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Abstract Planning means, in the realm of production activities, to design, coor-

dinate, manage and control all the operations involved in the production system.

Many MOPs (multi-objective optimization problems) are generated in this frame-

work. They require the optimization of several functions that are usually very

complex, which makes the search for solutions very expensive. Multi-objective

optimization seeks Pareto-optimal solutions for these problems. In this work we

introduce, a Multi-objective Memetic Algorithm intended to solve a very important

MOP in the field, namely, the Job-Shop Scheduling Problem. The algorithm com-

bines a MOEA (Multi-Objective Evolutionary Algorithm) and a path-dependent

search algorithm (Multi-objective Simulated Annealing), which is enacted at the

genetic phase of the procedure. The joint interaction of those two components yields

a very efficient procedure for solving the MOP under study. In order to select the

appropriate MOEA both NSGAII and SPEAII as well as their predecessors (NSGA

and SPEA) are pairwise tested on problems of low, medium and high complexity.

We find that NSGAII yields a better performance, and therefore is the MOEA of

choice.
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1 Introduction

The main purpose of production planning activities in firms is to improve the

efficiency of processes (Bihlmaier et al. 2009). One way of conceiving a good plan

in an industrial firm is as a solution to a Job-Shop Scheduling Problem (JSSP)

(Chao-Hsien and Han-Chiang 2009). The main possible drawback of this approach

is that this problem is hard to solve, being a member of the class NP-Hard (Ullman

1975; Papadimitriou 1994). The JSSP is concerned with the allocation of limited

resources to scheduled jobs in order to optimize one or more objectives (Armentano

and Scrich 2000; Storer et al. 1992). Evolutionary algorithms have become popular

to handle these multi-objective problems (Deb et al. 2002; Coello Coello et al.

2006). Following this trend, we present here a Multi-Objective Evolutionary

Algorithm (MOEA) linked to a local search procedure (MOSA, Multi-Objective

Simulated Annealing) in order to solve a JSSP (Cortés Rivera et al. 2003; Park et al.

2003; Tsai and Lin 2003; Wu et al. 2004). Even if the literature on JSSP is already

large, most of the work has focused on a single objective, despite that in

applications multiple goals are pervasive (Chinyao and Yuling 2009). As T‘kindt

and Billaut (2006) claim, a genuine scheduling problem essentially involves the

optimization of many simultaneous objectives.

1.1 JSSP treatments: state of the art

The huge literature on the topic presents a variety of solution strategies that go from

simple priority rules to sophisticated parallel branch-and-bound algorithms. A

particular variety of scheduling problem is the JSSP. Muth and Thompson’s 1964

book Industrial Scheduling presented the JSSP, basically in its currently known

form. Even before, Jackson in 1956 generalized the flow-shop algorithm of Johnson

(1954) to yield a job-shop algorithm. In 1955, Akers and Friedman gave a Boolean

representation of the procedure, which later Roy and Sussman (1964) described by

means of a disjunctive graph, while Egon Balas, already in 1959, applied an

enumerative approach that could be better understood in terms of this graph. Giffler

and Thompson (1960) presented an algorithm based on rule priorities to guide the

search. For these reasons, the problem was already part of the folklore of Operations

Research years before its official inception. The JSSP generated a huge literature. Its

resiliency made it an ideal problem for further study. Besides, its usefulness made it

a problem worth to scrutinize. Due to its complexity, several alternative

presentations of the problem have been tried (Sadeh and Fox 1995; Chinyao and

Yuling 2009; Della Croce et al. 2011; Lin et al. 2011), in order to apply particular

algorithms like Priority Rules (Panwalker and Iskander 1977), Shifting Bottlenecks

(Adams et al. 1998), Simulated Annealing (Van Laarhoven et al. 1992), Tabu

Search (Dell Amico and Trubian 1993; Armentano and Scrich 2000; Nowicki and

Smutnicki 2005), the Branch and Bound Algorithm (Brucker et al. 1994), Genetic

Algorithms (Zalzala and Flemming 1997), Ant Colony Optimization (Merkle and

Middendorf 2001), Clonal Selection (Cortés Rivera et al. 2003), Solution-Guided

Multi-Point Constructive Search (Beck (2007), Hybrid Algorithms (Zhang et al.

2008), etc. The performance of these meta-heuristic procedures varies, and some
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seem fitter than others (De Giovanni and Pezzella 2010), although unlike our

treatment of the problem, most of them focus on a single objective (usually the

minimization of makespan). Since in our case we consider an additional objective,

that may or may not be aligned with the minimization of makespan, most of the

approaches mentioned above may improve the latter worsening the former.

1.2 Multi-objective optimization: basic concepts

Our goal in this section is to characterize the general framework in which we will state

the Job-Shop problem. We assume, without loss of generality, that there are several

goals (objectives) to be minimized. Then, we seek to find a vector x~� ¼ ½x�1; . . .; x�n�
T

of

decision variables, satisfying q inequalities giðx~Þ� 0; i ¼ 1; . . .; q as well as p

equations hiðx~Þ ¼ 0; i ¼ 1; . . .; p, such that f~ðx~Þ ¼ ½f1ðx~Þ; . . .; fkðx~Þ�T, a vector of k

functions, each one corresponding to an objective, defined over the decision variables,

attains its minimum. The class of the decision vectors satisfying the q inequalities and

the p equations is denoted by X and each x~2 X is a feasible alternative. A x~� 2 X is

Pareto optimal if for any x~2 X and every i = 1,…,k, fiðx~�Þ� fiðx~Þ. That is, if there is

no x~ that improves some objectives without worsening the others. To simplify the

notation, we say that a vector u~¼ ½u1; . . .; un�T dominates another, v~¼ ½v1; . . .; vn�T
(denoted u~� v~) if and only if 8i 2 f1; . . .; kg, ui� vi ^ 9i 2 f1; . . .; kg : ui\vi.

Then, the set of Pareto optima is P� ¼ fx~2 X :j 9 x~
0 2 X; f~ðx~0 Þ � f~ðx~Þg while the

corresponding Pareto frontier is PF� ¼ ff~ðx~Þ; x~2 P�g. The search of the Pareto

frontier is the main goal of Multi-Objective Optimization. Given the complexity of

the task, a good approximation consists in finding a few feasible alternatives, close

enough to the frontier. These alternatives should be uniformly distributed, just to

facilitate the interpretation of the results.

2 The Job-Shop Scheduling Problem

Optimal scheduling is a problem of high theoretical and practical importance that

has been extensively analyzed during the last decades. The formal description of the

JSSP requires considering n jobs to be carried out on m machines. In turn, each job

is decomposed in operations (Frutos et al. 2010). As initial data we have the

sequence of machines for each task and the processing time of each operation

(Adams et al. 1998) (Table 1).

We assume that at the start of the process each machine is available and that it

can only carry out an operation at a time. Furthermore, no job can use more than one

time each machine. A job has to wait until the next machine is available (De

Giovanni and Pezzella 2010). The setup and waiting times are included in the initial

data and machines can remain unused at any step of the plan. The final state is

reached when each job has completed its last operation (Heinonen and Pettersson

2007). While there might exist many objectives for the JSSP, we will focus on the

minimal time required in completing a job (Makespan, see Eq. 1) and the minimal

mean time for completing all the jobs (Mean Flow Time, see Eq. 2).
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f1 : Cj
max ¼

X

i2OðjÞ
max
k2M

tk
ij þ sk

ij

� �
ð1Þ

f2 : F ¼ 1

n

X

j2J

max
h;k2M

th1jj
þ sh

1jj
� tk

1j

� �
ð2Þ

s.t.

tk
ij� 0; 8j 2 J; 8i 2 O(j); 8k 2 M

Starting time constraintð Þ
tk
ij � thsj� sh

sj; if Oh
sj precedes Ok

ij; 8j 2 J; 8i,s 2 O(j); 8k,h 2 M

Precedence constraintð Þ
tk
ij � tksp� sk

sp or tk
sp � tk

ij� sk
ij; if Osp and Oij; require k 2 M;

8j,p 2 J; 8i 2 O(j); 8s 2 O(p); 8k 2 M

Disjunctive constraintð Þ

where J is the class of n jobs, O(j) the class of operations to be carried out for job j 2 J

and M the class of m machines. Ok
ij the operation i 2 O(j) carried out on machine k, tk

ij

is the starting time of operation i 2 O(j) on machine k, lj is the last operation in job j,

while sk
ij is the time that takes carrying out operation i 2 O(j) on machine k.

3 The Multi-objective Memetic Algorithm

Evolutionary algorithms have been widely applied to optimization problems, due to

their many advantages (Coello Coello et al. 2006). But for the JSSP, in particular,

Table 1 A JSSP [la02-10 9 5 (Beasley 1990)]

Operations

1 2 3 4 5

Mk sk
ij

Mk sk
ij

Mk sk
ij

Mk sk
ij

Mk sk
ij

Jobs 1 1 20 4 87 2 31 5 76 3 17

2 5 25 3 32 1 24 2 18 4 81

3 2 72 3 23 5 28 1 58 4 99

4 3 86 2 76 5 97 1 45 4 90

5 5 27 1 42 4 48 3 17 2 46

6 2 67 1 98 5 48 4 27 3 62

7 5 28 2 12 4 19 1 80 3 50

8 2 63 1 94 3 98 4 50 5 80

9 5 14 1 75 3 50 2 41 4 55

10 5 72 1 18 2 37 4 79 1 61

We can see that each operation of a job is allocated to a given machine. Besides, the length of each

operation and its place in the sequence is represented in the table
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their high rate of convergence generate also high evaluation costs when many

objectives are at stake, leading to a loss of diversity in the class of solutions. This is

reflected by poorly distributed Pareto frontiers. But if evolutionary algorithms are

complemented by efficient local search procedures the whole multi-objective

procedure requires a very few evaluations of the fitness functions while yielding a

better distributed Pareto frontier (see Fig. 1). This kind of procedure, mixing an

evolutionary algorithm and local search, is called a Multi-objective Memetic

Algorithm (Ishibuchi et al. 2003). As in the realm of Biology, in such procedure the

chromosome evolves, but is also subject to alterations that are bequest to it

descendants.

We introduce here a Multi-objective Memetic Algorithm for the treatment of the

JSSP combining a Multi-Objective Evolutionary Algorithm (MOEA), and Multi-

Objective Simulated Annealing (MOSA) (Varadharajan and Rajendran 2005) for

improving the individuals in the population.

3.1 Evolutionary process

Individuals in the population are possible candidates to be solutions of the JSSP. In

the literature chromosomes, describing the ordering and timing of operations, are

usually of size m x n. Interventions inside the chromosomes along the critical path

have shown to improve the efficiency in the optimization of Makespan. But with the

addition of the goal of optimizing Mean Flow Time, those interventions make no

longer sense. This is why after some experiments Croce and Tadei’s (1995) m-sized

chromosome representation was chosen. Each entry indicates an ordered list of

integers between 0 and n! - 1, standing for the order of tasks assigned to each

machine. For instance, in la02, m = 5 and n = 10 while, say, 0 is the sequence

1|2|3|4|5|6|7|8|9|10, whereas 1 ? 1|2|3|4|5|6|7|8|9|10| 9, 2 ? 1|2|3|4|5|6|7|8|9, …. If

the chromosome is coded as [0 2 1 0 1], the decoding process yields the sequences

f2

540

560

580

800750700650

f1

MOEA, without Local Search 
( ) and with Local Search ( ).

Fig. 1 Makespan versus mean flow time [la02-10 9 5 (Beasley 1990)]. MOEA, without Local Search
(times) and with Local Search (red square) (color figure online)
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shown in Table 2. The most costly activity in the algorithm involves decoding the

chromosome, because it requires a large number of lookups into the table of codes.

Each change in a gene affects the sequence of operations in the machines, allowing

the use of basic genetic operators.

But that is not a real problem, since the initial population, which is rather small

(only one in fifty alternatives is chosen) is generated in a random way. The

algorithm assigns an integer value between 0 and n! - 1 to the first machine. It is

chosen from a uniform distribution on the values. Then, the algorithm repeats this

for the m - 1 remaining machines. The crossover operator works as usual, using the

parents obtained from the selection process. After some tests, we selected the

Uniform Crossover operator, because it yields the best results. We included also a

mutation operator, since in JSSP the crossover alone does not allow to reach certain

areas of the search space. We applied the mutation consisting in swapping two

genes (Two-Swap). The operator takes the chain of integers from a child and selects

at random two genes, swapping their positions, leaving the machine order intact,

which is consistent with the fact that the problem studied here is the fixed-order

version of the JSSP.

3.2 Simulated annealing as a local search process

Simulated Annealing provides a search procedure that applies a probabilistic

acceptance criterion, based on thermodynamic principles. To avoid getting trapped

in a local optimum, something that tends to happen with traditional local search

algorithms, random jumps to possible worse solutions are allowed. On the other

hand, to lead the search to better solutions, some control has to be exerted on these

jumps. Simulated Annealing does this by controlling the frequency of jumps by

means of the probability function e�ðd=TÞ, where d is the difference among the

values of the objective function, T is the ‘‘temperature’’ at the k-th iteration, starting

Table 2 Sequences obtained from decoding the results of (la02)

Operations

1 2 3 4 5

Mk Mk Mk Mk Mk

Jobs 1 1(1) 4(1) 2(1) 5(1) 3(1)

2 5(2) 3(2) 1(2) 2(2) 4(2)

3 2(3) 3(3) 5(3) 1(3) 4(3)

4 3(4) 2(4) 5(4) 1(4) 4(4)

5 5(5) 1(5) 4(5) 3(5) 2(5)

6 2(6) 1(6) 5(6) 4(6) 3(6)

7 5(7) 2(7) 4(7) 1(7) 3(7)

8 2(10) 1(8) 3(8) 4(8) 5(8)

9 5(10) 1(9) 3(10) 2(8) 4(9)

10 5(9) 3(9) 2(9) 4(10) 1(10)
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at a high value (called the initial temperature) Ti, that cools down according to

Tkþ1 ¼ aTk until a final temperature, Tf, is reached. Since at a higher temperature

more probable is to get poorer solutions, the procedure induces more diversity in the

beginning but focusing on improving them in the final stages. At the k-th iteration a

class of close neighbors M (T, x) is obtained, depending on the temperature and a

control parameter x. Each time a neighbor is generated, an acceptation criterion is

applied to check out whether the current solution is kept or not. In the case of N

objectives, there exist several alternative definitions of d. We will, in particular, take

d as the normalized maximum deviation, d ¼ max½ fiðx0Þ � fiðxÞð Þ=fiðxÞ�.
If a new solution were rejected, a slight variation of the previous one would be

tried. The non-zero probability of accepting a worse solution frees the algorithm

from the possibility of getting caught in a local minimum. Through the execution T

decreases according to a cooling velocity a, lowering the chances of upward

displacements in the space of solutions and keeping the alternatives close to the

optimal ones. The algorithm stops if no improvement has been obtained after a

certain number of tries or if the final temperature Tf has been reached (more

involved stopping criteria can be also implemented). Van Laarhoven et al. (1992),

show that under appropriate conditions, the algorithm explores efficiently the

neighborhood of the actual solution. In fact, a crucial element in the MOSA

algorithm (Multi-Objective Simulated Annealing) is the procedure that generates

the class of close-enough alternative solutions to a given one. In our work we do this

by taking one of the genes of the chromosome and changing it value at random

(Frutos et al. 2010). This alteration allows, in a single stroke, to exchange several

Simulated Annealing Algorithm 

0. Take an initial x ∈ i 1Q +′
1. while T > Tf 

2. Compute M 1 T ω= +⎢ ⎥⎣ ⎦
3. for i = 1 to M
4. Change x and obtain x’
5. Decodify and evaluate f1(x’) and f2(x’)
6. if f1 and  f2  improve
7. then Change x’
8. if f1 or f2 improve without worsening either f2 or f1

9. then Change x’
10. if either f1 or f2 gets worse
11. then 
12. if ξ (0, 1) < e-δ/T

13. then Change x’
14. end if                      
15. end if 
16. end for 
17. T = α (T)
18. end while 
19. end 

Fig. 2 Pseudo-code of the simulated annealing procedure
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operations on a single machine. This procedure is applied M times. The pseudo-

code of the version of MOSA used here is presented in Fig. 2.

3.3 Putting all the pieces together

In this section we will explain how all the aforementioned pieces are assembled

(Fig. 3) First, the memetic procedure generates the initial population. Later, in order

to evaluate the fitness of the individuals in the population, it is necessary to calculate

the value of each one of the objectives. Afterward, a binary tournament selection is

performed, and the genetic operators are used to create the population. Then, the

simulated annealing procedure performs a local search for each individual,

replacing it with a new individual. This is repeated until a given generation

number is reached.

4 Implementation and design of experiments

The algorithm was implemented on PISA (A Platform and Programming Language

Independent Interface for Search Algorithms) (Bleuler et al. 2003), a search

algorithm interface that distinguishes between two modules: variator and selector.

The former takes all the specificities of the problem at hand to codify and decode

the solutions (computing their fitness values). The selector module is independent of

the problem and acts by selecting candidates. These modules exchange messages,

coded as text files, independently of the programming languages and the operations

system on which the algorithm runs. PISA provides a library of evaluations as well

as statistical tools that allow evaluating and comparing alternative optimization

methods (Knowles et al. 2005). In this work we consider for MOEAs (Multi-

Multi-objective Memetic Algorithm 

0. Generate an initial population ( P0) of size N
1. Decodify and evaluate  f1(x) and f2(x) on every x ∈ P0

2. Select Parents from P0

3. 0Q  = Cross (P0) 
4. 0Q′  = Mutate ( 0Q ) 
5. 0Q′′  =Local Search ( 0Q′ )
6. for i = 0 to G - 1 do 
7. Decodify and evaluate  f1(x) and f2(x) on every individual x ∈ iQ′′
8. Select out of Pi ∪ iQ′′ the N best elements and eliminate the rest 
9. Create the next generation Pi+1

10. Select Parents from Pi+1

11. i 1Q +  = Cross (Pi+1) 
12. i 1Q +′  = Mutate ( i 1Q + ) 
13. i 1Q +′′  = Local Search ( i 1Q +′ )
14. end for 
15. end 

Fig. 3 Pseudo-code of the Multi-objective Memetic Algorithm
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objective Evolutionary Algorithms): Non-dominated Sorting Genetic Algorithm II

(NSGAII), Strength Pareto Evolutionary algorithm II (SPEAII) (Zitzler et al. 2002),

as well as their predecessors, Non-dominated Sorting Genetic Algorithm (NSGA)

(Srinivas 1994) and Strength Pareto Evolutionary algorithm (SPEA) (Zitzler and

Thiele 1999).

NSGA classifies the individuals in layers or fronts, by grouping all the non-

dominated individuals in a single front, with the same value of fitness for each

individual. This value is proportional to the size of the population as to provide

reproduction potential for all the individuals in the front. This procedure is repeated

on the remaining individuals (those outside the non-dominated front) and so on until

all the individuals in the population are classified. Since the ones in the first front

have higher fitness they get more attention than the rest of the individuals. NSGAII

is a more efficient version of NSGA, applying an elitist replacement strategy that

chooses the best individuals from the union between parent and child generations.

NSGAII classifies the fronts, such that the solutions on the main front are the non-

dominated ones, the solutions on the second front those that are non-dominated in

absence of the first front, etc. All the solutions are ranked in terms of their degrees

of non-dominancy, being the better ones those with lowest rank. SPEA is an

algorithm that at each generation memorizes the non-dominated individuals and

deletes from memory those that became dominated. For each individual in the

external system, a strength value is computed, proportional to the number of

solutions in which it is dominant. In SPEA, the fitness of a member of the current

population is computed by adding the strengths of the external non-dominated

solutions that dominate it. SPEAII instead, has a fine-tuning procedure according to

which the fitness of an individual is obtained as a balance between the number of

solutions that are dominated by it and the number that dominate the individual.

Fig. 4 The architecture of PISA
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Besides, it uses the ‘‘nearest neighbor’’ for valuing the density of feasible solutions

and thus leading to a more efficient search. In Fig. 4 we can see the PISA

architecture adapted to the JSSP.

4.1 Experiments and results

The parameters and characteristics of the computing equipment used during these

experiments were as follows: size of the population: 200; number of generations:

250; type of cross-over: uniform; probability of cross-over: 0.90; type of mutation:

two-swap; probability of mutation: 0.01; type of local search: simulated annealing

(Ti: 850, Tf: 0.01, a: 0.95, x: 10); probability of local search: 0.01; CPU: 3.00 GHZ

and RAM: 1.00 GB. For the problems la02, la03, la07, la26, la32 and la40 (Beasley

1990), we show the results for the multi-objective analysis based on Makespan and

Mean Flow Time. They were obtained by running each algorithm 20 times. For each

algorithm the sets of undominated solutions P1; P2; . . .; P20 were obtained as well as

the super-population PT ¼ P1 [ P2 [ . . . [ P20. From each superpopulation a class

of undominated solutions was extracted, constituting the Pareto frontier for each

Table 3 Mean times to

complete the process

Each algorithm (NSGAII,

NSGA, SPEAII and SPEA)

runs 20 times

Mean running

time (in seconds)

NSGAII NSGA SPEAII SPEA

la02 0.180 0.158 0.178 0.164

la03 1.510 1.324 1.491 1.379

la07 0.390 0.342 0.385 0.356

la26 0.670 0.588 0.662 0.612

la32 14.560 12.769 14.381 13.293

la40 491.210 430.791 485.168 448.475

f2

540

560

580

800750700650

f1

NSGAII , NSGA , SPEAII 
SPEA and Approximate Pareto Frontier

, 

Fig. 5 Solutions (la02). NSGAII (blue diamond), NSGA (rose square), SPEAII (green triangle), SPEA
(orange times) and approximate Pareto frontier (brown diamond) (color figure online)
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algorithm: YNSGAII, YNSGA, YSPEAII and YSPEA. The mean times required for

completing 250 generations by the different algorithms are shown in Table 3.

The corresponding results are shown in Fig. 5 (la02), Fig. 6 (la03), Fig. 7 (la07),

Fig. 8 (la26), Fig. 9 (la32) and Fig. 10 (la40). To obtain an approximation to the

true Pareto front we take the entire class YNSGAII [ YNSGA [ YSPEAII [ YSPEA, from

which all the dominated solutions are eliminated. Even before testing the

performance of the algorithms it can be assessed that la02, la03 and 07 are easy

to solve. On the other hand in la26, la32 and la40 the complexity increases and the

results are clearly different.

f2

550

560

570

640615590

f1

NSGAII , NSGA , SPEAII 
SPEA and Approximate Pareto Frontier 

, , 

Fig. 6 Solutions (la03). NSGAII (blue diamond), NSGA (rose square), SPEAII (green triangle), SPEA
(orange times) and approximate Pareto frontier (brown diamond) (color figure online)

f2

820

830

840

980955930905880

f1

NSGAII , NSGA , SPEAII ,
SPEA and Approximate Pareto Frontier

Fig. 7 Solutions (la07). NSGAII (blue diamond), NSGA (rose square), SPEAII (green triangle), SPEA
(orange times) and approximate Pareto frontier (brown diamond) (color figure online)
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4.2 Comparison procedure

In order to compare the results of the algorithms and establish the better option for

solving the JSSP, several tests were applied over the solutions. We considered unary

quality indicators using normalized approximation sets. Then, we applied the unary

indicators (unary hypervolume indicator IH, unary epsilon indicatior Ie
1 and R

indicator IR2
1 ) on the normalized approximation sets as well as on the reference set

f2

500

575

650

725

1380132012601200

f1

NSGAII , NSGA , SPEAII ,
SPEA and Approximate Pareto Frontier

Fig. 8 Solutions (la26). NSGAII (blue diamond), NSGA (rose square), SPEAII (green triangle), SPEA
(orange times) and approximate Pareto frontier (brown diamond) (color figure online)

f2

540

625

710

1820 1935 2050

f1

NSGAII , NSGA , SPEAII ,
SPEA and Approximate Pareto Frontier

Fig. 9 Solutions (la32). NSGAII (blue diamond), NSGA (rose square), SPEAII (green triangle), SPEA
(orange times) and approximate Pareto frontier (brown diamond) (color figure online)
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generated by PISA (IH, Ie
1 and IR2

1 , Table 4 (la02), Table 5 (la03), Table 6 (la07),

Table 7 (la26), Table 8 (la32) and Table 9 (la40)).

For problems la02, la03, la07 and la26, the differences among algorithms are not

significant at an overall significance level a = 0.05. For la32 and la40, NSGAII and

SPEAII showed differences with NSGA and SPEA significant at a = 0.05. This

indicates that NSGAII and SPEAII are more appropriate candidates for solving the

f2

750

810

870

140013101220

f1

NSGAII , NSGA , SPEAII ,
SPEA and Approximate Pareto Frontier

Fig. 10 Solutions (la40). NSGAII (blue diamond), NSGA (rose square), SPEAII (green triangle), SPEA
(orange times) and approximate Pareto frontier (brown diamond) (color figure online)

Table 4 Unary hypervolume

indicator, unary epsilon

indicator and R indicator (la02)

Test for problem la02 NSGAII NSGA SPEAII SPEA

Ie
1

NSGAII – 0.46688 0.49838 0.47918

NSGA 0.53312 – 0.43697 0.48266

SPEAII 0.50162 0.56303 – 0.55780

SPEA 0.52082 0.51734 0.44220 –

IH

NSGAII – 0.48494 0.49348 0.48066

NSGA 0.51506 – 0.45387 0.52343

SPEAII 0.50652 0.54613 – 0.57938

SPEA 0.51934 0.47657 0.42062 –

IR2
1

NSGAII – 0.45604 0.48681 0.45547

NSGA 0.54396 – 0.42682 0.51670

SPEAII 0.51319 0.57318 – 0.54485

SPEA 0.54453 0.48330 0.45515 –

A Multi-objective Memetic Algorithm 245

123

Author's personal copy



JSSP. As a further step in the analysis, we establish the percentage of contribution of

each algorithm to the Approximate Pareto Frontier (Table 10). From this we can

conclude that NSGAII is the best selector we can apply to our problem.

Table 5 Unary hypervolume

indicator, unary epsilon

indicator and R indicator (la03)

Test for Problem la03 NSGAII NSGA SPEAII SPEA

Ie
1

NSGAII – 0.46081 0.49190 0.47295

NSGA 0.53919 – 0.43129 0.47638

SPEAII 0.50810 0.56871 – 0.55055

SPEA 0.52705 0.52362 0.44945 –

IH

NSGAII – 0.49426 0.50385 0.49076

NSGA 0.50574 – 0.46260 0.53443

SPEAII 0.49615 0.53740 – 0.59051

SPEA 0.50924 0.46557 0.40949 –

IR2
1

NSGAII – 0.46786 0.49943 0.46208

NSGA 0.53214 – 0.43789 0.52419

SPEAII 0.50057 0.56211 – 0.55897

SPEA 0.53792 0.47581 0.44103 –

Table 6 Unary hypervolume

indicator, unary epsilon

indicator and R indicator (la07)

Test for Problem la07 NSGAII NSGA SPEAII SPEA

Ie
1

NSGAII – 0.50597 0.49479 0.52082

NSGA 0.49403 – 0.51304 0.51126

SPEAII 0.50521 0.48696 – 0.52509

SPEA 0.47918 0.48874 0.47491 –

IH

NSGAII – 0.51331 0.50197 0.52837

NSGA 0.48669 – 0.52047 0.51867

SPEAII 0.49803 0.47953 – 0.53271

SPEA 0.47163 0.48133 0.46729 –

IR2
1

NSGAII – 0.49940 0.48836 0.51405

NSGA 0.50060 – 0.50637 0.50461

SPEAII 0.51164 0.49363 – 0.51827

SPEA 0.48595 0.49539 0.48173 –
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123

Author's personal copy



5 Conclusions

We presented a Multi-objective Memetic Algorithm for solving the Job-Shop

Scheduling Problem (JSSP), one of the most avidly studied problems in the class

Table 7 Unary hypervolume

indicator, unary epsilon

indicator and R indicator (la26)

Test for Problem la26 NSGAII NSGA SPEAII SPEA

Ie
1

NSGAII – 0.07583 0.31397 0.09576

NSGA 0.92417 – 0.91287 0.61674

SPEAII 0.68603 0.08713 – 0.09698

SPEA 0.90424 0.38326 0.90302 –

IH

NSGAII – 0.07693 0.31852 0.09715

NSGA 0.92307 – 0.92611 0.62568

SPEAII 0.68148 0.07389 – 0.09839

SPEA 0.90285 0.37432 0.90161 –

IR2
1

NSGAII – 0.07485 0.30989 0.09451

NSGA 0.92515 – 0.90101 0.60872

SPEAII 0.69011 0.09899 – 0.09572

SPEA 0.90549 0.39128 0.90428 –

Table 8 Unary hypervolume

indicator, unary epsilon

indicator and R indicator (la32)

Test for Problem la32 NSGAII NSGA SPEAII SPEA

Ie
1

NSGAII – 0.02867 0.48836 0.03083

NSGA 0.97133 – 0.95422 0.51395

SPEAII 0.51164 0.04578 – 0.03162

SPEA 0.96917 0.48605 0.96838 –

IH

NSGAII – 0.03055 0.49403 0.03286

NSGA 0.96945 – 0.98080 0.54775

SPEAII 0.50597 0.01920 – 0.03338

SPEA 0.96714 0.45225 0.96662 –

IR2
1

NSGAII – 0.02929 0.49901 0.03151

NSGA 0.97071 – 0.97502 0.52516

SPEAII 0.50099 0.02498 – 0.03231

SPEA 0.96849 0.47484 0.96769 –
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NP-Hard. Our algorithm integrates two meta-heuristic procedures: a Multi-

Objective Evolutionary Algorithm (MOEA) with Multi-Objective Simulated

Annealing (MOSA). The individuals were coded as to facilitate the application of

basic genetic operators. Different MOEAs were tested for this task. It was shown

that the performance of NSGAII is at least as good as SPEAII and it improves

largely over NSGA and SPEA. This means that our algorithm provides a useful tool

for solving the JSSP. We plan, in the future, to explore its performance on other

MOPs. We believe that it provides a strong and efficient approach to solving this

kind of problems.

Table 9 Unary hypervolume

indicator, unary epsilon

indicator and R indicator (la40)

Test for Problem la40 NSGAII NSGA SPEAII SPEA

Ie
1

NSGAII – 0.02904 0.49479 0.03124

NSGA 0.97096 – 0.96679 0.52072

SPEAII 0.50521 0.03321 – 0.03204

SPEA 0.96876 0.47928 0.96796 –

IH

NSGAII – 0.03011 0.48696 0.03239

NSGA 0.96989 – 0.96678 0.53992

SPEAII 0.51304 0.03322 – 0.03290

SPEA 0.96761 0.46008 0.96710 –

IR2
1

NSGAII – 0.02869 0.48874 0.03086

NSGA 0.97131 – 0.95497 0.51435

SPEAII 0.51126 0.04503 – 0.03164

SPEA 0.96914 0.48565 0.96836 –

Table 10 Percentage of

solutions contributed by

NSGAII, NSGA, SPEAII and

SPEA to the approximate Pareto

frontier

Percentage of solutions

in the approximate

Pareto frontier

NSGAII

(%)

NSGA

(%)

SPEAII

(%)

SPEA

(%)

la02 92.59 40.74 88.89 59.26

la03 92.86 57.14 85.71 50.00

la07 100.00 83.33 100.00 100.00

la26 92.59 25.93 81.48 48.15

la32 90.00 40.00 85.00 45.00

la40 89.29 46.43 89.29 50.00
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