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Abstract

We define a Larotonda space as a quotient space P = UA/UB of the unitary groups of
C∗-algebras 1 ∈ B ⊂ A with a faithful unital conditional expectation

Φ : A → B.

In particular, B is complemented in A, a fact which implies that P has C∞ differentiable
structure, with the topology induced by the norm of A. The conditional expectation also
allows one to define a reductive structure (in particular, a linear connection) and a UA-
invariant Finsler metric in P.

given a point ρ ∈ P and a tangent vector X ∈ (TP)ρ, we consider the problem of wether
the geodesic δ of the linear connection satisfying these inital data is (locally) minimal for
the metric. We find a sufficient condition. Several examples are given, of locally minimal
geodesics.

2010 MSC: 58B, 58B20, 53C60 .
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1 Introduction

Let A be a unital C∗ algebra and denote by UA its unitary group. We are interested in ho-
mogeneous spaces of UA. By this we mean quotients P = UA/UB, where 1 ∈ B ⊂ A is a sub-
C∗-algebra. In order that the quotient P has a C∞ manifold structure, we require that the
subalgebra B is the range of a conditional expectation

Φ : A → B.

This conditional expectation allows us to introduce a reductive structure (in particular, a linear
connection) in P, and a natural UA-invariant metric: to ensure the latter, we require additionally
that the conditional expectation be faithful. The metric is induced by the pre-Hilbert C∗-B-
module structure of A, with the inner product given by Φ. We refer the reader to the book
[5] for basic facts on the theory of Hilbert C∗-modules, though we will not venture beside the
elementary features of this theory. In fact we will not require the B-valued inner product metric
induced by Φ to be complete.

As we describe below, there are several examples of this type of space: the Grassmann
manifold of A, the projective space of UA, the Flag manifold, the space of representations of a
compact group.
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A Larotonda space has a natural reductive structure and a Finsler metric. We are interested
in the following problem: given ρ ∈ P and X ∈ (TP)ρ, does the geodesic δ of the linear
connection which satisfies

δ(0) = ρ and δ̇(0) = X

have minimal length for |t| ≤ r (for some r = r(ρ,X))?
Since P is a homogeneous reductive space [6], geodesics of the linear connection which start

at ρ0 = (class of 1 in the quotient P) are obtained as one parameter groups etx acting on ρ0.
Here x ∈ A satisfies x∗ = −x, Φ(x) = 0, and its image under the differential of the quotient
map is X (x is uniquely determined by these conditions). Geodesics starting at other points of
P are left translations of these.

There is no general theory in this context, implying the local minimality of geodesics (for
instance, the metric is not smooth, nor complete). We introduce a sufficient condition on X in
order that geodesics with this velocity vector are locally minimal: if there exists a Φ-invariant
state ϕ of A such that

ϕ(x4) = ϕ(x2)2 = ‖Φ(x2)‖2.

We call such pairings x, ϕ minimal. Examples are given, of spaces and vectors where this
condition holds. Our main result states that if X satisfies this condition, then a geodesic δ of P
with δ̇(0) = X is minimal for

|t| ≤ π

2‖Φ(x2)‖1/2
.

The contents of the paper are the following. In Section 2 we introduce the basic definitions
and notations, and give some examples of Larotonda spaces. In Section 3 we introduce a map
from P onto the Grassmann manifold of a GNS Hilbert space, which is 2-times a contraction
at the differential level. In Section 4 we prove our main result, by embedding P in a suitable
Hilbert space sphere. In Section 5 we give examples of spaces and tangent vectors where our
result holds.

This paper is affectionately dedicated to our friend Angel Rafael Laotonda (1939-2005).

2 Preliminary facts

The left action of UA on P will be denoted by

Luρ, for u ∈ UA and ρ ∈ P

i.e. if ρ = [w] (the class of w ∈ Ua), then Luρ = [uw]. For any fixed ρ ∈ P the action induces a
C∞ map

πρ : UA → P , πρ(u) = Luρ.

We shall denote by δρ the differential of πρ at 1 ∈ UA,

δρ = d(πρ)1 : Aah → TPρ,

where Aah = {x ∈ A : x∗ = −x} (the space of anti-hermitian elements of A) is the Banach-Lie
algebra of UA.

The fact that Bah is complemented in Aah (by the the antihermitian part of the nullspace of
Φ), implies that the quotient has a natural C∞ structure (see for instance [2]).
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Note that for any ρ ∈ P, the isotropy group at ρ (i.e. the subgroup unitaries in UA which
fix ρ), is the unitary group UBρ of a sub-C∗-algebra Bρ ⊂ A. Indeed, if we pick ρ = [u] (u ∈ A),
then Bρ = uBu∗.

We shall introduce a reductive structure and a metric. Both structures will be defined in
terms of a distribution

P 3 ρ 7→ Φρ ∈ B(A,A), (1)

of condtional expectations
Φρ : A → Bρ ⊂ A.

Namely, for ρ = [u], put
Φρ0 = uΦ0(u∗ · u)u∗.

This distribution is well defined. If [u] = [w], then u∗w,w∗u ∈ B, and therefore

wΦ(w∗xw)w∗ = uu∗wΦ(w∗xw)w∗uu∗ = uΦ(u∗ww∗xww∗u)u∗ = uΦ(u∗xu)u∗.

Also, this distribution is smooth and equivariant under the action of UA: if U ∈ UA and ρ′ = Luρ,
then

Φρ′(x) = uΦρ(u
∗xu)u∗.

Definition 2.1. (Reductive strucutre)
The reductive structure in P is given by the distribution

P 3 ρ 7→ Kρ := {x ∈ Aah : Φρ(x) = 0}.

Remark 2.2. Let us check that this definition fills the requirements of a reductive structure [4]
(or [6] for the infinite dimensional setting)

1.
Kρ ⊕ (TUBρ)1 = Kρ ⊕ Bah = Aah,

because Kρ and Bah are the anti-herimitian parts of the nullspace and the range of the
conditional expectation Φρ (note that Φρ(x

∗) = Φρ(x)∗).

2. The mapping ρ 7→ Kρ is smooth. This means that if Xρ ∈ (TP)ρ is a smooth tangent
field, and xρ ∈ Kρ are defined by

δρ(xρ) = Xρ

then the map ρ 7→ xρ is smooth. Indeed, fix ρ0 ∈ P. Since the maps πρ : UA → P are
C∞ submersions, on a neighbourhood of ρ0 the tangent field Xρ can be lifted to a smooth
map ρ 7→ zρ ∈ Aah, such that δρ(zρ) = Xρ. On the other hand Id − Φρ : Aah → Kρ is a
projection onto Kρ, thus

ρ 7→ xρ = (Id− Φρ)(zρ).

Note that ρ 7→ Φρ ∈ B(A,A) is also smooth: locally, using a smooth local cross section σ
for πρ0 near ρ0,

Φρ = σ(ρ)Φρ0(σ(ρ)∗ · σ(ρ))σ(ρ)∗.

3. If v ∈ UBρ , then
vKρv∗ = Kρ.

Indeed, vΦρ(x)v∗ = Φρ(vxv
∗).
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A reductive structure, as in classical differnetial geometry, induces a linear connection in P.
Since we shall be concerned with geodesics. let us point out that given ρ ∈ P and X ∈ (TP)ρ,
the geodesic of P with δ(0) = ρ and δ̇(0) = X is

δ(t) = Letxρ,

where as above, x ∈ Kρ with δρ(x) = X.
The Finsler metric is given as follows.

Definition 2.3. (Finsler metric)
If ρ ∈ P and X ∈ (TP)ρ,

|X|ρ = ‖Φρ(x
2)‖1/2,

where x is the unique element in Kρ such that δρ(x) = X. We emphazise that it is not a
smooth distribution of norms: in general, the norm of a C∗-algebra is non smooth. Is is clearly
a continuous distribution of norms at every tangent space of P.

One important feature of this metric if that it is invariant under the left action of UA on P.

Proposition 2.4. If ρ ∈ P, X ∈ (TP)ρ and u ∈ UA, then

|d(Lu)ρ(X)|Luρ = |X|ρ.

Proof. If w ∈ UA, denote by `w and Rw the right and left multiplication (by w) in A. Let
ρ′ = Luρ. Then

πρ′(w) = Lwρ
′ = Lwuρ = πρ ◦Ru(w),

thus differentiating at 1 ∈ UA,
δρ′ = d(πρ)u ◦Ru.

On the other hand
πρ ◦ `u(w) = Luwρ = Lu(Lwρ) = Lu ◦ πρ(w),

and differentiating at 1
d(πρ)u = d(Lu)ρ ◦ δρ ◦ `u∗ .

Therefore
δρ′ = d(Lu)ρ ◦ δρ ◦ `u∗ ◦Rw.

Let X ∈ (TP)ρ and x ∈ Kρ such that δρ(x) = X. Then

Φρ′(uxu
∗) = uΦρ(x)u∗ = 0 , and (uxu)∗ = −uxu∗,

(i.e. uxu∗ ∈ Kρ′). Also

δρ′(uxu
∗) = d(Lu)ρ ◦ δρ ◦ `u∗ ◦Ru(uxu∗) = d(Lu)ρ(δρ(x)) = d(Lu)ρ(X).

Thus
|d(Lu)ρ(X)|ρ′ = ‖Φρ′(ux

2u∗)‖1/2 = ‖uΦρ(x
2)u∗‖1/2 = ‖Φρ(x

2)‖1/2 = |X|ρ.
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We shall call a space P (with the action, the expectation and the metric) a Larotonda space,
honoring A.R. Larotonda who first saw the relevance of this class.

Let us describe examples of Larotonda spaces:

Examples 2.5.

1. Let ε0 ∈ A be a selfadjoint unitary (or symmetry), and let

P = {uε0u∗ : u ∈ UA}.

If A ⊂ B(H), the symmetry ε0 is a reflection with respect to a closed subspace S0 ⊂ H (ε0
equals the identity in S0 and minus the identity in S⊥0 ) and uε0u

∗ is the reflection with
respect to u(S0). Then the space P coincides with the set of reflections with respect to
closed subspaces of H with the same dimension and co-dimension as S0, and thus P can
be regarded as an operator parametrization of (a component of) the Grassmann manifold
of H, with the usual action of the unitary group.

The subalgebra B is in this case B = {b ∈ A : bε0 = ε0b}. If A ⊂ B(H), then B consists
of the operators in A which are diagonal with respect to the decomposition H = S0⊕S⊥0 .
The conditional expectation is Φ(a) = 1

2{a+ ε0aε0}.

2. Consider a complex vector bundle τ over the a compact space Ω, with n-dimensional
fibres. The algebra of continuous cross sections of τ identifies with the C∗-algebra A =
C(Ω,Mn(C)) of continuous functions from Ω to B(Cn) = Mn(C), with norm

‖f‖ = sup
t∈Ω
‖f(t)‖.

Consider the subalgebra
B = {g ∈ A : g(t) ∈ C · 1}.

There is a natural conditional expectation

Φ : A → B, Φ(f) = Tr(f(t)),

where Tr denotes the normalized trace. Apparently Φ is faithful. The unitary group
UA is the group of functions with values in U(n), and UB identifies with {g ∈ C(Ω,C) :
|g(t)| = 1}. Fix ρ0 = 1 the constant function equal to the identity. The homogeneous
space P = UA/UB identifies with the space

P0 = {f ∈ C(Ω, U(n)) : det(f(t)) = 1 for all t ∈ Ω}.

The Lie algebra of UA consists of continuous functions with anti-hermitian values.

Aah = {w ∈ C(Ω,Mn(C)) : w(t)∗ = −w(t)},

and if δρ0(w) = W ∈ T (P0)ρ0 ,

|W |ρ0 = sup
t∈Ω
‖Tr(w2(t))‖1/2.
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3. Let A be a unital C∗-algebra with a faithful state ϕ. Consider the subalgebra B = C1 and
the conditional expectation

Φ : A → C, Φ(a) = ϕ(a)1.

In this case the homogeneous space P equals the projective unitary group UA/S1. Denote
by [u] = class of u in this projective space. Put ρ0 = [1]. A tangent vector X at [1] is a
class [a] in Aah/iR, and the unique element x ∈ K[1] such that δ[1](x) = X is x = a−ϕ(a)1.
Thus

|X|[1] = ϕ(x2) = ϕ(a− ϕ(1)1)2)1/2.

3 A 2-contraction onto the Grassmannian

We fix ρ0 = [1] ∈ P, and denote Φ = Φρ0 and B = Bρ0 .
Let ϕ0 be a state in B. Consider its extension to A given by

ϕ = ϕ0Φ.

Note that is ϕ is Φ-invariant: ϕ(x) = ϕ(Φ(x)). We do not require that ϕ0 be faithful. Let Hϕ
be the Hilbert space obtained from the pair (A, ϕ) by the GNS construction. Namely

Aϕ = A/Nϕ,

where Nϕ = {z ∈ A : ϕ(z∗z) = 0}, endowed with the definite inner product

< [x], [y] >= ϕ(x∗y).

Hϕ is the completion of Aϕ. We shall define a map Rϕ from the space P to the Grassmann
manifold Gr(Hϕ) of Hϕ. This manifold is the set of all closed subspaces of Hϕ. As remarked
before, the closed subspaces of Hϕ are in one to one correspondence with the symmetries of Hϕ.
A symmetry (or reflection) is a selfadjoint unitary operator S = S∗ = S−1. A symmetry has
two eigenspaces with eigenvalues ±1, and the correspondence is given by

S ←→ N(S − 1).

Equivalently,
S ←→ 2PS − 1,

where PS is the orthogonal projection onto S. We shall represent Gr(Hϕ) using symmetries.
For an account of the geometry of the Grassmann manifold of an inifnite dimensional Hilbert
space see [7], [3].

Recall that the conditional expectation decomposes A

A = B ⊕N(Φ).

This decomposition induces a ϕ−orthogonal decomposition of Aϕ. Indeed, the fact that ϕ is
Φ-invariant implies that

Aϕ = A/Nϕ = Bϕ ⊕N(Φ)ϕ
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with Bϕ ⊥ N(Φ)ϕ, where

Bϕ = B/(Nϕ ∩ B) and N(Φ)ϕ = N(Φ)/(Nϕ ∩N(Φ)).

Let R0 be the symmetry which equals +1 at the closed subspace B̄ϕ of Hϕ, which is the com-
pletion of Bϕ. Note that the orthogonal projection onto this closed subspace is induced by
Φ,

PB̄ϕ([x]) = [Φ(x)],

So that R0([x]) = 2[Φ(x)]− [x], for x ∈ A.
The left action of UA on A induces unitary operators in Hϕ (i.e. the images of elements in

UA by the GNS representation): if u ∈ UA

λϕ(u)([x]) = [ux],

for x ∈ A.
The mapping from P to Gr(Hϕ) is given by

Rϕ : P → Gr(Hϕ) , Rϕ(ρ) = λϕ(u)R0λϕ(u∗),

if Luρ0 = ρ.

Proposition 3.1. The map Rϕ is well defined and smooth.

Proof. Suppose that Luρ0 = Lwρ0, then w = uv for v ∈ UB. Then for any x ∈ A

wΦ(w∗x) = uvΦ(v∗u∗x) = uΦ(u∗x),

i.e.
λϕ(w)(PB̄ϕ(λϕ(w∗)([x]))) = λϕ(u)(PB̄ϕ(λϕ(u∗)([x]))),

and therefore Rϕ is well defined. Once it is well defined, it is clearly C∞. Using a smooth local
cross section σ for

πρ0 : UA → P,

the map Rϕ can be locally described near ρ0 as Rϕ(ρ) = λϕ(σ(ρ))R0λϕ((σ(ρ)∗), which is appar-
ently a C∞ function of ρ. A standard argument using the action of UA on P, shows that Rϕ is
C∞ in all P.

The following Lemma will be useful to estimate the norm of the differential of R.

Lemma 3.2. Let T ∈ B(H) be a selfadjoint operator which is co-diagonal with respect to a an
orthogonal projection P , i.e.

T (R(P )) ⊂ R(P )⊥ = N(P ) and T (N(P )) ⊂ N(P )⊥ = R(P ).

Then ‖T‖ = ‖TP‖ = ‖PT‖.
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Proof. Writing operators in H as 2×2 matrices in terms of the decompositon H = R(P )⊕N(P ),
using the fact that T is P -codiagonal,

P =

(
1 0
0 0

)
, T =

(
0 T12

T ∗12 0

)
and PT =

(
0 T12

0 0

)
.

Then

‖T‖2 = ‖T 2‖ = ‖
(
T12T

∗
12 0

0 T ∗12T12

)
‖ = max{‖T12T

∗
12‖, ‖T ∗12T12‖} = ‖T12‖2 = ‖PT‖2.

Also ‖TP‖ = ‖(PT )∗‖ = ‖PT‖.

The importance of the map Rϕ for our problem lies in the following result.

Theorem 3.3. The differential of Rϕ is 2 times a contraction, i.e., for every ρ ∈ P and
X ∈ TPρ,

‖d(Rϕ)ρ(X)‖ ≤ 2|X|ρ.

The norm on the left hand side of this inequality is the usual operator norm in B(Hϕ)

Proof. The usual norm of an operator is invariant under left and right multiplication by unitaries,
the metric of P is left invariant. Therefore it suffices to prove the above inequality for the case
ρ = ρ0. Let X ∈ TPρ0 and x ∈ Kρ0 such that δρ0(x) = X. Recall that x ∈ Aah and Φ(x) = 0.
Then

|X|ρ0 = ‖Φ(x2)‖1/2.

The curve γ(t) = Letxρ0 = πρ0(etx) is a smooth curve in P with γ(0) = ρ0 and γ̇(0) equal to

γ̇(0) = δρ0(x) = X.

Then

d(Rϕ)ρ0(X) =
d

dt
Rγ(t)|t=0 =

d

dt
λϕ(etx)R0λϕ(e−tx)|t=0

= λϕ(x)R0 −R0λϕ(x) = [λϕ(x), R0].

Note that R0 = 2PB̄ϕ − 1, so that [λϕ(x), R0] = 2[λϕ(x), PB̄ϕ ].
Pick a ∈ A. At elements in Aϕ ⊂ Hϕ, this commutant is

[λϕ(x), PB̄ϕ ]([a]) = xΦ(a)− Φ(xa).

Let us prove that the selfadjoint operator [λϕ(x), PB̄ϕ ] ∈ B(Hϕ) is codiagonal with respect to
PB̄ϕ . We must check that

[λϕ(x), PB̄ϕ ](R(PB̄ϕ)) ⊂ N(PB̄ϕ) and [λϕ(x), PB̄ϕ ](N(PB̄ϕ)) ⊂ R(PB̄ϕ).

Since Bϕ is dense in R(PB̄ϕ) and N(Φ)ϕ is dense in N(PB̄ϕ), it suffices to show that

xΦ(b)− Φ(xb) ⊂ N(Φ)

for b ∈ B, and that
xΦ(z)− Φ(xz) ∈ B
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for all z ∈ N(φ). These assertions are straightforward to verify. Recall that x ∈ N(Φ). The first
assertion: pick b ∈ B, then

Φ(xΦ(b)− Φ(xb)) = Φ(x)b− Φ(x)b = 0.

The second: pick z ∈ N(Φ), then

xΦ(z)− Φ(xz) = −Φ(xz) ∈ B.

Then, by the above Lemma, it suffices to estimate ‖[λϕ(x), PB̄ϕ ]PB̄ϕ‖. Again, by a density
argument, it sufices to consider vectors

[b] = PB̄ϕ([a]) = [Φ(a)] ∈ Bϕ, a ∈ A.

Then
‖[λϕ(x), PB̄ϕ ]([b])‖2ϕ = ‖xΦ(b)− Φ(xb)‖2ϕ = ‖xb‖2ϕ = −ϕ(b∗x2b).

Since ϕ is Φ-invariant,

−ϕ(b∗x2b) = −ϕ(Φ(b∗x2b)) = −Φ(b∗Φ(x2)b).

Aparently 0 ≤ −Φ(x2) ≤ ‖Φ(x2)‖ implies that 0 ≤ −b∗Φ(x2)b ≤ ‖Φ(x2)‖b∗b. Then

−ϕ(b∗x2b) ≤ ‖Φ(x2)‖ϕ(b∗b) = ‖Φ(x2)‖‖[b]‖2ϕ ≤ ‖Φ(x2)‖‖[a]‖2ϕ,

Because ‖[b]‖ϕ = ‖PB̄ϕ([a])‖ϕ ≤ ‖[a]‖ϕ. Therefore

‖[λϕ(x), PB̄ϕ ](PB̄ϕ [a])‖2ϕ ≤ ‖Φ(x2)‖‖[a]‖2ϕ,

And thus
‖[λϕ(x), PB̄ϕ ]PB̄ϕ‖ ≤ ‖Φ(x2)‖1/2,

which proves our statement.

4 Minimality of geodesics

Here we address the problem of local minimality of geodesics of the linear connection in a
Larotonda space P. Geodesics in P are curves of the form [6]

γ(t) = Letxρ

for x a horizontal vector at ρ: x∗ = −x, Φρ(x) = 0. Since the metric in P is invariant under the
action of UA, we may consider the case ρ = ρ0 = [1] and Φρ = Φ.

To this effect, let ϕ0 be a state in B which attains the norm of Φ(x2). Namely,

ϕ0(Φ(x2)) = −‖Φ(x2)‖. (2)

Recall that −Φ(x2) ≥ 0 in B. It is an elementary fact (using basic C∗-theory and the Hahn-
Banach Theorem) that for any positive element in a C∗-algebra there is a state attainning its
norm. Let us fix from now on the state

ϕ = ϕ0Φ
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in A. Thus
−ϕ(x2) = −ϕ0(Φ(x2)) = ‖Φ(x2)‖.

We follow the notations and definitions of the previous section. Let us point out the following
elementary facts.

Remark 4.1. Let S(t) ∈ Gr(Hϕ) be a smooth curve of symmetries. Then S(t)[1] is a smooth
curve in the unit sphere S(Hϕ), and

LS(Hϕ)(S[1]) ≤ LGr(Hϕ)(S),

where LX denotes the length of the curve in the corresponding space X measured in the usual
way. Indeed, the map S(t) 7→ S(t)[1] is the restriction of the linear contraction

B(Hϕ)→ Hϕ, T 7→ T [1],

and both assertions follow.

For the given Φ-invariant state ϕ, we shall consider the map ∆ϕ obtained as the composition
of the map Rϕ : P → Gr(Hϕ) of the previous section with the evaluation map at the vector
[1] ∈ Hϕ,

∆ϕ : P → S(Hϕ) , ∆ϕ(ρ) = Rϕ(ρ)[1]. (3)

This map is apparently C∞, and its differential is a 2-contraction: if ρ ∈ P and X ∈ TPρ,

‖d(∆ϕ)ρ(X)‖Hϕ ≤ 2|X|ρ.

Indeed, this follows from Theorem (3.3) and the fact that the map T 7→ T [1] is contractive. In
particular, if ρ(t) ∈ P is a smooth curve, then

LS(Hϕ)(∆ϕ(ρ)) ≤ 2LP(ρ). (4)

Remark 4.2. Let us compute the length of a geodesic γ in P: γ(t) = Letxρ0. Recall that
`u : UA → UA denotes the left multiplication map (which is the restricition of a linear map).
Note that πρ0`u(w) = LuLwρ0 = Luπρ0(w), so that differentiating at 1 ∈ UA we get

d(πρ0)u`u = d(Lu)ρ0d(πρ0)ρ0 = d(Lu)ρ0δρ0 ,

so that
d(πρ0)u = d(Lu)ρ0δρ0`u∗ = d(Lu)ρ0(u∗δρ0).

The derivative of γ is (by the above identity)

γ̇(t) = d(πρ0)γ(t)(e
txx) = d(Letx)ρ0δρ0(x).

By the invariance of the metric under the left action of UA,

|γ̇(t)|γ(t) = |d(Letx)ρ0δρ0(x)|γ(t) = |δρ0(x)|ρ0 = ‖Φ(x2)‖1/2.

Therefore, if γ is parametrized in the interval [t0, t1],

L(γ) =

∫ t1

t0

|γ̇(t)|γ(t)dt = (t1 − t0)‖Φ(x2)‖1/2.
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In order to establish the minimality of certain geodesics, we shall use the map ∆ϕ to compare
lenghts of curves in the sphere of Hϕ, for an appropriate ϕ. To this end, let us consider the
following condition.

Definition 4.3. Suppose that x∗ = −x, Φ(x) = 0 and ϕ is Φ-invariant. We say that the pair
(x, ϕ) is minimal if

1. ϕ(x2) = −‖Φ(x2))‖.

2. There exists λ ∈ R such that
ϕ((x2 − λ)2) = 0.

Proposition 4.4. Let x ∈ A such that x∗ = −x, Φ(x) = 0 and ϕ is Φ-invariant with ϕ(x2) =
−‖Φ(x2))‖. Then the following conditions are equivalent

1. The pair (x, ϕ) is minimal.

2. [1] ∈ Hϕ is an eigenvector of λϕ(x2).

3. ϕ(x2)2 = ϕ(x4).

Proof.
1. implies 2.:
ϕ((x2 − λ)2) = 0, written as an inner product is

< (λϕ(x2)− λ1)[1], (λϕ(x2)− λ1)[1] >= 0,

i.e. λϕ(x2)[1] = λ[1].
2. implies 3.:
If λϕ(x2)[1] = α[1] for some α ∈ R, then

α =< λϕ(x2)[1], [1] >= ϕ(x2) = −‖Φ(x2)‖.

and
ϕ(x4) =< λϕ(x4)[1], [1] >=< λϕ(x2)[1], λϕ(x2)[1] >= α2.

Then ϕ(x4) = α2 = ϕ(x2)2.
3. implies 1.:
If ϕ(x4) = ϕ(x2)2, taking λ = −‖Φ(x2)‖, a straightforward computation shows that

ϕ((x2 − λ)2) = 0.

Note that if the pair (x, ϕ)-minimal, then necessarilly λ = −‖Φ(x2)‖.

Remark 4.5. There is another, more restrictive condition, which is

‖x‖ = ‖x‖Φ.

Indeed, if ϕ verifies ϕ(x2) = −‖Φ(x2)‖ (with ϕ Φ-invariant), then

ϕ(x2)2 = ‖Φ(x2)‖2 = ‖x‖4 = ‖x4‖ ≥ ϕ(x4).

The other inequality occurs always.
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Theorem 4.6. Let X ∈ (TP)ρ0 and let x ∈ Kρ0 the unique element such that δρ0(x) = X.
Suppose that there is a Φ-invariant state ϕ such that the pair (x, ϕ) is minimal. Then the
geodesic

γ(t) = Letxρ0

has minimal length along its path for |t| ≤ π
2‖Φ(x2)‖1/2 .

Proof. Consider the map ∆ϕ,
∆ϕ : P → S(Hϕ)

defined above. Note that

∆ϕ(γ(t)) = Rϕ(Letxρ0)[1] = λϕ(etx)R0λϕ(e−tx)[1] = [etx(2Φ(e−tx)− e−tx)] = [2etxΦ(e−tx)− 1].

We claim that condition (4.3) means that ∆ϕ(γ) is a geodesic of S(Hϕ) (with its usual Hilbert-
Riemann metric). Indeed, since the pair (x, ϕ) is minimal,

[x2] = λϕ(x2)[1] = λ[1] = −‖Φ(x2)‖[1].

Then, if n = 2k is even
[xn] = (−‖Φ(x2)‖)k[1],

and if n = 2k + 1 is odd
[xn] = (−‖Φ(x2)‖)k[x].

Therefore

[etx] = [1]− t2

2
‖Φ(x2)‖[1] +

t4

4!
‖Φ(x2)‖2[1]− . . .+ t[x]− t3

3!
‖Φ(x2)‖[x] +

t5

5!
‖Φ(x2)‖2[x]− . . .

= cos(t‖Φ(x2)‖1/2)[1] +
1

‖Φ(x2)‖1/2
sin(t‖Φ(x2)‖1/2)[x].

Recall that ∆ϕ(γ(t)) = [2etxΦ(e−tx)]− [1], which equals

2λϕ(etxPB̄ϕ([e−tx]))− [1] = 2λϕ(PB̄ϕ(cos(t‖Φ(x2)‖1/2)etx[1])− [1],

because PB̄ϕ(x) = [Φ(x)] = 0. Thus

∆ϕ(γ(t)) = 2 cos(t‖Φ(x2)‖1/2)[etx]− [1]

= 2(cos2(t‖Φ(x2)‖1/2)− 1)[1] +
1

‖Φ(x2)‖1/2
2 cos(t‖Φ(x2)‖1/2) sin(t‖Φ(x2)‖1/2)[x]

= cos(2t‖Φ(x2)‖1/2)[1] + sin(2t‖Φ(x2)‖1/2)
[x]

‖Φ(x2)‖1/2
,

which is a great circle (=minimal geodesic) of the sphere S(Hϕ) because

< [x], [1] >= ϕ(x) = 0,

(note that [x]

‖Φ(x2)‖1/2 is a unit vector). This geodesic will remain minimal as long as

|2t|‖Φ(x2)‖1/2 ≤ π.

12



Note also that the length of ∆ϕ(γ) restricted to the interval [t1, t2] is 2(t2− t1)‖Φ(x2)‖1/2, which
is 2 times the length of γ in this interval.

Let ρ = ρ(t) be a smooth curve in P with endpoints γ(t1) and γ(t2), for [t1, t2] with |ti| ≤
π

2‖Φ(x2)‖1/2 . Then by the inequality (4) (below Remark (4.1)),

LS(Hϕ)(∆ϕ(ρ)) ≤ 2LP(ρ).

Since ∆ϕ(γ) is a minimal geodesic of S(Hϕ),

LS(Hϕ)(∆ϕ(γ)) ≤ LS(Hϕ)(∆ϕ(ρ)),

and finally, as remarked above,

LS(Hϕ)(∆ϕ(γ)) = 2LP(γ).

It follows that
LP(γ) ≤ LP(ρ).

5 Examples

We consider examples where Theorem (4.6) applies. In the first example any geodesic is minimal
(up to the critical value of t). The next examples show spaces where special geodesics are
minimal.

Example 5.1. Let P be the connected component of a fixed symmetry ρ0 in the Grassmann
manifold of a C∗-algebra A as in 1. The group UA acts on P by inner conjugation: u · ρ = uρu∗.
It is well known (see for instance [3]) that the action is transitive on P. The isotropy group at
ρ0 is the set of unitaries which commute with ρ0. Thus

B = {b ∈ A : bρ0 = ρ0b}.

Consider the coditional expecation

Φ : A → B, Φ(a) =
1

2
(a+ ρ0aρ0).

Apparently Φ projects onto B. Note that Φ(x) = 0 if and only if x anticommutes with ρ0. This
implies that if Φ(x) = 0, then x2 commutes with ρ0, i.e. x2 ∈ B. In particular, this implies that
if ϕ is any Φ-invariant state in A such that

ϕ(x2) = −‖Φ(x2)‖ = −‖x2‖ = −‖x‖2,

then the pair (x, ϕ) is minimal. Thus any geodesic in P is minimal up to the critical value of t.
Let us describe the Finsler metric of this Larotonda space. Let X ∈ (TP)ρ0 . Then X is of

the form
X = zρ0 − ρ0z,
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for some z∗ = −z in A. Note that tangent vectors at ρ0 are selfadjoint elements which anticom-
mute with ρ0. In this example, δρ0 is given by

δρ0(a) = aρ0 − ρ0a.

Then a straightforward computation shows that the unique antihermitian x with Φ(x) = 0 such
that δρ0(x) = X is

x =
1

2
Xρ0.

Then

|X|ρ0 =
1

2
‖x‖,

i.e. | |ρ is essentially the usual norm of A. Since the norm of A is invariant by multiplication
by unitaries, it follows that the left invariant Finsler metric of P is 1

2 times the usual norm of
A at every tangent space.

This minimality result was proved in [7].

Example 5.2. Consider the example 2 of the complex vector bundle τ of dimension n over a
compact space Ω. The C∗-algebra A is the algebra C(Ω,Mn(C)) of continuous functions from
Ω to B(Cn) = Mn(C), with norm

‖f‖ = max
t∈Ω
‖f(t)‖,

the subalgebra B is
B = {g ∈ A : g(t) ∈ C · 1},

and the conditional expectation is

Φ : A → B, Φ(f) = Tr(f(t)).

Pick ρ0 = 1. Let W ∈ (TP)ρ0 and let w ∈ Kρ0 such that δρ0(W ) = w. Note that w is a matrix
valued function with antihermitian values and Tr(w(t)) = 0 for all t ∈ Ω. There exists t0 ∈ Ω
such that

‖Tr(w(t0))2‖ = sup
t∈Ω
‖Tr(w(t))2‖ = |W |2ρ0 .

Consider the state ϕ of A given by

ϕ(f) = Tr(f(t0)),

which is the composition of evaluation at t0 with Φρ0 . Note that

ϕ(w2) = Tr(w(t0))2) = − sup
t∈Ω
‖Tr(w(t))2‖ = −‖Φ(w2)‖.

Suppose additionally that at this point t0 one has that w(t0)2 ∈ C · 1, i.e. w(t0) = iλ · 1 for
λ ∈ R. Then the pair (w,ϕ) is minimal. Indeed, it is apparent that

ϕ(w2)2 = λ4 = ϕ(w4).

Therefore the curve
γ(t) = LeitW ρ0 = eitw

is minimal in A for |t| ≤ π
2|W |ρ0

.
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Example 5.3. Consider the example 3 of the projective unitary space,

P = UA/S1.

Put ρ0 = [1]. We fix a (faithful) conditional expectation

Φ : A → B = C.1,

which is given by a faithful state ϕ: Φ(a) = ϕ(a).1. The only Φ-invariant state is ϕ itself. Thus
the requirement that

ϕ(x2) = −‖Φ(x2)‖ = −|ϕ(x2)|

is fulfilled. Any x ∈ A such that ϕ(x2)2 = ϕ(x4) and ϕ(x) = 0 would produce a minimal geodesic
in P. In this case, Hypothesis (4.3) means that x = ir S, with r ≥ 0 and S a symmetry. Indeed,
if ϕ(x2)2 = ϕ(x4), then in the Cauchy-Schwarz inequality, we have equality:

−ϕ(x2) = | < x2, 1 > | ≤ ‖x2‖ϕ‖1‖ϕ = ϕ(x4)1/2 = |ϕ(x2)| = −ϕ(x2),

and thus x2 is a multiple of 1: x2 = −‖x‖2.1 Thus S = −i
‖x‖x is selfadjoint operator such that

S2 = 1. The spectral resolution of x is therefore

x = ire+ − ire−,

with e+, e− selfajoint mutually orthogonal projections such that e+ + e− = 1 The fact that
ϕ(x) = 0 means that ϕ(e+) = ϕ(e−)

Consider X = [x] ∈ A/C1, which is a tangent vector to P at [1]. Apparently x is the unique
horizontal element such that δρ0(x) = X. Then the curve

γ(t) = [etx]

is a minimal geodesic in P (up to the critical value of t). In this case, etx = eitre+ + e−itre−,
and thus

γ(t) = eitr[e+] + e−itr[e−] = cos(tr)[1] + i sin(tr)[e+ − e−].

Example 5.4. Consider A = M3(C) and B = D3(C) the subalgebra of diagonal matrices. Put
Φ : A → B, Φ(a) = diagonal matrix formed with the diagonal entries of a. Consider x

x =

 0 α β
−ᾱ 0 0
−β̄ 0 0

 .

Clearly x∗ = −x and Φ(x) = 0 and x2 is not diagonal. The quotient UA/UB is the flag manifold
of order 3. Consider the state ϕ(a) =< ae1, e1 >, where e1 is the first vector in the canonical
basis of C3. Then apparently ϕ is Φ-invariant and

−ϕ(x2) = |α|2 + |β|2 = ‖Φ(x2)‖.

Note that x2 /∈ B, nevertheless, elementary computations show that ϕ(x2)2 = ϕ(x4), i.e. the
pair (x, ϕ) is minimal. Thus the curve [eitx] is minimal in P for t ≤ π

2(|α|2+|β|2)
.
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Example 5.5. Let G be a compact group and ρ0 a strong operator continuous unitary repre-
sentation of G on a Hilbert space H,

ρ0 : G→ U(H).

Let A = B(H) and

B = ρ0(G)′ = {b ∈ B(H) : bρ0(g) = ρ0(g)b for all g ∈ G}.

Consider the map

Φ0 : A → B, Φ(a) =

∫
G
ρ0(g)aρ0(g)∗dµ(g),

where µ denotes the Haar measure of G, and the integral is considered in the strong operator
sense. It is well known that Φ0 is a (well defined) faithful conditional expectation.

For any τ ∈ Ĝ, let Bτ = {b ∈ A : ρ(g)bρ(g)∗ = τ(g)b for all g ∈ G}. Note that B = Bτ0
where τ0 is the trivial character. Also it is clear that if b ∈ Bτ (for τ 6= τ0), then

Φ0(b) =

∫
G
ρ0(g)bρ0(g)∗dµ(g) = (

∫
G
τ(g)dµ(g))b = 0,

because b ∈ B ∩ Bτ = {0}.
If u ∈ U(H), then Ad(u)ρ0 (where Ad(u)ρ0(a) = uρ0(a)u∗) is also a strong operator contin-

uous representation of G. Thus we consider

P0 = {Ad(u)ρ0 : u ∈ U(h)}.

This space P0 was shown to be a differentiable manifold in [1]. Note that if x ∈ Bτ (τ 6= τ0),
then x∗ ∈ Bτ̄ . Therefore Bτ contains no (non trivial) antihermitian elements, unless τ2(g) = 1
for all g ∈ G. In order to obtain examples of minimal pairs, we make the assumption that G is
of order 2.

In this case also Ĝ is also of order two. Pick any x ∈ Bτ (τ 6= τ0), with x∗ = −x (for instance,
pick any a ∈ Bτ and put x = a− a∗). Note that x2 ∈ B:

ρ0(g)x2ρ0(g)∗ = ρ0(g)xρ0(g)∗ρ0(g)xρ0(g)∗ = τ(g)2x2 = x2,

for any g ∈ G. Let ϕ0 be a state of B such that φ0(x2) = −‖Φ0(x2)‖ = −‖x2‖. Then clearly the
pair (x, ϕ) is minimal , and thus γ(t) = Ad(etx)ρ0 is a minimal geodesic of P0 up to |t| ≤ π

2‖x‖ .

Note also that ρ0(G) ⊂ ρ0(G)′′ =M, the von Neumann algebra generated by the unitaries
ρ0(g), g ∈ G. One could also consider the action restricted to the unitary group UM. Apparently,
the integral Φ0(m) takes values in M, if m ∈ M (because it converges in the strong operator
topology). Thus the example above could be stated for

P0,M ' UM/UM∩ρ0(G)′ .
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