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Radiation Sensor Based on MOSFETs Mismatch
Amplification for Radiotherapy Applications

Mariano Garcia-Inza, Sebastidan H. Carbonetto, José Lipovetzky, and Adrian Faigon

Abstract—In this paper we present a new dosimeter based on a
pair of thick gate oxide MOSFET sensors. A differential circuit
topology with a feedback loop provides stabilized output with
selectable sensitivity amplification for real-time in vivo dosimetry.
Radiation response shows a wide linear output range and an
effective thermal rejection. These properties make this circuit
suitable for dose control in radiotherapy applications.

Index Terms—Ionizing Radiation, MOSFET dosimeter, radio-
therapy, solid-state detectors.

I. INTRODUCTION

VER the last years, MOSFET dosimetry in radiotherapy

has been thoroughly investigated. Several studies have
shown that this type of sensor is suitable for dose control in
different radiation therapies [1]-[4]. Dose verification is a key
issue, since the efficiency of the treatment relies on a strict
accomplishment of the medical planning. This is known as
Quality Assurance (QA) in radiation therapy. The International
Commission on Radiation Units and Measurements (ICRU)
has recommended 5% accuracy in the delivered dose [5].
Considering the complexity of the procedure involved in the
delivery of dose to a target volume in a patient, the American
Association of Physicists in Medicine (AAPM) requires 3%
accuracy in each step dosimetry to achieve the overall 5%
along the treatment [6]. Verifying the correct delivery may
require the use of portal and verification radiographs, in vivo
dosimetry, and record-and-verify systems [6].

The use of MOSFETs for in vivo dosimetry have several
advantages compared to other dosimeters. Their very small
size allows very high spatial resolution. For energies in the
range of 6-18 MeV they have an excellent performance for
surface and dose depth profile [7]. Their radiation response
is independent of dose rate. These properties that make them
suitable to use with LINAC [8]. As the dosimetric signal is
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a voltage, MOSFETs are suitable for integration in electronic
systems. Since their response is accumulative with dose they
can be read either after or during the exposure to radiation,
allowing real-time measurements. Nevertheless some issues
have to be taken into account for an accurate dose estimation.
MOSFETs usually do not have uniform angular response
due to their constructive asymmetry. For photon energies in
the range of 0.5-1.25 MeV their response can be energy
dependent mainly because of the packaging material [7]. Dose
measurement range is limited by the saturation of the sensor
which yields a reduction of the sensitivity [9]. Moreover,
temperature drifts affect the dosimetric signal and can cause
an erroneous dose measurement [10].

Temperature and measurement range limitations of the
MOSFET dosimeter are addressed in this work. During in
vivo dosimetry temperature variations in the sensor can occur
when it is placed in contact with the patient’s body. This
produces a shift from room to body temperature that should
be taken into account when reading the dosimeter. In case
of real-time measurements one option is to track the sensor’s
temperature and wait for it to stabilize before the exposure.
This will avoid the drift of the dosimetric signal that introduces
an error in the dose estimation, but implies a significant time
loss in the treatment. Another approach is to read the MOSFET
sensor using the minimum temperature coefficient (MTC)
current [10]. The drawback in this case is that the value of
IyTc depends on the accumulated dose [11], so the sensor
has to be recalibrated periodically to assure the accuracy of
the dose estimation.

In this paper we propose a differential sensor topology
which provides thermal drift rejection, sensitivity amplifica-
tion, and extended measurement range. Dose estimation using
a pair of MOSFETs was initially proposed in [12]. Recently
we have explored the use of differential biasing technique
showing its performance in real-time measurements [13]. Next
we proposed a differential circuit with amplification [14]
obtaining much higher sensitivity than the former one, but
the circuit showed limitations in the linear range and in
the temperature response. In this paper we present a new
differential dosimeter that amplifies the mismatch between
a pair of MOSFET sensors. A feedback loop allows to fix
the sensitivity gain to a known value providing a stabilized
response with a larger linear output.

The aim of this work is to evaluate the radiation response
of a new dosimeter circuit topology for future monolithic
integration. Several groups have investigated and presented
promising results of ASICs for dosimetry using floating-gate
devices as radiation sensors: [15]-[18]. Our investigation is
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focused on differential circuits with thick gate oxide MOSFET
sensors to develop a system-on-chip dosimeter for radiother-
apy applications.

The paper has the following organization. Section II gives a
full description of the dosimeter, i.e., the MOSFET sensors, the
biasing technique, the reading circuit, and its implementation.
In Section III we describe the measurement setup and their
results. Section IV presents the discussion and conclusions.

II. SENSOR DESCRIPTION
A. Working Principle

The dosimeter is based on a pair of MOSFETs fabricated
with thick gate oxide for improved sensitivity. This sensing
pair was pre-irradiated to lower their threshold voltage (V7).
Then, a differential biasing technique is applied [13]. During
exposure one device is biased with positive gate voltage, which
contributes to the positive charge build-up (PCB) within the
gate oxide, reducing V7 [19], whereas the other MOSFET is
biased with negative voltage. This produces a phenomenon
called radiation-induced charge neutralization (RICN), which
recovers V7 [20]. These effects occurring simultaneously
affect both devices differently, forcing their mismatch. The
threshold voltage offset can be taken as the dosimetric signal.
Periodically, the devices have to be commuted from biasing
to reading configuration in order to measure the induced
mismatch.

The Vrs of the MOSFETSs can be kept within a measurable
range by switching the gate biasing voltage between a positive
and a negative value for PCB and RICN respectively. This pro-
cedure, named bias cycled controlled measurement (BCCM)
was initially proposed in [21] and applied to other dosimeters
in [22] and [23]. Later, a differential version was developed
and presented in [13]. The technique allows to extend the
measurement range of the dosimeter, since the V7 of the
devices are kept between a maximum and a minimum value
avoiding the response saturation regions.

B. Dosimeter Circuit Description

Fig. 1 shows the circuit configurations of the dosimeter.
M1 and M2 are thick gate oxide MOSFETs built in the
same silicon chip. Fig. 1(a) shows the biasing mode in which
independent gate voltages are applied to each device. Solid-
state switches allow to periodically commute the dosimeter
to reading mode of Fig. 1(b). In this configuration Vggp is
fixed by the voltage source Vrgr which defines the drain
current Ip;. The resistor Rp; determines the drain voltage
of M1. The operational amplifier (OA) sets its output to force
the same voltage in the drain of M2. Choosing Rp> = Rpi
results in the same current for both MOSFETS; thus the voltage
difference between their gates can be taken as the offset of the
pair: Vorr = V2 — V1. The feedback resistors Ry and R
set the offset amplification. The expression of Vour is

(++%7)
Vour = Vrer + Vorr |1+ 5— ). (1)
Ry

The circuit allows to amplify the offset voltage of the

MOSFET sensing pair. The differential nature of Vopr rejects
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Fig. 1. Dosimeter circuit in (a) biasing and (b) reading modes. To commute,
solid-state switches (not shown) are used. Devices in the dashed box comprise
the sensing pair fabricated in the same silicon chip.

common mode perturbations as thermal drifts or variations
in Vpp. Vour is an amplified single-output copy of Vofr.
The selection of Ry and Ry defines the feedback loop and
fixes the amplification gain.

C. Circuit Implementation

The thick gate oxide MOSFETs used as radiation sen-
sors in this work are field oxide field effect transistors
(FOXFETs). A detailed description of them can be found
in [24]. These devices were fabricated in a CMOS technology
and integrated in the same silicon chip. The gate oxide
thickness of the FOXFET is &~ 590 nm, exhibiting a response
of 4.2 mV/rad(SiO,) with gate bias of 10 V. Since the
threshold voltage of the fresh samples is 28 V, the devices
were preirradiated to lower Vr down to 7 V.

Solid-state switches MAX4533 were used to commute the
circuit between biasing and reading modes. The OA was an
OPOQ7; drain resistors value were 47 kQ, and the feedback
resistors were selectable through jumpers or a trimpot. The
circuit was implemented in two different boards. One with the
FOXFET pair and a thermistor, and the other board with the
remaining components. The FOXFETs were encapsulated in a
DIP40 ceramic package, and both boards were connected by
flat cable (7 x 40 cm). Separated boards allow to irradiate the
FOXFET sensing pair while keeping the other components of
the circuit away from the radiation field.

The power supply used was external with Vpp = 18 V and
VRer =9 V.

III. MEASUREMENTS
A. Setup Description

The sensors’ board containing a pair of FOXFETs was
irradiated in an INVAP TERADI 800 ®°Co teletherapy system.
Fig. 2 shows a schematic of the experimental setup. The
sensors’ board was placed on the stretcher and exposed to
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Fig. 3. Gamma radiation response of the circuit with gain 17x.
the gamma source with a field size of 15 cm x 15 cm at a
distance of 80 cm obtaining a dose rate of 75 rad(SiO;)/ min.

The measuring board which contains the components for
biasing and reading the sensors was placed on the stretcher
outside the radiation field.

The acquisition system used was a portable Agilent 34970A
commanded with a notebook both located in the control room.
A 10-m-long multipair cable with shield was used to connect
to the dosimeter’s circuit. The measured signals were Vour,
Vrp1 (the voltage drop in resistor Rp1), and Vogr. The sensor
temperature (TEMP) was also recorded using a thermistor in
contact with the FOXFETSs package.

The Agilent unit generated the digital signal to commute the
dosimeter between biasing and reading mode. It also provided
the gate bias voltages: 10 V for PCB and —10 V for RICN.
The sampling period was 11 s.

B. Output Linear Range

The proposed dosimeter was initially irradiated to explore
the output range and the linearity of the response. The feed-
back resistors were set to obtain a 17x gain. Fig. 3 shows
the time evolution of the output voltage. When the exposure
starts the output evolves toward lower values due to the proper
biasing of each FOXFET. For Vour ~ 1 V the reading circuit
saturates. Then the FOXFETs bias was switched and Vour
changed its slope, starting to recover. For an accumulated
dose of 389 rad(SiO;) the biasing voltages are switched again
to change the slope in the evolution of Vour. This response
showed that the circuit is suitable to operate under the BCCM
technique.

The linear region of Voyr showed in Fig. 3 extends from
1 to 17 V. Within this range Vout adjusts to a linear response
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Fig. 5. Circuit response to 60 s gamma pulses with different gain configu-
rations for negative slope response.

with R? = 0.9998. The effective sensitivity is 95.5 mV/rad
with a difference lower than 0.2% between positive and
negative slopes.

C. Different Gains for a Fixed Gamma Dose

Next, the system was tested with gamma pulses of 60 s
length to emulate a radiotherapy procedure. The radiation
pulses were repeated for positive and negative slopes with
different gain configurations. The measurement sequence was
the following: i) resistors gain setting; ii) 60 s exposure;
iii) bias switch; and iv) 60 s exposure. Gains used were: 1.0,
3.2, 5.7, and 11.0x. The results are shown in Figs. 4 and 5.
In the first, measurements with different gains and positive
slope response are plotted together against each relative dose.
The second one gathers negative slope measurements.

For gain 1.0x, the traces Voyr of Figs. 4 and 5 are Vofr.
In this case the sensitivity obtained was 5.6 mV/rad(SiO,)
which can be considered the intrinsic response of the sensor.
For the other measured gains the obtained sensitivity were:
17.9, 31.9, and 61.6 mV/rad(SiO3).

D. Temperature Coefficient

Fig. 6 shows the result of applying a slow thermal sweep
to the dosimeter (gain 1.0x) without the presence of radiation
field. The temperature coefficient estimated from the shift
induced in Voyt was 0.4 mV/°C.

The ratio between the intrinsic radiation response
and the temperature coefficient is the temperature error
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Fig. 6. Temperature circuit response.

factor (TEF) [13]. This figure of merit gives the absolute error
in the dose measurement per unit of temperature change during
the irradiation. In this case TEF = 71 mrad(SiO;)/°C.

It is important to notice that TEF does not depend on the
gain configuration, since both the temperature coefficient and
the radiation sensitivity are amplified by the reading circuit.

E. BCCM Operation Under Temperature Perturbation

In a new experiment, the differential BCCM technique was
applied for a long continuous radiation exposure. During it a
temperature perturbation was induced externally. This allows
to evaluate the thermal rejection along the irradiation.

For this test a hot air gun was also placed on the stretcher
of the radiotherapy unit pointing to the sensors board. Special
care was taken to avoid affecting the reading circuit (measuring
board). The ON-OFF swch was in the control room allowing
to start and stop the gun without interrupting the irradiation.

The feedback resistors were set using the configurable
trimpot. The measurement range was extended by switching
the biasing voltages of the FOXFETsS alternating positive slope
stages with negative slope stages. The BCCM technique was
programmed to keep Vourt within a window limited by 10 V
and 8 V (this is VRgr =1 V).

The evolution of the signals along the test are shown
in Fig. 7 (Vrp1, TEMP) and Fig. 8 (Vour). The temper-
ature perturbation started when the accumulated dose was
245 rad(SiO). The hot air gun was switched ON for 25 s
rising the temperature of the FOXFETs from 25 °C to 90 °C
measured at the packaging surface. When the hot air is
switched OFF temperature falls slowly to room temperature.
Fig. 8 and its derivative (Fig. 9) show the robustness against
temperature of the BCCM signal output compared with the
single-sensor output shown in Fig. 7.

Fig. 9 shows the instant radiation sensitivity of Voyr which
was 27.3 & 0.8 mV/rad(SiO;). The mean and standard devia-
tion did not change along the test showing the ability of the
BCCM technique to extend the useful dosimeter range.

F. Noise

The electrical noise of Voyr was estimated for different
gains in absence of the radiation field. With this purpose
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2-hour-long measurements were processed to obtain the RMS
value of the electrical signal.

Fig. 10 shows that noise increases with gain. For gain 1x the
noise level is 0.13 mVgys, and for 11x it is 0.86 mVzys,
showing that the noise increment is not proportional to the
sensitivity gain.
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TABLE I

COMPARISON BETWEEN THE DOSIMETERS: SINGLE MOSFET, FULLY
DIFFERENTIAL CIRCUIT, AND THE MISMATCH AMPLIFIED DOSIME-
TERS. TEMPERATURE ERROR FACTOR, NOISE-EQUIVALENT DOSE,
AND RADIATION SENSITIVITY (DOSES ARE REFERRED TO
Si0y). ALL THE RESULTS OF THIS USING FOXFETs
OF [24] AS THE RADIATION SENSORS.

Dosimeter TEF NED S r
(mrad/°C)  (mrad) (mV/rad)
Single MOSFET [24] 586 12 4.2
Fully Differential [13] 27 20 4.8(9)
Mismatch Amp. 71 14/(a) 5.6(%)

(a) Gain 11.0x. (b) Gain 1.0x (intrinsic sensitivity).
(¢) with different biasing conditions than in case (b).

The noise-equivalent dose (NED) [13] calculated as the ratio
between RMS noise level and radiation sensitivity is plotted in
the same figure. Its reduction with gain, from 23 mrad(SiO,)
for gain 1x to 14 mrad(SiO3) for 11x, is the result of a higher
increase in the sensitivity than in the noise level.

This result can be explained considering that noise has two
components: one from the sensors (inherent flicker noise of
the MOS structure), and other from the board that includes
the components of the circuit and the connection cables. The
first component is amplified by the reading circuit, but the
second remains constant. Thus, the total noise level in Vour
increases less than the amplification.

IV. DISCUSSION AND CONCLUSION

The reading circuit proposed in this paper showed an
amplified and stable linear radiation response. This is due to
the feedback loop that allows to set the sensitivity gain by
selecting the value of the resistors R 1 and R y2. The dosimeter
was tested under gamma radiation of %°Co with several gain
values. The thermal response of the dosimeter was charac-
terized obtaining a temperature coefficient of 0.4 mV/°C.
The differential topology showed to be effective to mitigate
temperature drifts during the radiation tests. These properties
make this prototype suitable for in vivo—real-time radiotherapy
applications.

Experimental results show that the sensor can be used for
short pulses of radiation and also for long continuous expo-
sures. This was achieved by applying the differential BCCM
technique that allows to extend the measurement range of the
MOS sensors. A total dose of 4 krad(SiO;) was measured
without sensitivity loss.

Table I summarizes the results obtained with the Mismatch
Amplifier dosimeter presented in this paper and compares
them with previous works.

The temperature error factor achieved with the amplified
circuit is more than eight times lower than the Single MOSFET
dosimeter. This shows the advantages of the differential topol-
ogy. Even though, the Mismatch Amplifier presented higher
TEF than the Fully Differential [13] version (71 against
27 mrad(SiOy)). This better performance of the Fully Dif-
ferential dosimeter can be attributed to the symmetry of its
topology as both branches of the circuit are identical. The
Mismatch Amplifier design lacks of this property, since the
gate of M1 is connected to a voltage reference and the gate
of M2 is set by the feedback loop.

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 63, NO. 3, JUNE 2016

The noise-equivalent dose estimated for the dosimeter pre-
sented in this paper was 14 mrad(SiO;) when the gain is 11.0x.
This value is achieved thanks to the sensitivity amplification,
as can be seen in Fig. 10. The Fully Differential dosimeter
which is not amplified has a NED of 20 mrad(SiO). This
reduction in the NED is a benefit of the amplified topol-
ogy and the fewer components of the circuit. The Single
MOSFET is the simplest dosimeter and reaches the lowest
value with 12 mrad(SiO;).

The intrinsic radiation sensitivity (Sg) for the proposed
dosimeter was measured obtaining 5.6 mV/rad(SiO;). Sev-
eral amplifications were also tested obtaining sensitivities
up to 95.5 mV/rad(SiO;). The Fully Differential sensor has
a response of 4.8 mV/rad(SiO;), but under different bias-
ing conditions. The Single MOSFET dosimeter used in the
standard procedure has lower sensitivity (4.2 mV/rad(SiO,))
than both differential dosimeters. This is because its response
depends only in PCB within the oxide, while in the differential
topologies it depends on the difference between PCB and
RICN of each device.

The resolution of the proposed dosimeter can be estimated
considering the noise performance of the output. In a thermal
stabilized scenario, the minimum detectable dose can be calcu-
lated as four times the NED [25] resulting in 56 mrad(SiO»).

Based on the satisfactory results obtained with the proposed
circuit, future work will be aimed to integrate the circuits
of Fig. 1 together with the FOXFET pair, the switches, and
its control logic in the same silicon chip. This approach
is feasible, since all the devices involved in the dosimeter
can be fabricated in a standard CMOS technology. Being
the gate oxide of the FOXFETs 40 times ticker than the
native MOSFETs of the process, it is expected that the
radiation response will be dominated by FOXFETSs devices.
The integrated system design has several challenges, such as
the radiation hardening of the reading and control circuits,
and the high-voltage operation. Direct advantages of a syste-
on-chip dosimeter would be as follows.

« It eliminates the reading circuit board making the dosime-
ter much smaller and easier to use for in vivo applications.

o The noise of the sensor will be reduced since the
FOXFET pair can be amplified in situ. This implies an
improvement in its dose resolution.

o Selectable gain can increase signal-to-noise ratio when
measuring low doses in real-time measurements.

The high sensitivity and extended measurement range
enable this dosimeter to be used in dose control in radiother-
apy, radiology, or computed tomography. Due to its small size
and its easy reading mode, it could be directly integrated in
the medical equipment, mounted on a catheter for intracavitary
measurements, or could be used in a spatial array for field
profile verification.
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