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Abstract

We study a time-dependent distorted-wave formulation of atomic ionization by short laser
pulses named the double-distorted Coulomb—Volkov (DDCV) approximation. The method
takes into account the distortions introduced by the laser field in the initial and final channels,
both by means of the Volkov phase. The DDCV model is applied to evaluate electron emission
distributions for hydrogen atoms ionized by multi-cycle laser pulses. Results are compared
with the predictions of an exact treatment based on the numerical solution of the
time-dependent Schrodinger equation (TDSE) and with values derived from the standard
Coulomb-Volkov (CV) approach, considering different intensities and frequencies of the laser
field. Good agreement with the TDSE solution has been obtained for laser frequencies higher
than 0.1 au, extending the range of applicability of the usual CV-type methods.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In the last decade, the fast development of laser technology
has transformed the study of the interaction of coherent
electromagnetic radiation with matter in an extraordinarily
active field. In particular, for the case of atomic targets,
an intense experimental and theoretical research involving
laser pulses in the femto- (or even atto-) second time domain
has been developed [1-3]. Among the theoretical methods
introduced to describe the electronic transitions produced
by ultrashort laser pulses we can mention the Coulomb—
Volkov (CV) approximation which has become a useful tool
to investigate the physics behind photoinduced ionization
processes. It has been used to study different aspects of the
photoelectron emission, like the role played by the residual
target potential [4], photon effects in the tunnel regime [5], the
interference effects originated by different release times of the
emitted electron [6] and near threshold ionization structures in
H3 molecules [7].

The CV approximation is a time-dependent distorted-
wave theory that makes use of the well-known CV

0953-4075/12/015601+07$33.00

wavefunction [8—12] to describe the action of the laser electric
field on the active electron in the exit channel. In this way, the
CV approach can be considered as a single-distorted method
because it includes the distortion of the laser pulse only in
the final state, while the initial channel is represented by
the unperturbed atomic wavefunction in the absence of the
external field. It has been shown that the CV approximation
can provide accurate electron energy distributions for a large
variety of laser pulses, ranging from non-oscillating to multi-
cycle fields [13-15]. It represents a reliable alternative
approach to the numerical solution of the time-dependent
Schrodinger equation (TDSE) and other semiclassical models
[16, 17], with the advantage that it can be easily extended
for multi-electronic targets. Nevertheless, it fails when the
perturbative conditions are not fulfilled (i.e. for intense laser
fields for which the ionization is produced in an effective time
much shorter than the pulse duration) or when the ionization
requires multi-photon transitions through intermediate excited
states, as it happens for photon energies smaller than the atomic
ionization potential. Lately, an improvement on the standard
CV approach was developed by Smirnova et al [18], which
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is based on the use of the Coulomb-Eikonal-Volkov state to
take into account both the depletion and the Stark shift of
the ground state. Other modifications of the CV theory were
introduced in [19-21] by expanding the initial state on a basis
set of unperturbed atomic wavefunctions and then solving the
close-coupling equations for their populations.

Alternatively, for the purpose of improving the description
of the initial channel given by the CV approach, in a previous
work [14] we introduced the double-distorted Coulomb—
Volkov (DDCV) approximation, which includes the effect of
the laser field on the initial and final states on an equal footing.
The incorporation of the distortion produced by the laser in
the initial channel accounts for dynamic Stark effects (energy
and wavefunction time-dependent modifications), which are
expected to play an important role for high values of the
quiver amplitude of the laser electric field [14]. The DDCV
method has been successfully employed to study the ionization
of atomic hydrogen by half-cycle laser pulses, displaying
an improvement on the CV approach for high momentum
transfers, especially in the region of low electron energies
where the CV theory breaks down [22].

In this paper, we extend the application of the DDCV
model to laser pulses involving several oscillations of the
electric field inside the envelope. In order to test the
performance of the DDCV approach for multi-cycle pulses we
evaluate photoelectron emission spectra for hydrogen atoms,
comparing them with exact calculations obtained from the
numerical solution of the TDSE in three spatial dimensions
[23]. Our aim is to derive a simple and realistic method that
allows us to extract information about the different ionization
mechanisms and can be straightforwardly extended to more
complex systems [24-28], for which the applicability of the
TDSE becomes computationally prohibitive.

The paper is organized as follows. In section 2, we derive
the DDCV approximation from the time-dependent distorted
wave formalism. Electron energy and momentum distributions
for hydrogen ionization are presented in section 3, considering
different field strengths and frequencies of the laser pulse.
Finally, in section 4 we discuss our main conclusions. Atomic
units are used throughout unless otherwise stated.

2. Theory

Let us consider a target atom 7 interacting with a time-
dependent electric field F(¢), which characterizes the laser
pulse in the dipole approximation. As a consequence of this
interaction, one electron e of the target, initially bound to the
atomic nucleus in the state ¢;, is emitted in a continuum state
¢y withmomentumk . In the presence of the external electric
field, the temporal evolution of the electronic state W(r, ¢) is
governed by the Schrodinger equation

oW (r, 1)
j—7
at
where Hy = —V2/2 + Vy(r) is the unperturbed atomic
Hamiltonian, with r the position vector of the active electron

e and V7 the electron-target potential, and the term Vi (r, t) =
r - F () represents the interaction potential with the laser field

= [Ho+ V.(r,)]W(r, 1), ey

expressed in the length gauge. For hydrogenic targets, like
the ones considered here, V7 (r) = —Z/r, Z being the nuclear
charge (Z = 1 for hydrogen).

To describe the electron emission process we make use of
the distorted-wave formulation [29, 30], which is based on the
idea of taking account of a substantial part of the interaction
potential by means of approximate wavefunctions. Within the
framework of the time-dependent distorted-wave formalism
[31], it is possible to derive a double-distorted theory by
considering distorted wavefunctions x; and x, to represent
the initial and final channels, respectively. The post(+)
and prior(—) forms of the double-distorted 7-matrix element
read [14]

+00
T; =aj — i/ dt (x (O VF | (1)), )
—00

where W = W} (t) and W~ = W;(¢) are the final and initial
distortion potentials, respectively, defined by W; () |x; (1)) =
(Ho+ Vp(r,t) —id/0t)|x;(t)), with j =i, f. The first term
of equation (2) corresponds to the transition amplitude in the
sudden limit, which is expressed as

aly = lim (¢r()|xi(1).  post form, 3)
a;p = . lim (x 7 (0)[¢i (1)), prior form. )

These sudden amplitudes provide the main contribution to the
ionization probability when the duration of the pulse is much
shorter than the orbital period of the electron in the initial
state and consequently, the field becomes a sudden momentum
transfer [10].

In this work, we use CV-type wavefunctions as initial and
final distorted states. For the initial channel we propose the
impulse Coulomb—Volkov (ICV) wavefunction [14], which is
based on the impulsive hypothesis [30, 32] that states that
the main effect of V7 is to determine the initial electron
momentum distribution. This hypothesis is particularly valid
for ultrashort laser pulses when the pulse duration is shorter
than the characteristic time of the electron motion. Then, the
ICV wavefunction is derived from the momentum distribution
of the initial state ¢; by including the action of the laser field
through the phase of the Volkov function [33]. The Volkov
wavefunction represents the exact quantum state for a free
electron moving in a time-dependent electric field and its phase
has been extensively employed to study different radiation-
matter problems [34-38]. The initial ICV wavefunction
reads [14]

_ _IcV _ L~
xi=x @)= W[dkexp(—le,-t)goi(k)

x explik - r+iDj (K, r, 1)]
= ¢i[r — a’ ()] exp[iD} (0, r, 1)], (5)

where ¢;(r,t) = exp(—ig; t)g;(r) is the initial bound state
with energy ¢; and the tilde denotes the Fourier transformation
in the momentum space. The Volkov phase is expressed as

Di(k,r, 1) = A*(t) - — (1) — k- a* (1), (6)
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where

AT = — / dr'F (1),
Foo

B =2 / d'TA* ()T, ™
Foo

oE(t) = /
:FOO

are associated with the vector potential, the ponderomotive
energy and the quiver amplitude, respectively.

In a similar way, in the final channel we employ the usual
CV state [8]

dr' A% (1)

Xr= x50 0 = ¢, D expliDy (ky, v, 0], (®)
where ¢,(r,1) = <p; (r) exp(—igyt) is the final Coulomb
wavefunction with momentum k; and energy e = k% /2,
with

¢, () = 2m) " exp(ik; - 1)D™(Z, kg, 1), ©)

D™ (Z, Ky, 1) = exp(v;/2)T(1 +ivy)

x 1 Fy (—ivf,l,—ikfr—ikf~r), (10)

vy = Z/ky, 1F1 the confluent hypergeometric function
and k; = |ky|. The proposed initial and final distorted
wavefunctions (equations (5) and (8)) satisfy the proper
asymptotic conditions, i.e. x/°V*(t) — ¢;(t) for t — —o0
and XfCV*(t) — ¢y (1) for t — +00, regarded A*(t) — 0as
t — Foo, respectively.

For hydrogenic targets, for which ¢; and ¢, are exact
eigenfunctions of the atomic Hamiltonian Hj, both forms of
the transition matrix are equivalent, i.e. 7;; = T;;. But for
multi-electronic atoms, a post—prior discrepancy arises when
a Hartree—Fock wavefunction is considered to represent the
initial bound state while the final one is described using an
effective Coulombic charge. In such cases, the use of the
prior expression should be more appropriate [39] because it
includes the initial distortion potential W;, which does not
depend on the choice of the effective charge. Here, for the
sake of simplicity we summarize only the expression of the
post form, which was employed in the calculations of this
paper. Replacing X}CVJ' and X?V7 in equation (2), the post
DDCYV transition amplitude reads

+00

dr eiB(z)

Tj;DDCV)+ =™ L[k, p(to), 0] +/

—00
x Ni[ky, p(t), d(®)] - A7 (1), (11
where 7, denotes the time when the pulse is turned on,
p(t) =ky+ AA(?), d(t) = a*(¢) and
3(t) = Aet+ AB() +ky - a™ (1), (12)
with Ae = g —g;, AB(t) = (1) — B*(t) and AA(¥) =
A~ (t) — A*(t). The functions L; [k, q, d] and N; [k, q, d] are
Nordsieck integrals [30], being defined as

Li[k’ q, d] _ €xXp (_1(1 : I')
{N,»[k, a, d]} = /dr

(27)3/2
x {Vl} D (Z,Kk, 1.

@i(r—d)

13)

For d = 0, these functions reduce to one-centre integrals,
presenting closed analytical forms [40]. But when the
displacement d is not null, as it happens in the second term
of equation (11), they involve two-centre integrals which must
be numerically evaluated. Note that the CV transition matrix
[13, 14] can be obtained from equation (11) by neglecting
the Volkov phase in the initial channel; that is, by fixing
A*(t) =a*(r) =0and B*(r) = 0.

3. Results

The DDCV approximation is applied to study electron
emission from H(1s) produced by the incidence of a linearly
polarized laser pulse. As hydrogen is the simplest atomic
target, with only one bound electron, this system will be
considered as a benchmark for the theory. The temporal profile
of the laser electric field F (¢) is chosen as

F (1) = Fysin(wt + @) sin®(t/7) (14)

for 0 < t < t and O elsewhere, where Fj is the maximum
field strength, w is the carrier frequency, T determines the
pulse duration and the carrier envelope phase is defined
as ¢ = —wt/2 + /2 to obtain a symmetric pulse, i.e.

| F,=005au 0=025au. |

=40 a.u.

Field
0.03
0.00 T

(@

F(t) (a.u.)

dP/dz, (a.u.)

al L L Y

0.0 0.2 0.4 0.6

Electron energy (a.u.)

Figure 1. Electron energy spectra for hydrogen ionization obtained
from TDSE (grey thick line), DDCV (red solid line), and CV (blue
dashed line) calculations. The laser parameters are Fy = 0.05 au
and w = 0.25 au. The duration of the pulse is (a) = 40 au and
(b) T = 151 au. Insets: corresponding laser electric fields, as a
function of the time.
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FO=0.O4 a.u., 4 cycles
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(c)w=0.3a.u

| (d)o= 6.2 a.u

-5 . . . . B
10 0.0 0.1 0.2 0.3 0.4 0.5
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Figure 2. Same as figure 1 for a four-cycle laser pulse with Fy = 0.04 au. The laser frequency of the pulse is (a) @ = 0.5 au, (b) v = 0.4

au, (¢) w = 0.3 auand (d) v = 0.2 au.

F(t) = F(r —t). For pulses containing an integer number
of cycles inside the envelope, the duration of the pulse is
T = n 21w /w, with n the number of cycles.

Within the DDCV approach the energg distribution of the

emitted electrons can be derived from Ti;D )+ by integrating
over the direction of the ejected electron
4,pPPCY)
DDCV)+ |2
’é’gf :kf/dszfmff 7 (15)

where €, is the solid angle determined by the final

electron momentum ky. To calculate Ti(fDDCV)+ the three-
dimensional integral involved in the definition of N;[k, q, d]
(equation (13)) was numerically solved in the momentum
space with a relative error lower than 1%, while the further
integration on time was calculated with a relative error
lower than 0.1%, after appropriately checking the numerical
convergence. In addition, from equation (12) it should be noted
that the DDCV T-matrix element includes the ponderomotive
energy shift in the initial and final channels both in an
equivalent way, leading to a total energy shift AB(¢) that is
constant in the case of oscillating pulses that fulfil the condition
of travelling waves, i.e. A*(t) = 0. Therefore, in order to take
into account that the electron is less sensitive to the energy
shift produced by external field in the initial bound state than
in the nearly free final continue state, in the evaluation of
equation (11) we have introduced an additional approximation
by dropping the term S*(f) in the time-dependent
phase & ®.3

3 For travelling waves the inclusion of *(r) in AB(t), as given by equation
(12), introduces a unrealistic energy shift of multi-photon maxima.

Electron energy distributions obtained from equation (15)
are compared with those derived from the single-distorted
CV approach and with the numerical solution of the TDSE.
The TDSE was solved by means of the generalized pseudo-
spectral method [23] that combines a discretization of the
radial coordinate optimized for the Coulomb singularity with
quadrature methods to achieve stable long-time evolution
using a split-operator technique. The method allows for an
accurate description of both the unbound and the bound parts
of the total wavefunction W (r, t). Details of the calculations
can be found in [23].

We start studying the ionization from the ground state
of H originated by an electromagnetic field with Fy, =
0.05 au and w = 0.25 au (that corresponds to a laser
intensity / = 8.78 x 10> Wcem™2 and a wavelength A =
182.2 nm, respectively). In figure 1, two different regimes
(pulse durations) are considered: (a) the collisional regime
(t = 40 au), for which the laser field does not oscillate and
resembles a classical field produced by the impact of a charged
projectile, and (b) the multi-cycle regime (zr = 151 au), for
which the laser field performs several oscillations inside the
envelope (n = 6 cycles). In both situations—collisional
and multi-cycle—the DDCV approximation is in good accord
with TDSE calculations, correcting the large underestimation
displayed by the CV approach. However, in spite of the
overall good agreement, DDCV results run slightly over the
TDSE curve for high electron velocities in the multi-cycle
regime (figure 1(b)), in the energy region where the ionization
probability has decreased several orders of magnitude. This
discrepancy might be related to the fact that at high electron
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energies the effects of the residual target and laser potentials
on the released electron are not equivalent; consequently,
they should be described in a different way. Maxima of
figure 1(b) correspond to above-threshold-ionization (ATTI)
peaks produced by the absorption of an integer number
of photons from the initial ground state and their energy
positions are well described by the DDCV approach. But in
addition, the TDSE spectrum displays a small structure at E' =~
0.11 au, which stems from one-photon ionization from the 2p
state. Both CV and DDCV approaches are unable to tackle
this effect.

In order to study the behaviour of the proposed DDCV
approach within the multi-cycle regime, in figure 2 we consider
photoemission spectra for four-cycle (n = 4) laser pulses with
a fixed intensity of the field (I = 5.62 x 1013 Wem™2, ie.
Fy = 0.04 au), decreasing the frequency fromw = 0.5au (A =
91.1 nm) to @ = 0.2 au (A = 227.8 nm). Considering that
the main difference between the DDCV and CV approaches
lies on the inclusion of the quiver amplitude a*(¢) in the
initial distorted state, we analyse the different cases in terms
of the parameter oy = Fy/w* which provides a measure of the
maximum value of |a*| for multi-cycle pulses. For w =
0.5 au both distorted-wave methods—DDCV and CV—
provide a good description of the TDSE electron distribution,
being very similar to each other. This is so because the
parameter o that characterizes the quiver amplitude (g =
0.16 au) is negligible with respect to the mean radius of the
initial electronic distribution. The same behaviour is observed
for w > 0.5 au: CV, DDCYV and TDSE spectra become almost
indistinguishable among them as the frequency increases.
But when o diminishes and consequently ¢y augments, the
DDCYV theory remains fairly close to the exact values derived
from the TDSE method, departing from the CV curve that
largely underestimates the electron emission probability for
o = 0.2 au (g = 1 au). As mentioned in section 1, the
standard CV approximation fails to reproduce TDSE results
for < |¢;|, which for hydrogen targets is |¢;| = 0.5 au, as a
consequence of the absence of intermediate excited states,
which contribute to the multi-photon absorption processes
[15]. This deficiency of the CV theory is partially remedied
in the DDCV approach by including the quiver amplitude
in the initial channel. Since a*(¢) represents the classical
displacement of the free electron from its centre of oscillation
in aradiation field, its incorporation to the initial wavefunction
¢; as a displacement term allows the DDCV model to take
into account, albeit partially, the Stark mixing of the initial
state. However, for laser frequencies w < 0.1 au the DDCV
approximation starts to fail, giving rise to unreliable electron
emission spectra.

In figure 3, we consider hydrogen ionization by four-
cycle (n = 4) laser pulses with a fixed value of oy = Fp/ w* =
2 au and different frequencies, varying accordingly the value
of the peak laser electric field Fy. In all of the cases, even in
those in which the perturbative conditions are not fulfilled
(figures 3(a) and (b)), DDCV results are in fairly good
agreement with the TDSE distributions and this agreement
improves as the intensity of the field decreases. Note that the
positions of the ATT maxima are well described by the DDCV

o, =F0/m2 =2a.u, 4cycles
10" g T T

. T .
(@ =04 a.u., F=0.32a.u.

102 i " l " l "
' 1 T 1 T
3 (b) =03 a.u.,F=0.18 a.u.

Seo-["""~<

0.0 0.2 0.4 0.6
Electron energy (a.u.)

Figure 3. Same as figure 1 for a four-cycle laser pulse with

ay = Fy/w? =2 au. The parameters of the laser field are (a)

w = 0.4 auand Fy = 0.32 au, (b) v = 0.3 au and F, = 0.18 au, and
(¢) w =0.2 auand F, = 0.08 au.

curves, in contrast with the CV distributions which present
peaks shifted with respect to the TDSE positions.

Finally, we analyse the electron momentum distributions
corresponding to the electromagnetic fields of figures 3(a)
and (c¢). In figure 4 two-dimensional spectra calculated
within the CV and DDCV approximations, as a function
of the components of the final electron momentum parallel
(k) and perpendicular (k) to the polarization direction of
the external field, are compared with the ones derived from
TDSE calculations. The three momentum distributions—
TDSE, DDCV and CV—display similar features: radial lobes

and annular structures at small and large k; = /kﬁ +ki

values, respectively. The ring-shaped patterns at larger ky
are related to the ATI peaks, while the lobular structures in
the threshold region are just inside the first ATI ring, being
focused by the Coulomb potential of the remaining target [4].
For w = 0.4 au, the CV and DDCV momentum distributions
are similar to the one obtained from the TDSE solution. They
present three lobes at low k; and such lobes show a right—
left asymmetry, the right lobe being bigger than the left one,
something also observed in the TDSE calculations. However,
strong differences between CV and DDCV double differential
probabilities arise as the frequency decreases. For the lower
frequency, @ = 0.2 au, the DDCV approach gives a good
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@ o=04au;F = 0.32 a.u;

k (a.u.)

o =0.2a.u,; F =0.08 a.u.;

DDCV

-04 00

k (a.u.)

II (a.u.) H
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4 cycles

m

4 cycles

12 -08 04 00 04 08 1.2
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Figure 4. Double-differential electron momentum distributions (logarithmic scale) evaluated with the CV, DDCV and TDSE models, with
respect to the final electron momenta parallel (k) and perpendicular (k) to the laser field. The parameters of the four-cycle laser pulse are
(@) w = 0.4 au and Fy = 0.32 au, (b) w = 0.2 au and Fy = 0.08 au. CV and DDCYV distributions normalized to the total probability derived

from TDSE calculations.

representation of the TDSE double differential distribution,
both models displaying two lobes in the threshold region of
the momentum spectrum. In contrast, the CV distribution
presents four lobes at the threshold, in complete disagreement
with the TDSE calculations.

4. Conclusions

We have investigated the DDCV approximation which
includes the effect of the laser field in the initial and final
channels. The DDCV model represents an improvement on
the standard CV approach, converging towards the CV theory
for small values of the quiver parameter a*. In particular, we
have found that for H (1s) ionization by multi-cycle laser pulses
the DDCV approximation provides reliable predictions of the
electron energy and momentum distributions in the range of
laser frequencies 0.2 au < w < 0.5 au, where the CV approach
is inadequate. When the frequency increases, becoming higher
than the ionization energy |e;| = 0.5 au, both CV and DDCV
results converge to the TDSE values. However, for o < 0.1 au
the DDCV theory still fails to reproduce the electron spectra
derived from TDSE calculations. This behaviour seems to be
independent of the number of cycles inside the envelope of the
laser field. We have not observed any considerable dependence
of the level of agreement between DDCV and TDSE results
on the total pulse duration, besides the inability of the former
theory to track the depletion of the ground state.
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