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Introduction

In the tradition of the quantum logical research, a property of (or a proposition
about) a quantum system is related to a closed subspace of the Hilbert space H of
its (pure) states or, analogously, to the projector operator onto that subspace. Each
projector is associated to a dichotomic question about the actuality of the property
[23, p. 247]. A physical magnitude M is represented by an operator M acting
over the state space. For bounded self-adjoint operators, conditions for the existence
of the spectral decomposition M = ) . a;P; are satisfied. The real numbers a; are
interpreted as the outcomes of the measurements of the magnitude M and projectors
P; as events. The physical properties of the system or events are organized in the
orthomodular lattice of closed subspaces L(H) = (P(H), V, A, —,0,1). This first
event structure was introduced in the thirties by Birkhoff and von Neumann [2].
In this frame, the pure state of the system may be represented by the meet
(i.e. the lattice infimum) of all actual properties or, equivalently, as a measure
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s : P(H) — [0, 1] satisfying
s =0; s-P)=1-s®);  s(\/P)=) s®P)

with {P;} a denumerable orthogonal family and —P standing for the orthogonal
complement of P.

Different kinds of states have been deeply investigated within the quantum logical
program not only because of their importance in order to understand quantum
mechanics [11, 12, 25, 28], but also because they provide different representations
of the event structure of quantum systems [21, 32, 33].

Recently, several authors have paid attention to the study of states over ex-
tended algebraic structures, directly or indirectly related to quantum mechanics, as
orthomodular posets [5, 26], MV-algebras [7, 15, 16, 22, 27] or effect algebras
[9, 29, 30]. Common open problems of these structures are the characterization
of classes of algebras admitting some special types of states [10, 20] and the
internalization in an algebraic structure of the concept of state [6, 17].

The aim of this paper is to investigate and equationally characterize classes
of two-valued states acting over orthomodular lattices. To do this, we enlarge the
language of the orthomodular lattices with a unary operator s, satisfying a set of
equations, that captures the common properties of several classes of two-valued
states. The resulting class is a variety of lattices called orthomodular lattices with
internal Boolean pre-state or I Epg-lattices for short.

The paper is structured as follows. In Section 1 we recall some basic notions
of universal algebra and orthomodular lattices. In Section 2 we briefly review the
importance of two-valued states in relation to the hidden variables program and
representation theorems for orthostructures. In Section 3, we introduce the notion
of Boolean pre-state and study its properties. Orthomodular lattices with an internal
Boolean pre-state (I Eg-lattices) are defined and characterized. In Section 4 we relate
the category of IEp-lattices with the category of orthomodular lattices that admits
Boolean pre-states through a functor. In Section 5 we provide a categorical equivalence
between arbitrary subcategories of orthomodular lattices admitting Boolean pre-states
and classes of directly indecomposable I Ejg-lattices. In the next two sections we
apply this categorical equivalence to obtain equational systems that characterize
the class of two-valued states and the subclass of Jauch—Piron two-valued states,
respectively. In Section 8 we summarize the conclusions.

1. Basic notions

First we recall from [4] some notions of universal algebra that will play an
important role in what follows. A variety is a class of algebras of the same type
defined by a set of equations. Let 4 be a variety of algebras of type o. We
denote by Termy the absolutely free algebra of type o built from the set of
variables V = {xq, x2,...}. Each element of Term 4 is referred to as a term. We
denote by Comp(¢) the complexity of the term ¢ and by ¢ = s the equations of
Termy. Let A e A. If t € Termy and ay,...,a, € A, by t4(ay, ..., a,) we denote
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the result of the application of the term operation t4 to the elements ay,...,a,.
A valuation in A is a map v:V — A. Of course, any valuation v in A can be
uniquely extended to an .A-homomorphism v : Termy4 — A in the usual way, i.e. if
t,....t, € Termy then v(t(t,....t,)) = t2(v(t)), ..., v(t,)). Thus, valuations are
identified with A-homomorphisms from the absolutely free algebra. If 7, s € Term 4,
=4t =s means that for each valuation v in A, v(f) = v(s) and =4t = s means
that for each A € A, =41 =y.

For each algebra A € A, we denote by Con(A), the congruence lattice of A,
the diagonal congruence is denoted by A and the largest congruence A? is denoted
by V. 0 is called factor congruence iff there is a congruence 6* on A such
that 6 AO* = A, 6 vO* =V and 6 permutes with 6* If 6 and 6* is a pair
of factor congruences on A then A = A/0 x A/6*. A is directly indecomposable
if A is not isomorphic to a product of two nontrivial algebras or, equivalently,
A,V are the only factor congruences in A. We say that A is subdirect product
of a family of (A;);e; of algebras if there exists an embedding f : A — [].., A
such that m; f : A— A; is a surjective homomorphism for each i € I where m;
is the projection onto A;. A is subdirectly irreducible iff A is trivial or there is
a minimum congruence in Con(A) — A. It is clear that a subdirectly irreducible
algebra is directly indecomposable. An important result due to Birkhoff is that every
algebra A is a subdirect product of subdirectly irreducible algebras. Thus the class
of subdirectly irreducible algebras rules the valid equations in the variety .A.

Now we recall from [14] and [19] some notions about orthomodular lattices. Let
(P, <) be a poset and X € P. Then X is said to be increasing set iff a € X and
a < x implies x € X. A lattice with involution [13] is an algebra (L, Vv, A, —) such
that (L, Vv, A) is a lattice and — is a unary operation on L that fulfills the following
conditions: —=—x = x and —(x Vy) = —x A—y. An orthomodular lattice is an algebra
(L, A,V,—,0,1) of type (2,2,1,0,0) that satisfies the following conditions:

1. (L,A,Vv,—,0,1) is a bounded lattice with involution,

2. x A—x =0,

3.xV(xAXVY)=xVy.

We denote by OML the variety of orthomodular lattices.

REMARK 1.1. An important characterization of the equations in OML is given

FEomect=s 1iff Eome EAS)V(—tA-s)=1.

Therefore we can safely assume that all OM/L-equations are of the form 7 = 1
where ¢t € Termpaqc. It is clear that this characterization is maintained for each
variety A such that there are terms of the language of A defining on each A € A
operations Vv, A, —, 0,1 such that L(A) = (A, V,A,—,0,1) is an orthomodular
lattice.

by

Let L be an orthomodular lattice. Two elements a, b in L are orthogonal (noted
alb) iff a < —b. For each a € L let us consider the interval [0,a] = {x € L :
0 < x < a} and the unary operation in [0, a] given by —,x = x’ Aa. As one can
readily realize, the structure L, = ([0, a], A, V, —,,0,a) is an orthomodular lattice.
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Boolean algebras are orthomodular lattices satisfying the distributive law x A (y V
)= (x Ay)V(x Az). We denote by 2 the Boolean algebra of two elements. Let
A be a Boolean algebra. A subset F of A is called a filter iff it is an increasing
set and, if a,b € F then anb € F. F is a proper filter iff F # A or, equivalently,
0 & F. For each a > 0, [a) ={x € L :a < x} is a filter called principal filter
generated by a. Each filter F in A determines univocally a congruence 6y and vice
versa. In this case the quotient set A/0F, noted as A/F, is a Boolean algebra and
the natural application x — [x] is a Boolean homomorphism from A to A/F. It
may be easily proved that each filter in A determines a factor congruence, thus the
unique directly indecomposable Boolean algebra is 2. A proper filter F is maximal
iff the quotient algebra A/F is isomorphic to 2 iff x ¢ F implies —x € F. It is
well known that each proper filter can be extended to a maximal one.

Let L be an orthomodular lattice. An element ¢ € L is said to be a complement
of a iff anc=0 and aVvc=1. Given a,b,c in L, we write: (a,b,c)D iff
(avbyAnc=(@Ac)V (ibAc);, (a,b,c)D* iff (anb)Vvc=(@Vc)An(DVce) and
(a,b,c)T iff (a,b,c)D, (a,b,c)D* hold for all permutations of a, b, c. An element
z of L is called central iff for all elements a, b € L we have (a, b, z)T. We denote
by Z(L) the set of all central elements of L and it is called the center of L.

PROPOSITION 1.2. Let L be an orthomodular lattice. Then we have:
1. Z(L) is a Boolean sublattice of L [19, Theorem 4.15].
2. z€ Z(L) iff for each a€ L, a=(anz)V(aAn—z) [19, Lemma 299]. O

2. The relevance of two-valued states

In general, two-valued states associated to a quantum system are probability
measures s : E — {0, 1} where E is a set equipped with an orthostructure called
event structure. The study of the different families of two-valued states becomes
relevant in different frameworks.

From a physical point of view, two-valued measures are distinguished among the
set of all classes of states because of their relation to hidden variable theories of
quantum mechanics. The discussion about the necessity of adding hidden variables
(HV) to standard physical magnitudes in quantum mechanics (QM) in order to
provide a complete account of physical reality began with the famous so-called
EPR paper [8] which Einstein and his students Podolsky and Rosen presented
in 1935. At the end of the paper, they state that “While we have [thus] shown
that the wave function does not provide a complete description of the physical
reality, we left open the question of whether or not such a description exists.
We believe, however, that such a theory is possible.” A possible reading of the
EPR conclusion was endorsed by the HV program which attempted to complete the
quantum description with hidden magnitudes which would allow, at least in principle,
to predict with certainty the results of observations. Against such attempts, von
Neumann developed a theorem which seemed to preclude HV due to the inexistence
of dispersion free states (DFS, i.e. states for which (A)? = (A?)) compatible with
the mathematical structure of the theory [23, p. 232]. Von Neumann considered
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the measurement of a physical magnitude over an ensemble of systems in the
same state. QM predicts that, in the general case, each measurement will give
as a result any of the eigenvalues of the operator representing the magnitude.
Thus, although all the systems are in the same state, we obtain different results
for the measurement of the same quantity. According to von Neumann, this is
so either because there are some HV which the quantum description does not
take into account or because, though the systems are really in the same state,
the dispersion of measured values is due to Nature itself. If QM were to be
described by HV, the ensemble would have to contain as many sub-ensembles as
there are different eingevalues, with every system in a sub-ensemble in a DFS
characterized by a particular value of each HV. Starting from a set of assumptions
he considered plausible, von Neumann proved that the usual Hilbert space model
for QM does not admit HV. Jauch and Piron [12, 25] have shown that the
same result holds when one takes into account more general models. However,
Bohmian mechanics [3] seemed to fragrantly contradict von Neumann’s theorem,
thus opening the analysis of the strength of the hypothesis and presuppositions
involved in the theorems. Observing this anomaly, Bell reconsidered the HV program.
Bell believed that “[...] quantum mechanics could not be a complete theory but
should be complemented by additional variables. These additional variables were
to restore to the theory causality and locality.”’[1, p. 195]. Bell wanted to show
the possibility of, in principle, completing QM with HV. But contrary to his
own expectations he himself proved, developing a by now famous inequality,
that no local, realistic HV theory would be able to reproduce the statistical
predictions of QM. Bohmian mechanics could do so at the price of giving up
locality.

Bell’s theorem proves that, in order to keep alive the HV program, either some
physical presupposition had to be given up or at least some part of the formalism
had to be changed. The latter possibility allows to develop various HV theories,
each one based on a particular family of two-valued states, as described in [11,
Chapter 4]. In fact, considering a family of two-valued states called dispersion free
and some hypothesis on the event structure it is possible to define a theory of HV
in the von Neumann style in which the only event structures that admit HV are
classical structures (see [11, Theorem 3.24]). However, the requirement of classicality
may be circumvented developing a HV theory based on probability weakening the
hypothesis over the mentioned family of two-valued states and imposing certain
restrictions on the orthostructure of the event space (see [11, Theorem 3.26]).

Another motivation for the analysis of various families of two-valued states
is rooted in the study of algebraic and topological representations of the event
structures. These results give rise to a new mathematical description of quantum
systems. Examples of them are the characterization of Boolean orthoposets by means
of two-valued states [34] and the representation of orthomodular lattices via clopen
sets in a compact Hausdorff closure space [33], later extended to orthomodular
posets in [18].
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In the above mentioned cases, the family of two-valued states is conceived as
an “external object” to the event structure in the following sense: given a class of
event structures £ and a family of two-valued probability measures, it is of interest
to know which events E € £ admit such probability measures. As mentioned in
Introduction, our aim is to “internalize” the concept of two-valued state by enlarging
the event structure with a unary operation. From a conceptual point of view, this
approach would allow to consider the possible theories of HV based on two-valued
states as interior objects in the event structure. In other words, an event structure
expanded by an operation that defines a family of two-valued states would determine
in some sense its own family of HV theories.

3. Boolean pre-states on orthomodular lattices

We formally present here the notion of two-valued state over orthomodular
lattices. Let L be an orthomodular lattice.

DEFINITION 3.1. A two-valued state on L is a function o : L — {0, 1} such
that:

1. o(1) =1,

2. if x1ly then o(x Vy) =0 (x) +0o(y).

Consider the set {0, 1} equipped with the usual Boolean structure. As we will show
in detail from Section 6 on, the different classes of two-valued states are functions
from an orthomodular lattice L onto the set {0, 1} that preserve the orthostructure, i.e.
order and orthocomplementation. These properties are very important since they rule
certain algebraic characteristics which are common to different classes of two-valued
states. This observation motivates the following general definition.

DEFINITION 3.2. Let L be an orthomodular lattice. By a Boolean pre-state on
L we mean a function o : L — {0, 1} such that:

l.o(—x)=1—-0(x),

2. if x <y then o(x) <o (y).

We denote by £p the category whose objects are pairs (L,o) such that L is
an orthomodular lattice and o is a Boolean pre-state on L. Arrows in &z are

(L1, 01) —f> (L, 07) such that f : Ly — L, is an OM/L-homomorphism, and the
following diagram is commutative

(oh]
L, — {01}
f =
| /G

L,

These arrows are called £g-homomorphisms. The following proposition is im-
mediate.
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PROPOSITION 3.3. Let L be an orthomodular lattice and o be a Boolean
pre-state on L. Then:

(1) o(1) =1 and o(0) =0,

(2) o(x Ay) <min{o(x), o(y)}. L

The basic properties of the Boolean pre-states and the notion of £z-homomor-
phisms suggest that Boolean pre-states can be seen as new unary operations that
expand the orthomodular structure. This motivates the following definition.

DEFINITION 3.4. An orthomodular lattice with an internal Boolean pre-state
(I Eg-lattice for short) is an algebra (L, A,V,—,s,0,1) of type (2,2,1,1,0,0)
such that (L, A,V,—,0,1) is an orthomodular lattice and s satisfies the following
equations for each x,y € A:

sl. s(1) =1,

s2. s(—x) = —s(x),

$3. s(x Vis(y) =s(x) Vs(y),

sd. y = As(x)) Vv (yAs(x)),

$5. s(x Ay) <s(x) As(y).

We shall refer to s as an internal Boolean pre-state. Clearly Axiom (s5) may
be equivalently formulated as the equation s(x Ay) = s(x Ay) A (s(x) As(y)). Thus,
the class of IEpg-lattices is a variety that we call ZE&p.

Let Ly and L, be two I Eg-lattices. f : L; — L, is an Z& g-homomorphism iff
it is an OM/L-homomorphism and f(s(x)) = s(f(x)) for each x € A. Note that
7Z& p-homomorphisms have analog properties to those of arrows in the category Ep.
Let A be a subvariety of ZE€p. Since A admits an orthomodular reduct, all the
equations in 4 can be referred to 1. Moreover, A is an arithmetical variety, i.e. it is
both congruence-distributive and congruence-permutable. The following proposition
provides the main properties of [ Ep-lattices.

PROPOSITION 3.5. Let L be an IEg-lattice. Then we have:
. (s(L),V,A,—,0,1) is a Boolean sublattice of Z(L),
Mf x <y then s(x) < s(y),

s Vs(y) <s(x Vy),

- s(s(x)) = s(x),

.xes(L) iff s(x) =x,

s As(y) =s(x) As(y).

Proof: 1) Let x € S(L). Then there exists xo € L such that x = s(x¢). By s4,
y=(Asx)V (yA-sx)) =OQAx)V (A—x) for each y € L. Therefore, by
Proposition 1.2(2), x € Z(L) and s(L) € Z(L). By sl, s2 and s3, note that O, 1
lie in s(L), — and V are closed operations in s(L). Hence (s(L),V,A,—,0,1) is
a Boolean sublattice of Z(L).

2) Suppose that x < y. Then s(x) = s(xAy) < s(x)As(y). Thus s(x) = s(x)As(y)
and s(x) <s(y).

3) Follows from item 2.

NN AN
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4) By 83, s(s(x)) =s(OVvsx)) =s0)Vvsx)=0Vsx)=s().

5) If x € s(L) then there exists xo € L such that x = s(xg). Therefore, by
item 4, s(x) = s(s(xg)) = s(xg) = x.

6) s(x As(y)) = —s(—=x Vs(=y) = —(ms(x) vV os(y) = s(x) As(y). U

Let L be an orthomodular lattice. An element a is said to be perspective to b
(noted a ~ b) iff a and b have a common complement, i.e. there exists x € L such
that avx =1=bVvx and aAx =0 = b Ax. An OML-filter (also called perspective
filter [14]) in L is a subset FF C A that satisfies the following conditions:

1. F is an increasing set,

2. if a,be F then anbe F,

3.if ae F and a ~ b then b e F.
We denote by Filt(L) the complete lattice of OM L-filters in L. If we define the
map Con(L) 5 —a(f) = {x € L : (x, 1) € 8} then o provides a lattice isomorphism
from Con(L) onto Fgp (L) whose inverse is given by o= '(F) = {(x,y) € L?:
(xAY)V(—x A—y) e F} for each F € Fopyp (L) [14, §2 Theorem 6].

DEFINITION 3.6. Let L be an [ Eg-lattice. An I Eg-filter in L is an O M L-filter
of L which is closed under s.

Let L be an I Ep-lattice. We denote by Filt;z,(L) the set of all IEp-filters in
L and by Con;g,(L) the congruences lattice of L. Clearly Filt;g,(L) is a complete
lattice. Given a congruence 6 € Con;g,(L), we define

Fop={xelL:(x,1)eb}
Conversely, given F € Filt;g, (L) we define:
Or ={(x,y) € L?: xAYYV(xA—-y)eF and s(x Ay)Vs(—x A—y) e F}.

THEOREM 3.7. Let L be an IEg-lattice. The maps F + Op and 0 — Fy are
mutually inverse lattice-isomorphisms between Conjg,(L) and Filt;g,(L).

Proof: We first prove that if F € Filt;g, (L) then 6 € Con;g,(L). By definition
it is clear that 6y is an OM L-congruence. Thus we have to prove that Oy is
s-compatible. Let (x, y) € r. By Axiom s5 we have FF 3 s(x Ay) Vs(—x A—y) <
s(x)As(Y) V (—s(x) A—s(y)) and then

(s(x) As(y) Vv (ms(x) A—s(y)) € F.
By s3, Proposition 3.5, and taking into account that F is closed by s, we have
s((s(x) As(y) V (=s(x) A—s(y)) € F and
s((s) As() V (ms(x) A =s(3)) =s((s(x) As(y) Vs(=x As(=y)))
=s(s(x) As(y) Vs(s(—=x As(=y)))
=s(s(x) As(y) Vs(=sx) A=s(y).
s(s(x) As(y) Vs(ms(x) As(y)) € F.
Thus (s(x),s(y)) € O, i.e. OF is s-compatible and 6r € Con;g,(L).

Hence,
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For the converse, suppose that 0r € Con;g,(L). Since 0F is an O M L-congruence,
F={xeL:(x,1) €0} is OML-filter. Since s(1) =1, F is closed by s and
then F € Filt;g,(L). Since the maps F +— 6r and 6 — Fy are mutually inverse
lattice-isomorphisms between Cong (L) and Filtgy (L) in the orthomodular reduct
(L,Vv,A,—,0,1) and taking into account that F € Filt;g, (L) iff 6 € Con;g, (L),
we have that Filt;g, (L) and Con;gy(L) are lattice-order isomorphic. O

4. The functor 7

In this section we show that starting from an [Epg-lattice L, it is possible
to define Boolean pre-states on the underling orthomodular structure of L. This
operation gives rise to a functor from the category of I Ep-lattices onto the category
of Boolean pre-states. We first introduce some basic notions.

DEFINITION 4.1. Let B be a Boolean algebra. An increasing subset M C B is
said to be prime iff it satisfies: x € M iff —x ¢ M.

PROPOSITION 4.2. Let B be a Boolean algebra. Then for each a > O there
exists a prime increasing subset M of B such that a € M.

Proof: Clearly if x € [a) then —x ¢ [a). By Zorn’s lemma there exists a maximal
increasing set M such that, [a) € M and x € M implies —x ¢ M. Suppose that
x,—x € M. Let M| = M U [x). Clearly M, is an increasing set. We will show that
if y e My then =y € M,. If y € M; we have to consider two cases:

Case 1: y € M. In this case —y € M. If =y € [x) then x < =y, y < —x and
—x € M which is a contradiction. Thus —y ¢ M;.

Case 2: y € [x). Then x <y and —y ¢ [x). Moreover —y < —x. If —y e M
then —x € M which is a contradiction. Thus —y ¢ M U [x).

Hence —y ¢ M;. Since M is a maximal increasing set respect to the property
x € M implies —x ¢ M, we have that M = M; = M U [x) which is a contradiction
since x,—x ¢ M. This proves that, if —x ¢ M then x € M. Thus M satisfies
the property x € M iff =x ¢ M and then M is a prime increasing subset of B
containing a. O

PROPOSITION 4.3. Let B be a Boolean algebra and o be Boolean pre-state on
B. Then the map o — o~ '(1) = {x € B : 0(x) =1} is a one-to-one correspondence
between Boolean pre-states on B and prime increasing subset of B.

Proof: Since o is an order homomorphism then o~!' is an increasing set.

Moreover x € o~ 1(1) iff o(x) =1 iff 0(—x) =0 iff =x & o~!(1). Thus o~'(1) is
prime increasing subset of B. By definition, the map o > o~!(1) is injective. We
prove the surjectivity. Let M be a prime increasing subset of B. If we consider
the function

1, if xeM,

0, otherwise

oy (x) = {
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it is not very hard to see that oj is Boolean pre-state and a,gl(l) = M. Hence
the map is surjective. d

PROPOSITION 4.4. Let L be an I Eg-lattice. Then there exists a Boolean pre-state
o: L — {0,1} such that o(x) =1 iff o(s(x)) = 1.

Proof: By Proposition 4.2, there exists a prime increasing subset M of s(L).
By Proposition 4.3, let ¢y : s(L) — {0,1} be the Boolean pre-state associated

to M. Define the composition oy : L =S s(L) g {0, 1}. Clearly oy is an order
homomorphism and note that oy (—x) = @y (s(—x)) = ey (—s(x)) =1 — @y (s(x)).
Hence oy, is a Boolean pre-state on L. By Proposition 3.5-4, opy(x) = 1 iff
I =@u(s(x) = ous(s(x)) = om(s(x)). O

The last proposition motivates the following concept.

DEFINITION 4.5. Let L be an I Epg-lattice and o be a Boolean pre-state on L.
Then s, o are coherent whenever they satisfy o(x) =1 iff o(s(x)) = 1.

Proposition 4.4 allows to build a coherent Boolean pre-state for each possible
prime increasing set in s(L). Our main interest is to tell exactly if all possible
Boolean pre-states in L, coherent with s, come from a prime increasing set in
s(L). In order to do this, we extend the concept of prime increasing subset to the
1 Eg-lattices in the following manner.

DEFINITION 4.6. Let L be an [ Eg-lattice. A Boolean pre-state filter (bps-filter
for short) is a nonempty subset F of L such that

1. F is an increasing set such that s(F) C F,

2. x e F iff ~x ¢ F.
We denote by Filt,,, the set of all bps-filters.

LEMMA 4.7. Let L be an [Eg-lattice and F be a bps-filter. Then s(F) is
a prime increasing subset in s(L).

Proof: Let a € s(F) and x € s(L) be such that a < x. By definition of bps-filter,
s(F)C F and then a € F. Since F is an increasing set, x € F.

By Proposition 3.5-5, x = s(x) € s(F) and then s(F) is an increasing set in
s(L). Let x € s(L). Since x = s(x) and F is closed by s, we have: x € s(F)
iff x e F iff —x € F iff =x &€ s(F). Hence s(F) is a prime increasing subset in
s(L). O

PROPOSITION 4.8. Let L be an [Epg-lattice and M be a prime increasing
subset in s(L). Then the map M +— Fy = {x € L : s(x) € M} is a one-to-one
correspondence between prime increasing subsets in s(L) and Filty, (L).

Proof: By Proposition 3.5-2, F), is an increasing set. For each x € Fy, s(x) e M
and then s(x) = s(s(x)) € M. Thus s(x) € Fyy and F), is closed by s. Let x € L.
Then x € Fy iff s(x) € M iff =s(x) € M iff —x ¢ Fy. Hence Fy € Filt,,,(L). By
definition it is not very hard to see that the map M +— Fyy ={x € L : s(x) € M}
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is injective. We shall prove the surjectivity. Let F € Filty,,(L). By Lemma 4.7,
s(F) is a prime increasing subset in s(L). By the above result we can consider
the bps-filter Fyry. If x € Fy) then s(x) € s(F). Note that if x ¢ F then —x € F
and —s(x) € s(F) which is a contradiction. Therefore x € F and FyF) € F. For
the other inclusion, if x € F then s(x) € s(F) and x € Fyr). Thus F C Fp).
Hence F = Fy). These arguments prove that M — Fy = {x € L : s(x) € M}
is a one-to-one correspondence between prime increasing subsets in s(L) and
Filty,(L). O

PROPOSITION 4.9. Let L be an IEg-lattice and (o;); be the family of Boolean
pre-states on L coherent with s. Then there exists a one-to-one correspondence
between (o;); and Filt,,;(L) given by the mapping o; — ol._l(l).

Proof: We first prove that if ¢ is a Boolean pre-state on L coherent with s
then o~1(1) is a bps-filter. Clearly o~!(1) is an increasing set. Since o is coherent
with s then o~ !(1) is closed by s. x € o~ !(1) iff o(x) = 1 iff o(—x) = 0 iff
—x ¢ o~ !(1). Hence o7 1(1) € Filt;,,(L). Trivially the map o; — o*lfl(l) is injective.
Then we have to prove the surjectivity.

Let F € Filty,(L). By Lemma 4.7, s(F) is a prime increasing subset of

s(L). With the same argument used in Proposition 4.4, consider the Boolean pre-
Ps
state oy r) coherent with s given by the composition L > s(L) g {0, 1}. We

have to prove that F = a;(})(l). If x € o';(}p)(l) then @ r)(s(x)) = 1. Therefore
s(x) € s(F). Suppose that x € F. Since F is a bps-filter, —x € F and —s(x) € s(F)
which is a contradiction since s(F) is a prime increasing subset on s(L). Thus
x € F and a;(})(l) C F. On the other hand, if x € F then s(x) € s(F) and

05(F)(X) = @s(p)(s(x)) = 1. Thus x € 0,1 (1) and F C o, (D). O

Thus, by Propositions 4.8 and 4.9, for an [ Ep-lattice L, Boolean pre-states on
L are in one-to-one correspondence with prime increasing sets in s(L). Moreover,
we can built IEpg-lattices from an object in the category £p. As we shall see in
the following, this construction is described by a functor.

PROPOSITION 4.10. Let L be an orthomodular lattice and o be a Boolean
pre-state on L. If we define Z(L) = (L, s,) such that

_ 14, if o(x)=1,
S“”_{M, if 5(0) =0

then:
1. Z(L) is a IEg-lattice and s, is coherent with o.
2. If o(xVy)=0x)+a(y) then s;(x Vy) = 855(x) V s5(¥).
3. If (L1,01) —f> (Lo, 03) is an Eg-homomorphism then f : (L) — Z(L,) is an
1 E g-homomorphism.
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Proof: 1) We have to prove that s, satisfies sl, ..., s5. Clearly sl, s2 and
s4 are trivially satisfied. s3) If o(y) =1 then, 1F = s5,(x V 15) = 5, (x V 55(y))
and s, (X) V 5o (¥) = so(x) V1E = 15 If o(y) = 0 then s,(x V 5,()) = s5(x)
and s, (x) V so(¥) = s5(x). s5) If o(x Ay) = 0 then s,(x Ay) = 0 and
0F = 5, (x Ay) < 5,(x) A se(y). Suppose that o(x A y) = 1. Since o is monotone
o(x) =0(y) = 1. Thus s,(x A y) = s5(x) Ass(y). Hence L with the operation s,
is an IEg-lattice. Note that o(x) = 1 iff s,(x) = 1X iff 6(s,(x)) =1 and then s,
is coherent with o.

2) Suppose that o(x) = 1. Then 1% = 5,(x) < 5,(x) Vs, (y). Since x < xVy, we
have o (xVy) =1 and s,(x Vy) = 1-. Thus s, (x Vy) = 55 (x) Vs (y) = 1-. The case
o(y) =1 is analogous. Suppose that o(x) = o(y) = 0. Then s, (x) V s5,(y) = 0F.
Moreover o(x Vy) = o(x) +o(y) = 0 and 0 = s,(x V y). Thus s,(x Vy) =
50 (X) V 55 (y) = 0.

3) Let (Ly,01) —f> (L, 07) be an Eg-homomorphism. Suppose that oj(x) = 1.
Then f(sq,(x)) = f(1f1)y = 12, Since oy 0 f = o1, 0»(f(x)) = 1 and then
5o, (f (X)) = 122, An analogous result can be obtained when we consider the case

o1(x) = 0. Hence f (55, (x) = 50, (f (x)). 0
By Proposition 4.10 we can see that
T: SB —> ISB,

such that & > (L,0) — Z(L,0) = (L,s,) and Z(f) = f for each Z&p-
homomorphisms f, is a functor.

5. Equational characterization for subclasses of &g

Boolean pre-states are external maps with respect to the orthomodular structure
in the sense that they are not closed in the domain of definition. However, a closer
look shows that the equational system of ZEp allows to represent the basic properties
that define these maps by adding an operation to the orthomodular structure. Let A
be a subcategory of £p. To find this operation, we propose to search for a subvariety
A; of ZEp and a subclass D of A; whose algebras are univocally determined by
the objects of A and then to see that the valid equations in A; are determined by
the subclass D. This motivates the following definition.

DEFINITION 5.1. Let A be a subcategory of E£p. A subvariety A; of ZE&p
equationally characterizes A iff there exists a subclass D of A; such that:

1. D is categorically equivalent to A,

2. Egq, t=110f Ept =1

By an argument of universal algebra, for each subcategory A of £p, it is always
possible to obtain a subvariety A4; of ZEp that equationally characterizes A. In
fact, we first consider the class D = {Z(A) : A € A} that in turn allows to locally
invert the functor Z in D, i.e. Z: A — D determines a categorical equivalence.
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Let A; = V(D) be the subvariety of ZEp generated by D. Then [=4, t =1 iff
Ept=1.

Clearly this construction does not seem very attractive because it would not
give, in principle, any information about the equational system that defines the
subvariety A;. Our proposal is to give arguments that allow to determine in the
simplest form the equations that define .4; and the subclass D. For this purpose,
we need to characterize the direct indecomposable algebras in any subvariety of
ZEp and the following previous results:

PROPOSITION 5.2. Let L be an IEg-lattice, a € s(L) and L, = [0, a]. If we
consider the restriction s [[0q then (Lg, s [j04) is an [Eg-lattice and s(L,) =
L,Ns(L) € Z(Ly,).

Proof: As is mentioned in the basic notions, L, is an orthomodular lattice. By
Proposition 3.5-2 s is closed in L, and then s(L,) = L, Ns(L). s3 and s5 follow
from the fact that s is closed in L,.

(s1) By Proposition 3.5-5, s(a) = a.

(s2) By Proposition 3.5-6, s(—,x) = s(—x Aa) = s(—x As(a)) = —s(x) Aa =
—,5(x).

(s4) Let x,y € L,. Then (yAs(xX))V(yA—z5(x)) = YAsSX) V(Y AaAn—s(x)) =
(yAs(x))V(yA—s(x)) =y. By Theorem 1.2 and s4 it follows that s(L,) € Z(L,).O

PROPOSITION 5.3. Let L be an I Eg-lattice and let a,b € s(L) such that a < b.
If v, : Termze, — L, is a valuation then there exists a valuation vy, : Termze, — L
such that v,(t) = a A vp(t).

Proof: We define v, : Term — L, as follows: v,(0) = 0, v,(1) = b, and
vp(x) = v,(x) for each variable x. We use induction on the complexity of terms. If
Comp(t) =0 (i.e. ¢t is a variable) the proof is trivial. Suppose that the proposition
holds for Comp(¢) < n. Let t € Term such that Comp(¢) = n. If ¢t is —u then
Comp(u) < n and we have that v,(t) = v,(—u) = —,v,(u) = =4V (1) = an—vp(u) =
an(bA—vp(u)) = an—pvp(u) = aAvp(—u) = anvy(t). Suppose that ¢ is s(u). Since
Comp(u) < n, s is closed in L, and a € s(L), By Proposition 3.5-5 we have that
Va (1) = va(s () = s(va(u)) = s(anvp(u)) = s(@)As(vp(u)) = anvy(s(u)) = anvp(t).
If £ is uy ANup, va(t) = va(uy Auz) = va(u1) Avg(uz) = (@ Avp(ur)) A(a Avp(uz)) =
a ANvp(uy Aup) =a A vp(t). d

PROPOSITION 5.4. Let L be an IEg-lattice and a,b € s(L) such that a < b.
Then we have

':thzr:>|:Lat=r

Proof: By the characterization of equations in OML, we study equations of
the form ¢ = 1. Suppose that L, =t = 1. Let v, be an L,-valuation. By
Proposition 5.3 there exists an Lj-valuation v, such that v,(-) = a A vp(-). Thus
va)=anv,(t)=anlt =aAb=a=1%. Hence L, =1t = 1. O
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Proposition 5.4 gives the following useful result: when we consider an arbitrary
subvariety A; of ZE g, any interval structure considered in an algebra of A; lies in A,.

Let L be an orthomodular lattice. It is well known that the map given by
Z(L) 3 7 — 6, = {(a,b) € L> : anz = b Az} is a Boolean isomorphism
between Z(L) and the Boolean subalgebra of Congy (L) of factor congruences.
The correspondence x /6, — x Az defines an O M L-isomorphism from L /6, onto L,
and then x — (x Az, x A—z) defines an OM L-isomorphism from L onto L, x L_,.
In what follows we shall establish analogous results for [ Eg-lattices.

PROPOSITION 5.5. Let A; be a subvariety of IEp. Let L be an algebra in Ay,
z € s(L) and we define the set 6, = {(a,b) € L> :a Az =Db Az}. Then we have:
1. 67 € Cony, (L) and x/6, — x Az define an Az-isomorphism from L /6, onto
L,.
2. (6,,0-;) is a pair of factor congruences on L,
3. the map s(L) > z — 6, = {(a,b) € L> : anz = bAz} is a Boolean isomorphism
between s(L) and the Boolean subalgebra of Cony, (L) of factor congruences.

Proof: 1) Let z € s(L). We first prove that 6, € Cong,(L). It is well known
that 6, is an O M L-congruence. We only need to see the s-compatibility. Suppose
that (a,b) € 6,, ie. a Az = b A z. By Proposition 3.5-4 and 5, s(a) Az =
s(ayns(z) =s(ans@)=sanz) =s(brz) =s(bAs(2) =sb)As(z) =s(b) Nz
Hence (s(a),s(b)) € 6.. By Proposition 54, L. € A. Let f : L/s, — L. such
that f(x/6,) = x Az. Since f is an OM L-isomorphism, we have to prove that
fs(x/02)) = s(f(x/6)). In fact f(s(x/6,)) = f(s(x)/0:) =s(x)Az=5(x)As5(2) =
s(x As(z)) =s(f(x/6;)). Hence f is an A;-isomorphism.

2) By item 1, x/6-, — x A —z defines an A-isomorphism from L/6_, onto L_..
Thus we have to prove that g: L — L, x L_, such that g(x) = (x Az,x A—Z) is
an A;-isomorphism. It is well known that g is an O M L-isomorphism, consequently
we need to prove that g(s(x)) = s(g(x)). In fact, g(s(x)) = (s(x) Az, 5(x) A—Z) =
(s(x) As(2),s(x) As(—2) = (s(x Az),s(x A—2)) = s((x Az, x A —z)) = s(g(x)).
Hence g is an A;-isomorphism and (6,,6-;) is a pair of factor congruences on L.

3) Let 6 be a factor congruence and i : L — L/6 x L/6* be an A;-isomorphism.
Since 4 is an O M L-isomorphism, if we consider the preimage z = f~'((1,0)) then,
it is well known that z € Z(L) and 6 = {(a,b) € L> : a Az = b A z}. Taking into
account that s((1,0)) = (1, 0) we have that z = f~'(s((1,0))) = s(f~1(1,0)) = s(2).
Hence z € s(L) and s(L) > z+— 6. = {(a,b) € L> :a Az =b Az} is a Boolean
isomorphism between s(L) and the Boolean subalgebra of Cong,(L) of factor
congruences. (]

If A; is a subvariety of ZEp we denote by D(A;) the class of directly
indecomposable algebras of A.

PROPOSITION 5.6. Let A; be a subvariety of ZEp. Then we have
1. L e D(A)) iff s(L) =2.
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2. If L € D(A)) then the function

L i st = 1%,
Us(x)_ {O, ifs(x):OL,

is the unique Boolean pre-state coherent with s.
3. Let L € D(A;) and x,y € L such that, xLy and s(x vV y) = s(x) V s(y).
Then os(x VvV y) = oy(x) + o5(y).

Proof: 1) Follows immediately from Theorem 5.5.

2) Since s(L) = 2, by Proposition 4.2, {1} is the unique prime increasing set
in s(L). Hence by Proposition 4.8 and Proposition 4.9, o, is the unique Boolean
pre-state coherent with s.

3) Let x,y € L such that, x1y and s(x vV y) = s(x) VvV s(y). Suppose that
s(x) = 1L, Then 1F = s(x) < s(x Vy) and s(—y) = 0F. Thus o,(x Vy) = 1,
os(x) =0 and o,(y) = 1, ie. o,(x Vy) = 0,(x) + 0,(y). Suppose that s(x) = OF.
Then s(xvy) =0Vvs(y) =s(y) and o,(x Vy) = o4(y). Since o5(x) =0, o,(x Vy) =
0+ 05(y) = 05(x) + o5(y). Hence o,(x vV y) = o5(x) + 05(y). O

Now we can establish a simple criterium to equationally characterize subclasses
of Boolean pre-states.

THEOREM 5.7. Let A be a subcategory of Ep and let A; be a subvariety of
ZEp such that it satisfies the following two conditions:
I: For each (L,o) € A, Z(L) € D(A;) where the internal Boolean pre-state in
Z(L) is given by

) = 14, if o(x) =1,
N0, i o) =0,

E: For each L € D(A;), (L,o5) € A where o, the unique Boolean pre-state
coherent with s is given by

1 i s =12,
G‘Y(x)_{o, if s(x) = OF.

Then T : A — D(A)) is a categorical equivalence and A; equationally characterizes

A.

Proof: By condition E we consider £ : D(A;) — A such that for each L € D(A,)
E(L) = (L,oy). If f:L — Ly is an A;-homomorphism, by definition of oy,
with i = 1,2, £(f) = f is an A-homomorphism. Thus £ is a functor. We prove
that the composite functor £Z is naturally equivalent to the identity functor 1 4.
Let (L,0) € A. By Proposition 4.10 and Proposition 5.5, 0 = o,,. Consequently
EI(L,o0)=(L,0) and EZ(f) = f for each A-homomorphisms. Then the following
diagram is trivially commutative:
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S
(Li,01) — (L2,02)
| e

5I(L1,0'r) — gI(Lz,O’z)
SI(f)
It proves that £7 is naturally equivalent to the identity functor 14. With analogous
arguments we can prove that Z& is naturally equivalent to the identity functor
Ipa,). Hence 7 : A — D(A;) is a categorial equivalence.
Since D(A;) contains the subdirectly irreducible algebras of A, it is immediate
that =4, t =1 iff |=p4,)t = 1. Hence A; equationally characterizes A. O

REMARK 5.8. Let 4 be a subcategory of &z. Theorem 5.7 states that every
object (A, o) € A where o is a two-valued state defined on the orthomodular lattice
A is univocally identifiable to a directly indecomposable algebra of the variety A,
and vice versa. In other words, if a class A of two-valued states defined over
orthomodular lattices is equationally characterizable through a variety A; then A is
identifiable to the class of directly indecomposable algebras of A;.

EXAMPLE 5.9. Boolean pre-states. Let us apply Theorem 5.7 to show that
ZEp equationally characterizes . I) By Proposition 4.10, if (L,o0) € Ep then
I(L) € ZEp. E) If L € D(ZER), by Proposition 5.5, (L,os) € Ep. Hence ZEp
equationally characterizes the full class Ep.

In the next sections we use Theorem 5.7 to characterize two different families
of two-valued states.

6. Two-valued states

Now we study the class of two-valued states of Definition 3.1. We denote by
TEp the full subcategory of £ whose objects are pairs (L, o) such that L is an
orthomodular lattice and o is a two-valued state. We propose the following structure
to characterize 7 Ep.

DEFINITION 6.1. An orthomodular lattice with an internal two-valued state
(IT Eg-lattice for short) is an [ Epg-lattice (L, A, V,—,s,0,1) that satisfies

s(xV(yA—x))=sx)Vs(iyAn—x).
We denote by Z7 Ep the variety of IT Ep-lattices.

PROPOSITION 6.2. Let L be an IT Eg-lattice and x,y in L be such that xLy.
Then s(x Vy)=s(x)Vs(y).

Proof: Suppose that x < —y and then y < —x. Hence, by definition of IT Ep-
lattice, s(x Vy) =s(x V(Y A—x)) =sx) Vs(y A—x)=sx)Vsy). O

THEOREM 6.3. ZT Ep equationally characterizes TEp.
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Proof: We need to prove the two conditions of Theorem 5.7. I) Let (L,0) € TEp.
We first show that s,(x V (y A =x)) = s5(x) V s5(y A —x). Since xLly A —ux,
oc(xV(yA—x)) =o0(x)+0o(yA—x). Then, by Proposition 4.10-2, s,(x V (y A—x)) =
5o (x) V 55 (¥ A —x). Hence, by Proposition 5.6-1, Z(L) = (L, s,) € D(ZTEp).

E) Let L € D(ZWEpg) and x,y € L be such that x < —y. By Lemma 6.2,
s(x Vy) =s(x)Vs(y). Then by Proposition 5.6-3, o,(x V y) = o4(x) + o,(y) and
(L,o5) € TER. Hence, T Ep equationally characterizes T Ep. O

7. Jauch-Piron two-valued states

Let L be an orthomodular lattice. A Jauch—Piron two-valued state is a two-valued
state o that satisfies

o(x)=0(y)=1 = 3ceL:o(c)=1and ¢ <ux,y.

For the analysis of this property imposed by Jauch and Piron [12, 24] we also refer
to [31]. We denote by JPEp the full subcategory of £ whose objects are pairs
(L,o) such that L is an orthomodular lattice and o is a Jauch-Piron two-valued
state.

PROPOSITION 7.1. Let L be an orthomodular lattice and o be a two-valued
state. Then the following statements are equivalent:

1. o is a Jauch—Piron two-valued state,.

2.0x)=0(y)=1 = oxAy) =1,

3.o(x)-o(mxVy)=0a(xAY).

Proof: 1 — 2) Suppose that o(x) = o(y) = 1. By hypothesis, there exists
¢ <x,y such that o(c) = 1. Since c <x Ay, c(x Ay)=1.

2 — 3) We have to consider four possible cases:

Case o(x) = o(y) = 1. By hypothesis, o (x Ay) = 1. Since y < —x Vy we have
l=0() <o(—xVy). Thus c(x)-o(—=x Vy)=0c(x AYy).

Case o(x) =1 and o(y) =0. Since x Ay <y then o(x A y) <o(y) =0. Note
that 1 —o(—x Vy) =0(x A—y). Since o(x) = o(—y) = 1, by hypothesis we have
that o(x A —y) =1 and then o(—x Vy) =0. Thus o(x) -o(—x Vy) =a(x A Y).
The cases with o(x) =0 are trivial. Hence o(x) -o(—x Vy) =0c(x A y).

3 — 1) We first prove that 1 —o (x)-0(—xVy) = o(—x)Vo(x A—y) where V is the
supremum in the natural order of {0, 1}. If o(x) =0 then 1—0o(x)-0(—xVy) =1 and
o(—x)Vo(xAn—y) =1vo(xan—y)=1Ifo(x) =1, l—0(x)-0c(—xVy) = 1—0 (—xVYy)
and o(—x) Vo(x A—=y) =0Va(x A—y). Since 1 —o(—xVy)=o(—(—xVy)) =
o(x A—y) we have that 1 —o(x) -o(—x Vy) =0(—x) Va(x A—y).

Suppose that o(x) = o(y) = 1. Note that 0 (—x) =0 and o (x A—y) < o(—y) =0.
Thus o(—x) Vo(x A—y) =0 and by the above argument o(x) -o(—x Vy) = 1.
By hypothesis o(x Ay) = 1. Since x Ay < x,y, o is a Jauch-Piron two-valued
state. O

Taking into account the last proposition, we propose the following structure to
characterize JPEp.
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DEFINITION 7.2. An orthomodular lattice with an internal Jauch—Piron two-
valued state (IJ P Epg-lattice for short) is a T Eg-lattice (L, A, V,—,s,0,1) such
that

SX)AS(tx VY =s(xAy).

We denote by ZJPEp the variety of IJ P Ep-lattices.
THEOREM 7.3. ZJPEp equationally characterizes JPEp.

Proof: We need to prove the two condition of Theorem 5.7.

I) Let (L,0) € JPEB. We first show that s;(x) A so(—x V y) = so(x A y).
Suppose that o(x) = 1. By Proposition 7.1-3, o(—x Vy) = o(x Ay) and then
Ss(mx V' y) = s;(x Ay). Thus s,(x) A se(—x Vy) = ss(x Ay). Suppose that
o(x) = 0. By Proposition 7.1-3, o (x Ay) = 0. Thus s, (x) = 0%, s, (x Ay) = 0" and
S (X)) ASg(—mxVy) = 0L Asy (mxVy) =08 =s,(xAy). Z(L) = (L, s5) € DZLITPER).

E) Let L € DZJPER). Let x,y € L such that o;(x) = o,(y) = 1. Then
s(x) = s(y) = 1. Note that 1 = s(y) < s(—=xVy) and then 1* = s(x)As(-xVy) =
s(x Ay). Thus o,(x Ay) = 1. By Proposition 7.1, (L, o) € JPEp). Hence ZTPEp
equationally characterizes JPEp. O

8. Conclusions

In this paper we have developed an algebraic framework in which it is possible to
demonstrate that several classes of two-valued states over an orthomodular lattice may
be equationally characterized. We have obtained the internalization of a set of classes
of two-valued states by enlarging the orthomodular lattice with a unary operator
equationally described. This solves the question present in the literature regarding the
characterization of several families of two-valued states over orthomodular lattices.
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