [16, Corollary 1].

Theorem 3.3. Let $X \in L_{A^{1 / 2}}(\mathcal{H})$ and $S \in L_{c r}(\mathcal{H})$ an injective operator such that $S, S^{\dagger} \in L_{A}(\mathcal{H})$. Then the following assertions hold:

1. If $R \in L_{c r}(\mathcal{H})$ is an injective operator such that $R, R^{\dagger} \in L_{A}(\mathcal{H})$ then:
$\left\|S X R^{\dagger}+\left(S^{\dagger}\right)^{\sharp} X R^{\sharp}\right\|_{A} \geqslant 2\|X\|_{A}$.
2. If R is a surjective operator such that $R, R^{\dagger} \in L_{A}(\mathcal{H})$ then:

$$
\left\|S X\left(R^{\dagger}\right)^{\sharp}+\left(S^{\dagger}\right)^{\sharp} X R\right\|_{A} \geqslant 2\|X\|_{A} .
$$

Proof. It is well-known that $S \in L_{c r}(\mathcal{H})$ if and only if $S^{*} \in L_{c r}(\mathcal{H})$. Therefore $S^{\dagger},\left(S^{*}\right)^{\dagger} \in L(\mathcal{H})$ and $\left(S^{\dagger}\right)^{*}=\left(S^{*}\right)^{\dagger}$. Now, as $S \in L_{c r}(\mathcal{H})$ is an injective operator such that $S, S^{\dagger} \in L_{A}(\mathcal{H})$ then $S^{\sharp}\left(S^{\dagger}\right)^{\sharp}=P_{\overline{R(A)}}$.

1. Since R is injective then $R^{\dagger} R=I$. Thus

$$
\begin{aligned}
\left\|S X R^{\dagger}+\left(S^{\dagger}\right)^{\sharp} X R^{\sharp}\right\|_{A} & =\left\|S S^{\sharp}\left(S^{\dagger}\right)^{\sharp} X R^{\dagger}+\left(S^{\dagger}\right)^{\sharp} X R^{\dagger} R R^{\sharp}\right\|_{A} \\
& \geqslant 2\left\|S^{\sharp}\left(S^{\dagger}\right)^{\sharp} X R^{\dagger} R\right\|_{A}=2\left\|P_{\overline{R(A)}} X\right\|_{A} \\
& =2\|X\|_{A},
\end{aligned}
$$

where the inequality holds by item 3 in Proposition 3.1.
2. Since R is surjective then $R^{\dagger} \in L(\mathcal{H})$ and $R R^{\dagger}=I$. So $\left(R^{\dagger}\right)^{\sharp} R^{\sharp}=P_{\overline{R(A)}}$. Now,

$$
\begin{aligned}
\left\|S X\left(R^{\dagger}\right)^{\sharp}+\left(S^{\dagger}\right)^{\sharp} X R\right\|_{A} & =\left\|S S^{\sharp}\left(S^{\dagger}\right)^{\sharp} X\left(R^{\dagger}\right)^{\sharp}+\left(S^{\dagger}\right)^{\sharp} X\left(R^{\dagger}\right)^{\sharp} R^{\sharp} R\right\|_{A} \\
& \geqslant 2\left\|S^{\sharp}\left(S^{\dagger}\right)^{\sharp} X\left(R^{\dagger}\right)^{\sharp} R^{\sharp}\right\|_{A}=2\left\|P_{\overline{R(A)}} X P_{\overline{R(A)}}\right\|_{A} \\
& =2\|X\|_{A},
\end{aligned}
$$

where the inequality holds by item 2 in Proposition 3.1.
In the sequel we study the sets of operators which satisfy Theorem 3.3, namely,

$$
\Delta=\left\{T \in L_{c r}(\mathcal{H}): T \text { is injective and } T, T^{\dagger} \in L_{A}(\mathcal{H})\right\}
$$

and

$$
\Sigma=\left\{T \in L(\mathcal{H}): T \text { is surjective and } T, T^{\dagger} \in L_{A}(\mathcal{H})\right\}
$$

The description of Δ and Σ will be done by means of the matrix representation of operators of $L(\mathcal{H})$ induced by the decomposition $\mathcal{H}=N(A)^{\perp} \oplus N(A)$. In such case, $A \in L(\mathcal{H})^{+}$has the representation

$$
A=\left(\begin{array}{ll}
a & 0 \tag{7}\\
0 & 0
\end{array}\right)
$$

where $a \in L\left(N(A)^{\perp}\right)^{+}$and $N(a)=\{0\}$.
Proposition 3.4. Let $T \in L_{c r}(\mathcal{H})$ and $A \in L(\mathcal{H})^{+}$with the matrix representation (7). Then the following assertions are equivalent:

1. $T \in \Delta$;
2. $T=\left(\begin{array}{cc}t_{1} & 0 \\ t_{3} & t_{4}\end{array}\right)$; where $t_{1} \in L_{c r}\left(N(A)^{\perp}\right)$ is injective, $t_{4} \in L_{c r}(N(A))$ is injective, $R\left(t_{1}^{*} a\right) \subseteq R(a)$ and $R\left(\left(t_{1}^{\dagger}\right)^{*} a\right) \subseteq R(a)$.

Proof. $1 \rightarrow 2$. Consider the following matrix representations of T and T^{\dagger} under the decomposition $\mathcal{H}=N(A)^{\perp} \oplus N(A)$,

$$
T=\left(\begin{array}{ll}
t_{1} & t_{2} \\
t_{3} & t_{4}
\end{array}\right) \quad \text { and } \quad T^{\dagger}=\left(\begin{array}{ll}
r_{1} & r_{2} \\
r_{3} & r_{4}
\end{array}\right)
$$

Since $T, T^{\dagger} \in L_{A}(\mathcal{H})$ and $N(a)=\{0\}$ then $t_{2}=0, r_{2}=0, R\left(t_{1}^{*} a\right) \subseteq R(a)$ and $R\left(r_{1}^{*} a\right) \subseteq R(a)$. Now, as $T^{\dagger} T=I$ then $r_{1} t_{1}$ and $r_{4} t_{4}$ are the identity operator on $N(A)^{\perp}$ and $N(A)$, respectively. So t_{1} and t_{4} are injective operators. Furthermore, since $T T^{\dagger}$ is selfadjoint then $r_{1}=\left(t_{1}\right)^{\dagger}$ and $r_{4}=\left(t_{4}\right)^{\dagger}$. Therefore $t_{1} \in L_{c r}\left(N(A)^{\perp}\right), t_{4} \in L_{c r}(N(A))$ and $R\left(\left(t_{1}^{\dagger}\right)^{*} a\right) \subseteq R(a)$.
$2 \rightarrow 1$. Since $T=\left(\begin{array}{cc}t_{1} & 0 \\ t_{3} & t_{4}\end{array}\right)$ and $R\left(t_{1}^{*} a\right) \subseteq R(a)$ then $R\left(T^{*} A\right) \subseteq R(A)$ and so $T \in L_{A}(\mathcal{H})$. On the other hand, since t_{1} and t_{4} are injective operators then T is injective. As, in addition, t_{1} and t_{4} have closed range then it is easy to check that $T^{\dagger}=\left(\begin{array}{cc}t_{1}^{\dagger} & 0 \\ -t_{4}^{\dagger} t_{3} t_{1}^{\dagger} & t_{4}^{\dagger}\end{array}\right)$. Furthermore, as $R\left(\left(t_{1}^{\dagger}\right)^{*} a\right) \subseteq R(a)$ then $R\left(\left(T^{\dagger}\right)^{*} A\right) \subseteq$ $R(A)$. Therefore $T^{\dagger} \in L_{A}(\mathcal{H})$ and so $T \in \Delta$.

Proposition 3.5. Let $T \in L(\mathcal{H})$ and $A \in L(\mathcal{H})^{+}$with the matrix representation (7). The following assertions are equivalent:

1. $T \in \Sigma$;
2. $T=\left(\begin{array}{cc}t_{1} & 0 \\ t_{3} & t_{4}\end{array}\right)$; where $t_{1} \in L\left(N(A)^{\perp}\right)$ is surjective, $t_{4} \in L(N(A))$ is surjective, $R\left(t_{1}^{*} a\right) \subseteq R(a)$, $R\left(\left(t_{1}^{\dagger}\right)^{*} a\right) \subseteq R(a)$ and $R\left(t_{3}^{*}\right) \subseteq R\left(t_{1}^{*}\right)$.

Proof. $1 \rightarrow 2$. Consider the following matrix representations of T and T^{\dagger} under the decomposition $\mathcal{H}=N(A)^{\perp} \oplus N(A)$,

$$
T=\left(\begin{array}{ll}
t_{1} & t_{2} \\
t_{3} & t_{4}
\end{array}\right) \quad \text { and } \quad T^{\dagger}=\left(\begin{array}{ll}
r_{1} & r_{2} \\
r_{3} & r_{4}
\end{array}\right)
$$

Since $T, T^{\dagger} \in L_{A}(\mathcal{H})$ and $N(a)=\{0\}$ then $t_{2}=0, r_{2}=0, R\left(t_{1}^{*} a\right) \subseteq R(a)$ and $R\left(r_{1}^{*} a\right) \subseteq R(a)$. Now, as $T T^{\dagger}=I$ then $t_{1} r_{1}$ and $t_{4} r_{4}$ are the identity operator on $N(A)^{\perp}$ and $N(A)$, respectively. So t_{1} and t_{4} are surjective operators. Furthermore, since $T^{\dagger} T$ is a selfadjoint projection then $r_{1}=\left(t_{1}\right)^{\dagger}$ and $t_{3}^{*} r_{4}^{*}=$ $-t_{1}^{*} r_{3}^{*}$. So $R\left(\left(t_{1}^{\dagger}\right)^{*} a\right) \subseteq R(a)$ and $R\left(t_{3}^{*}\right)=R\left(t_{3}^{*} r_{4}^{*}\right) \subseteq R\left(t_{1}^{*}\right)$.
$2 \rightarrow 1$. Since $T=\left(\begin{array}{cc}t_{1} & 0 \\ t_{3} & t_{4}\end{array}\right)$ and $R\left(t_{1}^{*} a\right) \subseteq R(a)$ then $T \in L_{A}(\mathcal{H})$. On the other hand, since t_{1} and t_{4} are surjective operators and $R\left(t_{3}^{*}\right) \subseteq R\left(t_{1}^{*}\right)$ then it is easy to check that $T^{\dagger}=\left(\begin{array}{cc}t_{1}^{\dagger} & 0 \\ -t_{4}^{\dagger} t_{3} t_{1}^{\dagger} & t_{4}^{\dagger}\end{array}\right)$ and, as $R\left(\left(t_{1}^{\dagger}\right)^{*} a\right) \subseteq R(a)$ then $T^{\dagger} \in L_{A}(\mathcal{H})$. Therefore, as $T T^{\dagger}=I$, the operator T is surjective and then $T \in \Sigma$.

Remark 3.6

1. Given $T \in \Delta$ then $T^{\dagger} \in \Delta$ if and only if $T \in G l(\mathcal{H})$.
2. Given $T \in \Sigma$ then $T^{\dagger} \in \Sigma$ if and only if $T \in \operatorname{Gl}(\mathcal{H})$.

References

[1] E. Andruchow, G. Corach, D. Stojanoff, Geometric operator inequalities,Linear Algebra Appl. 258 (1997) 295-310.
[2] M.L. Arias, G. Corach, M.C. Gonzalez, Metric properties of projections in semi-Hilbertian spaces,Integral Equations Operator Theory 62 (1) (2008) 11-28.
[3] M.L. Arias, G. Corach, M.C. Gonzalez, Partial isometries in semi-Hilbertian spaces, Linear Algebra Appl. 428 (7) (2008) 1460-1475.
[4] R. Bhatia, C. Davis, More matrix forms of the arithmetic-geometric mean inequality,SIAM J. Matrix Anal. Appl. 14 (1) (1993) 132-136.
[5] R. Bhatia, F. Kittaneh, On the singular values of a product of operators, SIAM J. Matrix Anal. Appl. 11 (2) (1990) $272-277$.
[6] J.B. Conway, A Course in Functional Analysis, Graduate Texts in Mathematics, vol. 96, second ed., Springer Verlag, New York, 1990.
[7] G. Corach, H. Porta, L. Recht, An operator inequality, Linear Algebra Appl. 142 (1990) 153-158.
[8] H.O. Cordes, Spectral Theory of Linear Differential Operators and Comparison Algebras, London Mathematical Society Lecture Note Series, vol. 76, Cambridge University Press, Cambridge, 1987.
[9] K.R. Davidson, C^{*}-Algebras by Example, Fields Institute Monographs, vol. 6, Amer. Math. Soc., Providence, 1996.
[10] R.G. Douglas, On majorization, factorization and range inclusion of operators in Hilbert space, Proc. Amer. Math. Soc. 17 (1966) 413-416.
[11] P.A. Fillmore, J.P. Williams, On operator ranges, Adv. Math. 7 (1971) 254-281.
[12] M. Fujii, T. Furuta, Löwner-Heinz, Cordes and Heinz-Kato inequalities, Math. Japon. 38 (1) (1993) 73-78.
[13] T. Furuta, Norm inequalities equivalent to Löwner-Heinz theorem, Rev. Math. Phys. 1 (1) (1989) 135-137.
[14] S. Hassi, Z. Sebestyén, H.S.V. De Snoo, On the nonnegativity of operator products, Acta Math. Hungar. 109 (1-2) (2005) 1-14.
[15] F. Kittaneh, A note on the arithmetic-geometric-mean inequality for matrices, Linear Algebra Appl. 171 (1992) 1-8.
[16] F. Kittaneh, On some operator inequalities, Linear Algebra Appl. 208/209 (1994) 19-28.
[17] A. McIntosh, Heinz inequalities and perturbation of spectral families, Macquarie Mathematical Reports 79-0006, Macquarie Univ., 1979.
[18] M.Z. Nashed, Inner, outer and generalized inverses in Banach and Hilbert spaces, Numer. Funct. Anal. Optim. 9 (3-4) (1987) 261-325.
[19] M. Reed, B. Simon, Methods of modern mathematical physics. I. Functional analysis, second ed., Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980.

[^0]: * Address: Instituto Argentino de Matemática "Alberto P. Calderón" (IAM-CONICET), Saavedra 15, Piso 3 (1083), Buenos Aires, Argentina.

 E-mail address: celeste.gonzalez@conicet.gov.ar
 ${ }^{1}$ Partially supported by PICT FONCYT 808-2008, UBACYT IO23, PIP 5272.

