Journal Pre-proof

Growing and stabilizing metallic nanoparticles inside mesoporous oxide thin films

M. Mercedes Zalduendo, Paula Y. Steinberg, Rusbel Coneo-Rodríguez, Andrea V. Bordoni, Paula C. Angelomé

 PII:
 S2772-5693(22)00013-5

 DOI:
 https://doi.org/10.1016/j.sctalk.2022.100013

 Reference:
 SCTALK 100013

To appear in:

Please cite this article as: M.M. Zalduendo, P.Y. Steinberg, R. Coneo-Rodríguez, et al., Growing and stabilizing metallic nanoparticles inside mesoporous oxide thin films, (2022), https://doi.org/10.1016/j.sctalk.2022.100013

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 . Published by Elsevier Ltd.

Journal Pre-proof

Growing and stabilizing metallic nanoparticles inside mesoporous oxide thin films M. Mercedes Zalduendo, Paula Y. Steinberg, Rusbel Coneo-Rodríguez, Andrea V. Bordoni, Paula C. Angelomé* Gerencia Química & Instituto de Nanociencia y Nanotecnología, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, CONICET, Av. Gral. Paz 1499, San Martín (1650), Buenos Aires, Argentina

Corresponding author's email address and Twitter handle

angelome@cnea.gov.ar twitter: @pcangelome

Keywords

Mesoporous oxides Hybrid materials Metallic nanoparticles Sensors SERS Catalysis

Abstract

Metallic nanoparticles (NPs) have interesting size-dependent optical properties and a high surface to volume ratio that make them ap lealing for many different applications, such as sensing, catalysis, energy conversion and storage, biomedicine, etc. These applications require avoiding NPs degradation, coarsening and/or aggregation. The use of porous templates has become a promising strategy to attain the objective. In particular, ordered mesoporous oxides prepared by sol-gel reactions combined with supramolecular templates are highly appealing supports, due to their high specific surface and regular and accessible porosity. Moreover, if these oxides are prepared as this films, the manipulation and integration in portable devices is straightforward.

In this work, different alternative to obtain metallic NPs stabilized within mesoporous oxide thin films are discussed. Firstly, the major effect of mesoporous TiO_2 thin films pores ordering over the amount and distribution of Au NPs obtained within is presented, along with the discussion of the architecture effect over the materials sensing capabilities.

Afterwards, the use of h brid mesoporous thin films containing carboxylic and phosphonate groups as templates to form and stabilize Cu and Ag nanoparticles is presented. In all cases, the key effect of the surface chemistry over synthesis of the composites and their applications is highlighted.

Figures and tables

Journal Pre-proof

Figure 1 (a) Schematic representator c: the reagents and steps involved in the production of mesoporous oxides. **(b)** Schematic representation of the *Evaporation Induced Self Assembly* process used to obtain mesoporous thin films. **(c)** Images of mesoporous TiO₂ thin films prepared onto silicon and glass coverslips.

Figure 2: Main characteristics and electronic n icro scopy images of metallic nanoparticles, mesoporous thin films and concessues containing both of them.

Figure 3 (a) Schematic representation c, the adsorption-reduction method used to produce Au NPs inside mesoporous TiO₂ thin film. **(b)** UV-vis spectra of the obtained composite materials, as a function of the number of ac'sorption-reduction steps. **(c)** TEM images and NPs size histograms of different composite materials based on Au nanoparticles and mesoporous TiO₂ thin films, as indicated in the Labels (*inset:* scheme of the pore ordering). *x*RS indicates the amount of adsorption-reduction steps used to produce the material.

Adapted from DOI: 10.10.29/C9CP01896D with permission from the Royal Society of Chemistry.

Figure 4 (a) Minimum acquisition times required for the actection of *p*-nitrothiophenol Raman probe (shown as inset) using different composite samples (see Figure 3) and (b) SERS spectra for *p*-nitrothiophenol using the samples indicated in the labels (acquisition time: 10 seconds). Each spectrum is the average of 4 spectra taken at 4 different points. Reproduced from DOI: 10.1039/C9CPC1596D with permission from the Royal Society of

Chumistry.

Figure 5 (a) Schematic representation of the grive nic replacement method used to produce Au-Ag bimetallic NPs inside mesoporous TiC₂ 'hin films. **(b)** Representative TEM image of the obtained samples. **(c)** Optical images of u e samples. **(d)** Plot of In (A_t/A₀) as a function of time for the 4-nitrophenol reduction reaction cataly red by different composite materials, indicated in the labels. For (c) and (d): Ag30 = sample with Ag nanoparticles, Ag30Aux = saples with bimetallic nanoparticles, obtairied changing the galvanic replacement time (x).

Adapter from DOI: 10.1002/ejic.201901186.

Figure 6 (a) Schematic representation of the synthetic method used to produce Cu NPs inside mesoporous thin films functionalized with. COOH and NH₂ groups. (b) UV-vis spectra of different samples obtained using the next hod schematized in (a), as indicated in the labels. (c) XPS spectra in the Cu region for samples based on COOH modified silica prepared using different amounts of adsorption/reduction steps. (d) Plot of In (At/A₀) as a function of time for the 4-nitrophenol reduction reaction callyzed by different composite materials, indicated in the labels. The line correspond to linear fitting of the data.

Reprinted from *Appl. Surf. Sci* **2019**, *471*, Coneo Rodríguez, R.; Yate, L.; Coy, E.; Martínez-Villacorta, Á. M.; Bordoni, A. V., Moya, S.; Angelomé, P. C., Copper nanoparticles synthesis in hybrid mesoporous thin filmer controlling oxidation state and catalytic performance through pore chemist. *J.* 262-368, Copyright (2019), with permission from Elsevier.

Figure 7 (a) Schematic representation of the synthetic is a chod used to produce Ag NPs inside mesoporous thin films functionalized with phospherate groups and their chemical structure. **(b)** UV-vis spectra, **(c)** optical images and **(d)** TEM in rages of selected samples, as indicated in the labels.

Adapted from *Microporous Mesoporous Mai er.* **2020**, *295* Bordoni, A. V.; Zalduendo, M. M.; Escobar, A.; Amenitsch, H.; Moya, S. E., 'ngelomé, P. C., Phosphonate mesoporous hybrid thin films: Synthesis of organophosp: osilane by thiol-ene click chemistry and applications in formation and stabilization of silver nanc, articles. 109958, Copyright (2020), with permission com Elsevier.

Figure 8 UV-vis spectra of different composite materia. (indicated in the labels) as a function of aging time. Changes are more noticeable in the composite sample that does not include phosphonat + grc ups.

Adapted from *Microporous Mesoporous Mate* **2020**, 295 Bordoni, A. V.; Zalduendo, M. M.; Escobar, A.; Amenitsch, H.; Moya, S. E, Ar geicmé, P. C., Phosphonate mesoporous hybrid thin films: Synthesis of organophosphosic e by thiol-ene click chemistry and applications in formation and stabilization of silver nonopanicles. 109958, Copyright (2020), with permission from Elsevier.

CRediT author statement

M. Mercedes Zalduendo: In respigation, Data Curation, Writing- Original draft preparation **Paula Y. Steinberg:** Investigation, Data Curation, Writing- Original draft preparation, **Rusbel Coneo-Rodríguez:** Investigation, Data Curation, Writing- Original draft preparation, **Andrea V. Bordoni:** Conceptualization, Data Curation, Investigation, Funding acquisition, Writing- Original draft preparation, **Peula C. Angelomé:** Conceptualization, Data Curation, Project administration, Funding acquisition, Writing- Reviewing and Editing.

Acknowledgments

This work has been funded by CONICET (PIP 2012-00044CO), ANPCyT (PICT 2012-0111, 2015-0351, 2017-1109). The authors acknowledge the CERIC-ERIC consortium for the access to experimental facilities at the Elettra synchrotron (Trieste) and the financial support. We thank Gonzalo Zbihlei for TEM measurements, and Emilia B. Halac for access to Raman equipment. P. Y. S. and M. M. Z. acknowledge CONICET for their doctoral scholarships and R.C.R. for its postdoctoral fellowship.

Declaration of interests

☑ The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
 □ The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

References

Innocenzi, P.; Malfatti, L., Mesoporous thin films: properties and applications. *Chem. Soc. Rev.* **2013**, *42* (9), 4198-4216, 10.1039/c3cs35377j.

Angelomé, P. C.; Liz-Marzán, L. M., Synthesis and applications of mesoporous nanocomposites containing metal nanoparticles. *J. Sol-Gel Sci. Technol.* **2014**, *70* (2), 180-190, 10.1007/s10971-013-3238-8.

Angelomé, P. C.; Fuertes, M. C., Metal Nanoparticles-Mesoporcus Oxide Nanocomposite Thin Films. In *Handbook of Sol-Gel Science and Technology*, Kleip, L., Aparicio, M.; Jitianu, A., Eds. Springer International Publishing: Cham, 2018; pp 2507-2533

Zalduendo, M. M.; Langer, J.; Giner-Casares, J. J.; Harah, L. B.; Soler-Illia, G. J. A. A.; Liz-Marzán, L. M.; Angelomé, P. C., Au Nanoparticles–Mespocrous TiO2 Thin Films Composites as SERS Sensors: A Systematic Performance Analysis. *Phys. Chem. C* **2018**, *122* (24), 13095-13105, 10.1021/acs.jpcc.8b01444.

Steinberg, P. Y.; Zalduendo, M. M.; Gimériez G.: Soler-Illia, G. J. A. A.; Angelomé, P. C., TiO2 mesoporous thin films architecture a. a .ool to control Au nanoparticles growth and sensing capabilities. *Phys. Chem. Chem. Phys.* **2019**, *21*, 10347-10356, 10.1039/C9CP01896D.

Coneo Rodríguez, R.; Troiani, H.; Moy, S. E.; Bruno, M. M.; Angelomé, P. C., Bimetallic Ag-Au Nanoparticles Inside Mesoporous T tenia Thin Films: Synthesis by Photoreduction and Galvanic Replacement, and Cata¹ (tic , ctivity. *Eur. J. Inorg. Chem.* **2020**, (6), 568-574, 10.1002/ejic.201901186.

Coneo Rodríguez, R.; Yate, '.; Coy, E.; Martínez-Villacorta, Á. M.; Bordoni, A. V.; Moya, S.; Angelomé, P. C., Copper na oparticles synthesis in hybrid mesoporous thin films: Controlling oxidation state and caply in performance through pore chemistry. *Appl. Surf. Sci.* **2019**, *471*, 862-868, 10.1016/j.apsus.2018.12.068.

Bordoni, A. V.; Zalduendo, M. M.; Escobar, A.; Amenitsch, H.; Moya, S. E.; Angelomé, P. C., Phosphonate mesoporous hybrid thin films: Synthesis of organophosphosilane by thiol-ene click chemistry and applications in formation and stabilization of silver nanoparticles. *Microporous Mesoporous Mater.* **2020**, *295*, 109958, 10.1016/j.micromeso.2019.109958.