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A B S T R A C T   

A useful QSAR model was developed to predict the antichagas activity for 760 fenarimol analogues obtained 
from the ChEMBL database, which are considered as very active and selective inhibitors of Trypanosoma cruzi. 
Various molecular descriptor programs provided a large number of 67,116 non-conformational molecular de-
scriptors that were analyzed through multivariable linear regressions and the Replacement Method technique. 
Through THESE descriptors, the quantification of the structure–activity relationship achieves an acceptable 
statistical quality for compounds having experimental activity. The present work provides a prospective guide for 
predicting the inhibitory activity against T. cruzi of structurally-related fenarimol compounds.   

Introduction 

Chagas disease is endemic in Latin America affecting an estimated 8 
million people [1] and is also present in Europe and in other developed 
countries such as Japan and USA [2,3]. The causative agent of Chagas is 
the protozoan parasite Trypanosoma cruzi (T. cruzi), which may infect 
humans as well as other mammals [4]. The parasite is vectored by 
several triatomine species and is also transmitted congenitally, through 
blood transfusions and organ transplantation from infected donors, and 
also by oral ingestion of contaminated food. The disease evolves from an 
initial acute stage to a chronic illness with high mortality [5]. The 
progress to the chronic phase takes years and occurs as parasites travel 
from the bloodstream to the heart and/or the gastrointestinal tract. Once 
there, the parasite affects their muscular cells causing extensive organ 
damage, being cardiac involvements most frequent and severe than 
gastrointestinal involvements. 

People suffering Chagas disease need continuous medical therapy 
and require specialized and intensive healthcare [6]. Only two drugs are 
currently available for the treatment of T. cruzi infection: Benznidazole 
and Nifurtimox. Benznidazole is a nitroimidazole that is effective when 
administered during the acute phase of the disease [7]. It is generally 
well tolerated, without dangerous side effects, but its clinical efficacy in 
patients with chronic illness is limited and is contraindicated during 
pregnancy [8]. On the other hand, Nifurtimox is a less used drug because 
it causes severe side effects, making difficult to complete a continuous 
treatment and therefore, increasing the development of drug resistance 
[9]. 

It is clear that there is an urgent need for safe and efficacious new 
drug treatments for Chagas disease. Because it is a complex, long lasting 
disease that goes through different phases affecting different organs, it is 
very difficult, expensive and time consuming to find new potential 
candidates through experimental research only. The current access to a 
great diversity of libraries and data from pharmaceutical companies and 
the public domain offers a good opportunity for in silico methods to play 
a crucial role in the discovery of new strategies to prevent and treat 
Chagas. Recently, Andricopulo et al. published a QSAR study on 363 
structurally diverse compounds with inhibitory activity towards T. cruzi 
through a artificial neural networks (ANNs) analysis [10]. The models 
found exhibited a good predictive ability for the test set and were used to 
delineate the physicochemical profile of 50 fragments that they found 
had a positive effect on the biological activity of the studied compounds. 

In the last years, several azole-derived antifungals have been pro-
posed as potential new drugs for treatment of T. cruzi infections. Clinical 
trials for Posaconazole and Ravuconazole demonstrate that those anti-
fungals are safe but have poor sustained efficacy after one year of the 
end of treatment [11,12]. Fenarimol (Fig. 1), a nontoxic fungicide, is 
identified as a T. cruzi inhibitor with IC50 of 350 nM by Keenan and co- 
workers [13–16]. Several Fenarimol analogues are also proposed as 
potential inhibitors with low nM IC50 in T. cruzi whole cell in vitro assay. 
Searching for new compounds with increased inhibitory activity with 
the fenarimol basic structure, Costa et al. [17] propose a QSAR model 
using the 32 fenarimol derivatives reported in reference [13] and 70 
quantum chemical descriptors. Based on their four descriptors model, 
ten new compounds with high predicted inhibitory activity were 
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proposed in this work. In other study, de Souza et al. [18] performed a 
2D and 3D QSAR study on 77 compounds with molecular structures 
similar to those proposed by Keenan [13,16]. In this study, all the 
compounds included in the data set posses three aromatic rings, with 
variations in the substituents and also in some of the aromatic sub-
structures. Both 2D and 3D QSAR models proposed showed statistically 
good performance with good correlation ability, and the authors 
conclude by analyzing the 2D model that all three aromatic rings are 
essential for conserving the inhibitory activity of the type of compounds 
studied. Just recently, Cotuá et al. published a QSAR study using 52 
fenarimol compounds [19] also based on Keenan’s work [15]. De-
rivatives of piperazine analogues of fenarimol with amide, sulfonamide, 
aromatic, carbamate, and carbonate substituents were used to construct 
a three descriptors QSAR model with good predictive performance. 

Since Chagas is a disease associated with poverty, low-cost drugs are 
needed and the first step to achieve rapid and inexpensive development 
of a new drug is to theoretically test potential candidates. The Drugs for 
Neglected Diseases (DNDi) initiative has selected a large number of 
fenarimol derivatives as inhibitors of T. cruzi and these results were 
made public in the ChEMBL database [20] to be used in QSAR research 
intended at enhancing activity against T. cruzi and develop compounds 
suitable for in vivo characterization. Given the great potential of 
fenarimol compounds to effectively treat Chagas disease, with the aim of 
perform a comprehensive QSAR analysis that includes all the molecular 
information available in the literature, we performed a QSAR study on a 
great number of such analogues obtained from the ChEMBL database. In 
order to find a simple and easy-to-interpret QSAR model, only 
conformation-independent molecular descriptors were considered. The 
programs used to calculate the molecular descriptors were selected ac-
cording to the Organization for Economic Cooperation and Development 
(OECD) criteria (calculation accuracy, ease of access, free availability 
and recognition by the scientific community) [21,22]. 

Materials and methods 

The antichagas activity of a large set of fenarimol analogues was 
recopilated from the ChEMBL database version 23 [20]. After curation 
of the data to remove duplicate compounds and compounds with 
missing IC90 values, a molecular data set consisting of 760 active and 
selective inhibitors of T. cruzi with their corresponding bioactivity 
values (CHEMBL1863512) was obtained. These compounds are ana-
logues of fenarimol, a plant fungicide studied by Keeman and coworkers 
[13–16]. In order to afford a more uniform data distribution the IC90 
values were converted to decimal logarithmic units. The logIC90 values 
of the compounds range in the interval (0.47, 5.00). Specific details of 
the studied compounds are provided in the Supplementary Material 
(Table 1S). 

First of all, the molecules were written in SMILES notation and af-
terwards non-conformational molecular descriptors were calculated for 

considering the most important structural features affecting the inhibi-
tory activity. The molecular descriptor programs were chosen as rec-
ommended by the OECD [22]. The Pharmaceutical Data Exploration 
Laboratory (PaDEL)-Descriptor (v. 2.20) [23] calculated 17,536 0D-2D 
molecular descriptors and fingerprint types, with molecular structures 
in MDL mol (V2000) format and selected options: standardize nitro 
groups and detect aromaticity. Chemical file format conversion into 
MDL sdf format was performed with Open Babel for Windows. Mold2 

[24] calculated 777 1D-2D molecular descriptors. The ISIDA/Frag-
mentor [25] counting molecular substructural fragments ranging from 1 
to 6 atoms length, led to 1,084 constitutional descriptors. Finally, Mo-
lecular Descriptors from Local Vertex Invariants (MD-LOVIs) (v. 1.0) 
[26] was applied to compute 48,400 molecular descriptors obtained 
from local vertex invariants (LOVIs). The selected options used in this 
program were: total (global) and local (fragment-type) indexes, with 
atom labels: chemical properties - atomic number, van der Waals vol-
ume, polarizability, atomic mass, covalent radius, Pauling’s electro-
negativity; physical properties – total polar surface area, AlogP, molar 
refraction, charge; vertex degree (vd) – valence degree, eccentric con-
nectivity, electrotopological state, Kupchik’s vd, intrinsic state, bond vd, 
Li’s vd, Hu-Xu’s vd, Alikhanidi vd, Ivanciuc vd, and distance counts. For 
the local indices, the following local types are kept: heteroatoms, C- 
atoms, halogens, H-atoms acceptor, H-atoms donor, methyl group, un-
saturated bonds, aliphatic atoms, aromatic atoms, group_lagk (topo-
logical distances 1–8, with all the above mentioned group types HT-RA, 
cutoff 1). No standardized invariants were used. The Aggregation op-
erators chosen were: Norms (metrics) – euclidean distance; Means (1st 
moment) – arithmetic mean; Statistics – standard deviation; Classical 
algorithms – autocorrelation, gravitational, Kier-Hall connectivity, total 
sum k lags, total information content, mean information content, stan-
dardized information content, electrotopological state, Ivanciuc Balaban 
type. 

Among the computed 67,797 total descriptors, highly correlated 
descriptor pairs were identified and the most interpretable variable from 
each pair was kept. Moreover, descriptors with scarce information 
content and descriptors with missing values were removed, thus leading 
to a final reduced pool of 40,207 molecular descriptors. 

The molecular set of 760 antichagasic agents was partitioned into 
training (train), validation (val), and test sets in similar proportions 
(about 33%) by means of the Balanced Subsets Method (BSM) (Aranda 
et al., 2017). The training set (253 compounds) is used for model cali-
bration, the validation set for partially assessing the model’s predictive 
capability (254 compounds), and a test set for assessing the true pre-
dictive power of the obtained QSAR (253 compounds). The BSM 
approach is based on k-Means Cluster Analysis (k-MCA) [27], and is a 
sampling procedure developed by our group to ensure that balanced 
(representative) subsets are derived from the dataset, in such a way that 
similar structure–activity relationships are established among the three 
sets. 

Multivariable linear regression models were established through the 
Replacement Method (RM) variable subset selection technique [28]. The 
best molecular descriptors were searched with RM among the 40,208 
available ones (including the best flexible descriptor), that lead to the 
smallest value for the root mean square error (RMSE) or the standard 
deviation (S) in the training set. Apart from using a test set, the model 
was further validated by means of theoretical validation parameters as 
proposed in the literature [29–31]. All the Octave programmed algo-
rithms [32] used in the present study have been developed in-house and 
are available upon request. 

Results and discussion 

The best linear regression model found by RM through the analysis of 
40,208 molecular descriptors is represented by Eq. (1). In the first place, 
this model was searched by decreasing RMSE in the training set, and in 
the second place by also decreasing RMSE in the validation set, in such a 

Fig. 1. Fenarimol.  
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way that both RMSEs achieve close values. The test set is never seen 
during the model building and the RMSE for this set is calculated only 
after the model is established. Seven non-conformational descriptors 
(with meanings described below) are able to predict the inhibitory 
concentration, as expressed by Eq. (1) together with the statistical 
quality achieved:  

Ntrain = 253, R2
train = 0.74, RMSEtrain = 0.44, R2

ijmax = 0.32  

R2
loo = 0.72, RMSEloo = 0.46, R2

rand = 0.03, RMSErand

= 0.86 (500, 000 cases)

Nval = 254, R2
val = 0.56, RMSEval = 0.52  

Ntest = 253, R2
test = 0.49, RMSEtest = 0.52 

The presence of seven molecular descriptors is necessary in Eq. (1) to 
predict the antichagas activity, which is justified through the maximum 
correlation coefficient between descriptor pairs of R2

ijmax = 0.32 and the 
maximum variance inflation factor VIFmax = 1.24 [33]. These results 
suggest that no serious structural information overlapping exists be-
tween the descriptors, and that multicollinearity among them is absent. 
Table 1 includes the squared correlation matrix for this QSAR model. 

In Eq. (1), the signs of both the regression coefficients and the nu-
merical descriptors determine the magnitude of the predicted activity. 
The lower is the predicted IC90 arising from these contributions, the 
higher is the predicted antichagas activity for a given fenarimol com-
pound. Table 1S also includes the logIC90 predictions for the 760 
fenarimols, indicating the molecules that take part of the validation and 
test sets according to the BSM technique. Table 2S provides the nu-
merical values for the molecular descriptors. 

A graphical representation of Eq. (1) is given by Fig. 2A; only three 
outliers out of 253 training set compounds have high residuals, greater 
than three times Strain (o3). The seven chosen descriptors tend to provide 
a straight line trend, capturing the general biochemical behavior in the 
structurally diverse data set. 

The proposed QSAR model acceptably predicts the biological activity 
for 253 fenarimols belonging to the test set not considered during the 
model development (RMSEtest = 0.52). The reliability of these QSAR 
predictions are estimated through the model’s applicability domain 
(AD), which defines the molecules that are not predicted as extrapola-
tions [34]. Fig. 2B plots the standardized residual of Eq. (1) as a function 
of the leverage value, revealing that most of the test set compounds 

belong to the AD, with leverages falling under the warning leverage 
limit of 0.0949. Some test set compounds exceed this warning value, 
although standing close to a training or validation compound. 

The theoretical validation process of the leave-one-out (loo) cross 
validation technique [29] succeeded in predicting one molecule 
excluded at a time from the training set, achieving R2

loo > 0.5 which 

reveals the stability of Eq. (1). The MAE (mean absolute error) based 
criteria [31] achieves a ’moderate’ predictive capacity for this rela-
tionship. In the case of considering the whole test set, MAE(100%) =

Table 1 
Squared correlation matrix for the QSAR model (Eq. (1)). The last column in-
cludes the variance inflation factor for each descriptor.  

Eq.  
(1) 

d1 d2 d3 d4 d5 d6 d7 VIF 

d1  1.00 1.00 
10− 3  

0.01 3.50 
10− 3 

2.50 
10− 4 

1.83 
10− 7 

4.27 
10− 3  

1.00 

d2  1.00  0.01 0.01 2.72 
10− 3 

4.50 
10− 5 

0.04  1.00 

d3    1.00 1.05 
10− 4 

0.32 0.02 9.47 
10− 5  

1.17 

d4    1.00 0.04 0.02 0.07  1.03 
d5     1.00 0.03 0.05  1.24 
d6      1.00 0.10  1.02 
d7       1.00  1.09  

Fig. 2. A. Experimental and QSAR predicted antichagas activity of fenarimol 
analogues. B. Standardized residual as a function of the leverage. 

logIC90 = 0.70 d1 + 0.86 d2 − 0.79 d3 + 3.57 d4 − 0.62 d5 − 1.53 d6 + 0.06 d7 + 5.84 (1)   
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0.41, Q2
F1(100%) = 0.44 and Q2

F2(100%) = 0.43, while omitting 5% of 
the test set (13 compounds having high residuals), MAE(95%) = 0.36, 
Q2

F1(95%) = 0.58 and Q2
F2(95%) = 0.56. 

Finally, it was proven that Eq. (1) does not involve chance correla-
tion through Y-Randomization [30], as R2

rand < R2
train and 

RMSErand > RMSEtrain. In this essay, the activity value was randomized 
(scrambled) for each analyzed case, while maintaining the selected de-
scriptors (the regression coefficients are re-computed). The number of 
tested cases was 1,000,000 and the average R2

rand and RMSErand values 
are reported. 

From the analysis of the seven molecular descriptors appearing in Eq. 
(1), three are constitutional descriptors, d1–d3, while four of them are 
topological indices, d4–d7. Descriptor d1 indicates the presence of the 
atom nearest neighbor pattern C(:C)(:C)(:C), with bond aromaticity 
being denoted by “:” (Pubchem fingerprint number 385). Descriptor d2 
is the presence of the SMART substructure [!#1]c1[cH][cH][cH][cH] 
c1Cl (Klekota-Roth fingerprint number 1583). Descriptor d3 is the 
minimum atom-type E-State > CH–. Descriptor d4 is a total (global) 
descriptor that considers all the substructure contributions, while the 
Hu-Xu’s vertex degree characterizes heteroatoms. The contributions 
from the mean information content are first derived, while the arith-
metic mean is finally used as aggregation operator of these no- 
standardized LOVIs. Descriptor d5 is a local index of the H-atoms 
acceptor, where atoms are differentiated through the Pauling’s elec-
tronegativity and the aggregation operator used is the standard devia-
tion. Descriptor d6 is another local index for the aromatic atoms 
characterized though the Ivanciuc vertex degree, where the standard-
ized information content is the aggregation operator. Descriptor d7 is the 
optimized flexible molecular descriptor based on the number of paths of 
length 3 which are starting in a reference vertex of the structure. 

Analysis of the descriptors shows that aromaticity plays a key role in 
the antichagas activity of the fenarimol analogs. Furthermore, the 
presence of heteroatoms could be an important molecular characteristic 
to consider when designing new potential candidates for drug devel-
opment. Although the chemical interpretation of a constitutional 
descriptor is considered quite direct, the meaning of the selected topo-
logical descriptors remains hidden behind their algebraic definition. 
Nevertheless, both types of descriptors are useful and result important 
for predicting the antichagas activity of fenarimol compounds. 

Conclusions 

A multivariable linear regression QSAR model is able to predict the 
antichagas activity for 760 fenarimol analogues, compounds considered 
as very active and selective inhibitors. Seven descriptors acceptably 
quantify this structure–activity relationship, succeeding in generalizing 
and characterizing the biochemical behavior of the studied structurally 
diverse data set. Now, the derived QSAR can be applied to predict the 
antichagas activity of structurally similar fenarimol derivatives falling 
within the model’s applicability domain. The model can be useful for the 
design of new compounds with potential for the development of novel 
and selective drugs, with improved efficiency for the treatment of cha-
gas disease. 
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