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The calculation of phase shift and optical path difference in birefringent media is related to a wide range
of applications and devices. We obtain an explicit formula for the phase shift introduced by an anisotropic
uniaxial plane-parallel plate with arbitrary orientation of the optical axis when the incident wave has an
arbitrary direction. This allows us to calculate the phase shift introduced by waveplates when consider-
ing oblique incidence as well as optical axis misalignments. The expressions were obtained by using
Maxwell’s equations and boundary conditions without any approximation. They can be applied both
to single plane wave and space-limited beams. © 2010 Optical Society of America

OCIS codes: 220.4830, 230.5440, 260.1180, 260.1440, 350.5030.

1. Introduction

The internal structure of a great variety of devices
allows modeling as uniaxial media: waveplates,
LCDs, birefringent filters, birefringent lenses, bire-
fringent interferometers, and nonlinear optical effect
generators. Particularly, one of the effects that result
from the properties of these materials is the appear-
ance of two refracted waves from an incident wave
(i.e., birefringence). These waves are linearly polar-
ized and propagate through material with different
velocities, in such a way that, generally, there will
be a phase shift between both waves. Different
authors have performed phase difference calcula-
tions using different methods [1–5], depending on the
application [6,7], approximation, or particular case of
study. Some authors advise following the trajectory
of each wave along the wavefront normals and using
the refraction indices associated with each one to

calculate the phase. On the other hand, the phase
can be calculated using the optical path followed
by the light. The definition of optical path was ex-
tended to birefringent media by applying Fermat’s
principle in 1998 [8]. In 2006, Avendaño-Alejo [1]
calculated ordinary and extraordinary optical path
difference correctly. In that case, the incidence was
produced in the principal plane that contains the op-
tical axis. These calculations were applied to a uni-
axial plane-parallel plate whose optical axis formed
an arbitrary angle with the interface, but it was al-
ways contained in the plane of incidence. This work
shows that there are two ways of calculating the
optical path: along the direction of propagation of
the energy, or along the direction of the wavefront
normals. We develop the general phase calculations
for the case of the plane waves, and we see that it is
convenient to follow the ray path (Poynting vector’s
temporal average direction) for calculating both the
optical path and the phase that is related to it. The
procedures developed in this work can be applied
both to single plane wave approximation and plane
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waves superposition (i.e., Fourier) since many results
obtained by means of models where plane waves are
used coincide with the results obtained when consid-
ering space-limited beams. This also occurs in uniax-
ial media where the average direction of the beam
energy coincides with the direction of the ray asso-
ciated with the plane wave in the direction of the
beam average wave [9]. Regarding the cases that are
usually studied, the results obtained coincide with
those in the bibliography. Particularly, we consider
the case of the uniaxial plane-parallel plates, which
corresponds with the model used for waveplates. A
generalized way of calculating the phase shift be-
tween the emerging waves for any angle of incidence,
plane of incidence, and direction of the optical axis is
presented. This phase shift, in addition, is explicitly
expressed as a function of the variables involved. The
results obtained make it possible to analyze the ef-
fects of using waveplates under oblique incidence
[10–12], which is useful for the characterization of
wave plates, the determination of their linear bire-
fringent parameters, and design and usage.

2. Theory and Preliminaries

We consider harmonic plane waves propagating
through the media involved, that is, [13]

Eðr; tÞ ¼ E exp
�
iω
�
r · N̆
u

− t

��
; ð1Þ

where Eðr; tÞ is the electric field associated with the
wave, N̆ is a unit vector in the direction of propaga-
tion of the wave, and u is the phase velocity.
In uniaxial media, a wave traveling in a given di-

rection can propagate with two different phase velo-
cities: either u0 or u″. The velocity u0 is independent of
the direction of propagation and coincides with one of
the principal velocities of the crystal (the ordinary
velocity), which is defined as uo ¼ c=no, where c is
the velocity of the light in vacuum and no is the prin-
cipal ordinary index. If the wave is propagated with
this velocity, it is called an “ordinary wave.” The
other velocity, u″, depends on the relation between
the direction of propagation and the direction of
the optical axis z̆3, and it is given by [14]

u0 ¼ ½u2
e þ ðu2

o − u2
e ÞðN̆ · z̆3Þ2�12; ð2Þ

where ue is the other principal velocity (the extraor-
dinary velocity) related to the principal extraordin-
ary index by ue ¼ c=ne. When the propagation has
these characteristics, the wave is called an “extraor-
dinary wave.”

The propagating waves in uniaxial media are
linearly polarized, as shown in Fig. 1. In the case
of the ordinary waves, the direction of propagation
of the wave N̆o coincides with the direction of the flow
of energy that is referred to as “ordinary ray” R̆o. In
the case of the extraordinary wave, it propagates in a
direction N̆e that is different from the direction of the
flow of energy, R̆e, which is called an “extraordinary
ray.” The relation between R̆e and N̆e is given by [14]

R̆e ¼
1
f e
½n2

oN̆e þ ðn2
e − n2

oÞðN̆e · z̆3Þz̆3�; ð3Þ

where f e is a normalization factor. If we are modeling
a limited beam using a single plane wave, this differ-
ence between the directions will become of notable
significance.

In the following section, we show how to calculate
the phase shift between ordinary and extraordinary
waves. In order to do so, we have to take into account
the meaning of the equal phase planes. Figure 2
shows arbitrarily separated equal phase planes
associated with an extraordinary wave. It can be ob-
served that the phase difference between points T2
and T3 equals zero, since both points belong to the
same plane. On the other hand, the phase difference
between the points T1 and T2 is nonzero and equals
the phase difference between T1 and T3.

3. Phase Shift between Ordinary and Extraordinary
Waves

In the case of a plane-parallel uniaxial plate that is
immersed in a medium of index n and considering
only the first transmissions given at each interface,
we could draw the equal phase planes associated
with the waves in the respective media for the extra-
ordinary case. These surfaces are seen in Fig. 3(a),
where we represent the case in which the optical
axis is in the plane of incidence. However, this

Fig. 1. (Color online) (a) Ordinary wave. (b) Extraordinary wave.
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development covers the general situation where the
optical axis has an arbitrary direction for which the
ray R̆e is not necessarily in the plane of incidence.
Considering an incident wave as described in
Eq. (1), we can see that the phase difference between
the field evaluated at the point of incidenceO and the
field at any points P1, P2, or P3 (distributed on the
second interface) is different in each case. In order
to obtain the phase difference between the point of
incidence of the ray on the plate and the point where
the light emerges, we must consider the phase differ-
ence between points O and P1. The distance between
the surfaces of equal phase containing O and P1, re-
spectively, is �OQ [Fig. 3(b)]. Thus, when multiplying
this by ð2π=λvÞðc=u″Þ, we obtain the phase difference
between points O and P1 (λv is the wavelength in va-
cuum). This way of calculating the phase shift coin-
cides with that of applying the definition of
extraordinary optical path (OPLe) proposed in [8]

OPLe ¼
c
u″

OQ ¼ c
v″

OP1; ð4Þ

since the ray velocity v″ and the phase velocity u″ are
related,

v″ ¼ u″

R̆e · N̆e

: ð5Þ

This quantity corresponds to the ratio of the energy
per unit of time that crosses a surface that is perpen-

dicular to the flow of energy and the volumetric en-
ergy density. The calculation of the phase shift
through the distance OP1 is directly related to the
ray’s velocity, sinceO and P1 are defined by the inter-
section of the beam with the surfaces. Moreover, this
concept allows solving problems with other geo-
metries as is the case of crystal prisms where the
backward wave phenomenon can take place [15].
Similarly, but in a simpler way, we can calculate
the phase difference between the point of incidence
over the first interface O and the point where the or-
dinary ray emerges, since in this case the wavefront
normal N̆o and the ray R̆o coincide.

As shown in Fig. 4, the points of incidence on the
second interface of the ordinary ray and the extraor-
dinary ray are denominated as P0 and P″ respec-
tively. For the ordinary case, the phase difference
between the points of incidence on the plate O and
P0 is calculated through the ordinary optical path
OPLo

OPLo ¼
c
uo

OP0 ¼ noOP0: ð6Þ
For the extraordinary case, the phase difference

between the points of incidence on the plate O and
P″ are calculated through the extraordinary optical
path OPLe, by replacing P″ by P1 in Eq. (4).

For the particular case of a plane-parallel uniaxial
plate with a thickness L, with arbitrary orientation
of the optical axis and principal indices no and ne, ex-
plicit equations can be obtained from the optical
paths OPLo and OPLe in terms of constitutive para-
meters of both the plate and the surrounding isotro-
pic medium and the direction of incidence. If the
angle of incidence is α (Fig. 4), the expression for
the ordinary optical path can be calculated by Eq. (6)
and by Snell’s law,

OPLo ¼ L
n2
o

½n2
o − n2sin2α�12 : ð7Þ

Fig. 2. Equal phase planes in a uniaxial medium associated with
an extraordinary plane wave.

Fig. 3. (Color online) (a) Equal phase planes in a system formed
by a uniaxial plate immersed in an isotropic medium. (b) Detail of
Fig. 3(a).

Fig. 4. (Color online) Ordinary and extraordinary transmission
through a uniaxial plane-parallel plate immersed in an isotropic
medium. ðx; σ; tÞ is the coordinate system. x; t is the plane of inci-
dence. θ is the angle between the optical axis and the interface. δ is
the angle between the plane of incidence and the optical axis pro-
jection on the interface. l0t, l″t , and l″σ are the coordinates of the
points of incidence on the second interface for the ordinary and
extraordinary rays, respectively.
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Numerous studies have been made to trace extra-
ordinary rays in uniaxial crystals, and different ap-
proaches have been used [14,16–18]. In particular,
we follow the line of authors who useMaxwell’s equa-
tions and boundary conditions for the resolution
[14,19,16]. Substituting Eq. (5) into Eq. (4) and using
the relations ðR̆e · x̆Þ ¼ L=OP″ and n″ ¼ c=u″ yields

OPLe ¼ n″L
R̆e · N̆e

R̆e · x̆
; ð8Þ

where n″ is the extraordinary refractive index. Sub-
stituting Eq. (37) and Eq. (61) from [19] to express
R̆e · N̆e and R̆e · x̆, respectively, and then by replacing
Eqs. (32), (49), (53), (54), and (56) from [19] after a
little algebra yields the explicit expression of the ex-
traordinary optical path,

OPLe ¼
Lnon2

e

fn2
e ðn2

esin2θ þ n2
ocos2θÞ − ½n2

e − ðn2
e − n2

oÞcos2θsin2δ�n2sin2αg1
2

: ð9Þ

From Eqs. (7) and (9), we obtain the phase differ-
ences of the ordinary and extraordinary waves from
the point of incidence on the first interface, O, to the
respective points of incidence of the rays on the sec-
ond interface, P0 and P″ (Fig. 4). One of the main
characteristics of the emerging light resulting from
the superposition of the two waves that emerge from
the plate is given by the phase shift between the
waves at each point of the space. In order to evaluate
it, we place an equal phase plane Ω (Fig. 5) that is

perpendicular to the direction of propagation of both
waves. This plane is located at an arbitrary distance
from the second interface. The wave originated by
the ordinary ray will travel a distance P0Q0, and
the one originated by the extraordinary ray will tra-
vel along P″Q″. Therefore, the optical path difference
Δo−e between the waves up to the plane Ω is

Δo−e ¼ ðOPLo þ nP0Q0Þ − ðOPLe þ nP″Q″Þ: ð10Þ

Therefore, Eq. (10) indicates the difference between
the ordinary and the extraordinary optical paths tra-
veled by waves inside and outside the crystal.

Since the analysis performed corresponds to a sin-
gle incident plane wave, we use a coordinate system
ðx; σ; tÞ associated with it (Fig. 4). Thus, we consider
the point of incidence of light on the first interface as
the origin of the coordinate system, the plane of in-
cidence being the plane x; t. The points of incidence of
both ordinary and extraordinary rays on the second
interface are P0 ¼ ðL; 0; l0tÞ and P″ ¼ ðL; l″σ; l″t Þ. The
lateral displacement of the ordinary ray l0t can be cal-
culated as in isotropic media. On the other hand, l″t
and l″σ are obtained from lt and lσ in Eqs. (83) to (87)
from [19]. Figure 5 shows the particular case of an
optical axis in the plane of incidence, where l″σ ¼ 0.
However, the value of P″Q″ does not depend on
whether the extraordinary ray lies on the plane of
incidence or not, and Eq. (10) is valid for any orienta-
tion of the optical axis.

If we group together the terms that correspond to
the paths in the isotropic medium in Eq. (10), we can
see that the displacements l″σ, which are perpendicu-
lar to the plane of incidence, do not affect the result.
This is because these displacements are also perpen-
dicular to the direction of propagation, which only
has x and t components. Since the second and third
terms of Eq. (10) depend on the coordinates of the

points of incidence on the second interface l0t and
l″t , we obtain

nðP0Q0Þ − nðP″Q″Þ ¼ nðl″t − l0tÞ sin α: ð11Þ

Substituting Eqs. (7), (9), and (11) into Eq. (10) and
using the relation between the optical path differ-
ence and the phase shift Δϕ ¼ 2πΔo−e=λv yields

Fig. 5. (Color online) Ordinary (dashed line) and extraordinary
(solid line) equal phase planes for a uniaxial plane-parallel plate
immersed in an isotropic medium.
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Δϕ ¼ 2πL
λv

�
ðn2

o − n2sin2αÞ12 þ nðn2
o − n2

e Þ sin θ cos θ cos δ sin α
n2
esin2θ þ n2

ocos2θ

þ −nofn2
e ðn2

esin2θ þ n2
ocos2θÞ − ½n2

e − ðn2
e − n2

oÞcos2θsin2δ�n2sin2αg1
2

n2
esin2θ þ n2

ocos2θ

�
: ð12Þ

This equation is the explicit general expression for
the phase shift Δϕ introduced by a uniaxial plane-
parallel plate with arbitrary orientation θ of the op-
tical axis when the incident wave has an arbitrary
direction, i.e., 0° ≤ α < 90° and 0° ≤ δ < 360°. From
this phase shift we can recover the optical path dif-
ference obtained in [1], where the particular case of
optical axis contained in the plane of incidence was
considered (δ ¼ 0°).
There are two important cases of symmetry asso-

ciated with two different optical axis directions: par-
allel to the interfaces (θ ¼ 0°) and perpendicular to
the interfaces (θ ¼ 90°). In these cases, the second
term of Eq. (12) is zero for every value of δ. Thus,
the phase shift dependence on δ is due to the third
term, which depends on the square sine of this angle
and causes the phase shift to be repeated by quad-
rants. For other optical axis orientations, this sym-
metry is broken by the addition of a cosine
dependence on δ. Moreover, the third term is related
to the difference between the paths traveled by the
waves within the plate, i.e., OPLo −OPLe, and de-
pends on the square sine of δ. Therefore, the cosine
dependence on δ comes from the path difference in
the isotropic medium [Eq. (11)]. The influence of this
term can be seen by comparing the examples of
Figs. 6(a) and 6(b), where we have plotted the loca-
tion of the points of incidence of rays on the second
interface for two calcite plane-parallel plates 1mm

thick, one with θ ¼ 0° and the other one with
θ ¼ 45°, for different directions of incidence. In these
graphs the x axis intersection with the second inter-
face corresponds to the origin, and the projection of
the optical axis on the interface corresponds to the
horizontal axis. Different planes of incidence and an-
gles of incidence were set in order to observe the ef-
fects of different orientations of the optical axis. In
both figures, we can see that the points of incidence
of the ordinary rays (round dots) and extraordinary
rays (crosses) do not match. In the case of θ ¼ 0° (op-
tical axis parallel to the interfaces), the pattern that
corresponds to the points of incidence of the extraor-
dinary rays (described by crosses) is centered on the
coordinate system (as is always the case with the or-
dinary pattern) [Fig. 6(a)]. This high symmetry
causes the differences l″t − l0t, for a given angle of in-
cidence, to be repeated by quadrants. Mathemati-
cally, this means that the cosine dependence on δ
has been canceled and the dependence is only within
the square sine of δ. In the case of the optical axis
nonparallel to the interfaces, the pattern that corre-
sponds to the extraordinary rays has moved from the
center of the graph ðL; 0; 0Þ in the direction of the op-
tical axis [20]. This shift leads to a symmetry with
respect to the horizontal axis instead of that of the
previous case. In this case, for the same angle of in-
cidence, the differences l″t − l0t are repeated for 0° <
δ < 180° and 180° < δ < 360°. This is reflected in

Fig. 6. (Color online) Diagram of the points of incidence on the second interface for a calcite plate: (a) θ ¼ 0° and (b) θ ¼ 45°, for jαj ¼ 0°, 1°,
and 2°, and δ ¼ 0°, 45°, 90°, and 135°. L ¼ 1mm, no ¼ 1:66, ne ¼ 1:49, and λv ¼ 632:8nm.
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the cosine dependence on δ (even function) present
in Eq. (12).

4. Alternative Approach

Another way to obtain the phase difference is to
study the problem from the fields associated with
the waves in each medium. The space is divided into
three regions with their respective interfaces. The
first region corresponds to the isotropic incidence
medium, the second one is formed by a plane-parallel
uniaxial plate, and the third one is an isotropic med-
ium of the same characteristics as that of the first
region. If we consider only the first transmissions
on each interface, in the first region we will obtain
an incident plane wave with an associated electric
field as in Eq. (1). This wave will give rise to two lin-
early polarized waves that will superpose in the med-
ium consisting of a uniaxial plane-parallel plate.
Thus, the electric field in the uniaxial medium
EIIðr; tÞ can be written as the vector addition of
two electric fields, one associated with the ordinary
wave EII

o ðr; tÞ and another one associated with the ex-
traordinary wave EII

e ðr; tÞ:

EIIðr; tÞ ¼ EII
o exp

�
iω
�
r · N̆o

uo
− t

��

þ EII
e exp

�
iω
�
r · N̆e

u″
− t

��
: ð13Þ

Wavefront normals N̆o and N̆e as well as the phase
velocity of the extraordinary wave u″ are obtained by
using the boundary conditions on the first interface
(isotropic-uniaxial). In this case r corresponds to any
point of the second region (uniaxial medium). In the
third region we will have the superposition of waves
that comes from the ordinary and extraordinary
waves that were refracted in the second interface
(uniaxial-isotropic). Analogously we write the elec-
tric field in this region EIIIðr; tÞ as a vector addition,

EIIIðr;tÞ¼EIII
o exp

�
i

�
ω
�ðr−r2oÞ ·N̆

u
−t

�
þϕoðr2oÞ

��

þEIII
e exp

�
i

�
ω
�ðr−r2eÞ ·N̆

u
−t

�
þϕeðr2eÞ

��
:ð14Þ

The value of r corresponds to the position of any
point belonging to the third region where, as we
saw earlier, the refracted waves propagate in the di-
rection of N̆ with the characteristic phase velocity of
the medium u. Phases ϕoðr2oÞ and ϕeðr2eÞ have been
referred to as arbitrary points on the second inter-
face: r2o for the one coming from the ordinary wave
and r2e for the extraordinary case. From Eqs. (13)
and (14) and by the equal-phase condition in the sec-
ond interface (x ¼ L) we obtain

ϕoðr2oÞ ¼ ω r2o · N̆o

uo
; ð15Þ

ϕeðr2eÞ ¼ ω r2e · N̆e

u″
: ð16Þ

If the choice of r2o and r2e coincides with the points
of incidence of the rays on the second interface P0 and
P″, then ϕoðr2oÞ and ϕeðr2eÞ correspond to 2πOPLo=λv
and 2πOPLe=λv, respectively [Fig. 7(a)]. However, if
we choose for both plane waves the same point on
the second interface r2 ¼ r2o ¼ r2e [Fig. 7(b)] and re-
place in Eq. (14), we obtain

EIIIðr;tÞ¼EIII
o exp

�
i

�
ω
�ðr−r2Þ · N̆

u
− t

�
þϕoðr2Þ

��

þEIII
e exp

�
i

�
ω
�ðr−r2Þ · N̆

u
− t

�
þϕeðr2Þ

��
: ð17Þ

This equation allows us to clearly see that the
phase shift between both emerging waves in any po-
sition of the third region of coordinates r is given by
the differenceΔϕðrÞ ¼ ϕoðr2Þ − ϕeðr2Þ. Equations (15)
and (16) show that this phase difference is indepen-
dent of the coordinates of the point r. In addition,
when developing this expression from Eqs. (15)
and (16), we obtain that the phase difference is even
independent of the chosen point r2, and it also coin-
cides with the expression for the phase shift found in
the former section [Eq. (12)]. This implies that the
phase shift calculation can be done not only along
normals to the wavefronts or along rays [1], but
can be calculated by any other path represented by
the choice of an arbitrary point on the second inter-
face. Alternatively, it can be seen qualitatively in
Fig. 7(b), assuming an arbitrary separation of 2π be-
tween equal phase planes. In order to calculate the
phase at any point in space we can count the number
of equal phase planes (which is not necessarily an in-
teger) that were crossed to connect the reference
point O with the point being studied (located in r)
and multiply it by 2π. In the ordinary case, we count

Fig. 7. (Color online) Equal phase planes: (a) the arbitrary points
on the second interface, r2o and r2e, respectively, coincide with the
coordinates of P0 and P″. (b) r2 ¼ r2o ¼ r2e.

2774 APPLIED OPTICS / Vol. 49, No. 15 / 20 May 2010



the planes represented by a dotted line, and in the
extraordinary case, we count the ones represented
by a solid line.
Two procedures for calculating the phase shift

have been explored—one in Section 3 and the other
one in this section. This second approach may be re-
garded at first glance as elegant and direct but hides
the direction of the energy flux. If we consider plane
waves and ideal plane interfaces of infinite extent, as
the case studied in this work, there can hardly be any
discussion as to which procedure is preferred, since
both lead straight to the same result. However, the
latter has to be applied carefully in more complex
geometries, for example, the case where the ordinary
ray and the extraordinary ray emerge from different
faces of a prism. In such case, the direction of the en-
ergy flux associated with each wave is fundamental
for the resolution of the problem. Therefore, we con-
sider that the first procedure is more suitable for this
purpose, since it is intrinsically associated with the
trajectories of the rays.

5. Waveplates

We apply the results obtained in former sections to
the study of waveplates. An ideal retarder is an op-
tical device that transforms a polarized electromag-
netic wave in two polarized disturbances that are
orthogonal, but leading to a phase shift between
them. Ideally, retarders do not polarize or induce
an intensity change in the electromagnetic beam—

they simply change the polarization status. In sys-
tems where polarization control is critical, a proper
characterization of the retarders is important. Pro-
blems are not exclusively related to their use; they
also arise from their manufacture, and they lead
to behaviors that are far from the ideal one. For
the ideal case of an optical axis parallel to the sur-
faces (θ ¼ 0°), the expression obtained [Eq. (12)] co-
incides with the result we obtained in [21]

Δϕjθ¼0° ¼
2πL
λv

�
ðn2

o − n2sin2αÞ12

−
½n2

on2
e − n2sin2αðn2

osin2δþ n2
ecos2δÞ�12

no

�
:

ð18Þ

For normal incidence (α ¼ 0°) this equation
converges to the known value 2πLðno − neÞ=λv. Equa-
tion (18) is not limited to incidence in the principal
planes (δ ¼ 0° or δ ¼ 90°, where the phase shift
extremes in terms of λ occur [10,12]), and it allows
us to calculate the phase shift for every plane of in-
cidence. If, due to manufacturing problems or other
causes, the optical axis is not parallel to the inter-
faces, Eq. (12) must be used. In this case, if the inci-
dence is perpendicular to the plate, the phase shift is
given by

Δϕjα¼0° ¼
2πL
λv

no

�
1 −

ne

ðn2
esin2θ þ n2

ocos2θÞ12
�
: ð19Þ

From Eq. (12), we can analyze oblique incidence in
waveplates. Particularly, we will use the values in
[3], where the authors consider a quartz plate with
the optical axis parallel to the interfaces and a thick-
ness L so that the phase shift is of 113π=2 when the
incidence is normal. This phase shift corresponds to
L ¼ 1:973mm. In Fig. 8(a), the phase shift Δϕðα; δÞ
for this plate is shown. This phase shift map shows
the phase shift for every plane of incidence, given by δ
as an azimuthal coordinate, and is arbitrarily re-
stricted to values of α ≤ 10° in the radial coordinate.

In the central region of Fig. 8(a), that is, the sur-
roundings of the point that corresponds to normal in-
cidence (α ¼ 0°), the phase shift has a minimum
variation. This can also be observed in Fig. 8(b), since
the equal phase lines are further apart from each

Fig. 8. (Color online) Phase shift Δϕðα; δÞ for a quartz plate. (a) The phase shift was expressed in degrees (vertical axis), the angle of
incidence α in the radial coordinate, and the angle that forms the plane of incidence with the projection of the optical axis on the interfaces δ
as an azimuthal coordinate. (b) Phase shift contour lines: θ ¼ 0°, L ¼ 1:973mm, no ¼ 1:54264, ne ¼ 1:5517, and λv ¼ 632:8nm.
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other. The equal phase lines corresponding to Δϕ ¼
−90° intersect in the center of the figure, resulting in
two planes of incidence where the sensitivity to the
angle of incidence is lower [3].
In the case of normal incidence, if the optical axis is

not parallel to the surfaces (θ ≠ 0°), the phase shift
will not correspond to a quarter-wave plate. Equa-
tion (12) shows that the region of minimum variation
will appear for angles of incidence that are different
from zero on the plane of incidence that contains the
optical axis, which is the horizontal axis in Fig. 8(b).
This is shown in Fig. 9(a) for θ ¼ 1°, where the center
of the region of minimum variation has shifted to the
right and corresponds to an angle of incidence
α ¼ 3:096°, with an associated phase shift Δϕ ¼
−93:109°. In contrast to the case of θ ¼ 0°, the lines
that intersect in the center of this region do not
correspond to planes of incidence, where the phase
variation is minimum.
Theangleof incidencecorresponding to thecenterof

the region of minimum variation, αmv, is determined
from the phase shift derivative and is represented in
Fig. 9(b) for different inclinations of the optical axis. In
this figure, the phase shift associated with these an-
gles of incidence, Δϕmv, for the different values of θ
is also shown. To summarize, the expression (12) al-
lows us to analyze the behavior of the plane-parallel
plate as a function of the constructive parameters
and the incidence direction, for arbitrary θ.

6. Conclusions

We obtained an explicit general expression for the
phase shift introduced by a uniaxial plane-parallel
plate with arbitrary orientation of the optical axis
with regard to the incident wave direction. Moreover,
we showed that the phase shift between waves can be
calculated at any point in space by any path (even

when dealing with uniaxial media), since it is asso-
ciated with the distance between the equal phase
planes that contain the origin of reference and the
point under study, respectively. This way, we also ob-
tained that the phase shift between the waves emer-
ging from the plate is independent of the point under
study. On the other hand, the wave propagation di-
rection is the direction that is perpendicular to the
equal phase planes, while the ray corresponds to
the energy propagation direction and is associated
with the observable path followed by light in any de-
vice. This is the reason why it is convenient to eval-
uate the phase shift by using the points of incidence
of the rays. This is a generic methodology and it is
applicable to more complex problems, either due to
the shape of the incident beam or the geometry of
the device.

In order to calculate the phase shift, it was not ne-
cessary to take into account the magnitude and the
direction of the electrical fields associated with the
waves in the different media. This is why, in order
to obtain the polarization status—which is of parti-
cular interest in waveplates—the transmission and
reflecting coefficients in the interfaces must be con-
sidered. Even in those particular cases where the in-
cidence is oblique but the emerging waves are
orthogonally polarized, the amplitude of the fields
associated with both waves is not equal. Thus, this
work intends to set the basis for more complex future
developments where these factors, as well as multi-
ple reflections and refractions in the interfaces, will
be taken into account. By means of the maps of phase
shift versus direction of incidence, we can see how
the behavior of the plate changes as we modify the
direction of the optical axis, its thickness, or the re-
fractive indices. Therefore, they constitute a useful
tool both for waveplate design and use.

Fig. 9. (Color online) Phase shift of the region of minimum variation. (a) Phase shift contour lines Δϕðα; δÞ for a quartz plate (θ ¼ 1°).
(b) Angle of incidence, αmvðθÞ, and phase shift,ΔϕmvðθÞ, associated with the center of the region of minimum variation of the phase shift as
a function of the direction of the optical axis (−2:5° < θ < 2:5°). L ¼ 1:973mm, no ¼ 1:54264, ne ¼ 1:5517, and λv ¼ 632:8nm.
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