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In the present paper, we are interested in natural quantum
analogues of Richardson varieties in the type A grassmannians.
To be more precise, the objects that we investigate are quantum
analogues of the homogeneous coordinate rings of Richardson
varieties which appear naturally in the theory of quantum groups.
Our point of view, here, is geometric: we are interested in
the regularity properties of these non-commutative varieties, such
as their irreducibility, normality, Cohen–Macaulayness. . . in the
spirit of non-commutative algebraic geometry. A major step in our
approach is to show that these algebras have the structure of an
algebra with a straightening law. From this, it follows that they
degenerate to some quantum analogues of toric varieties.
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Introduction

Let F be a flag variety. As it is well known, the study of F , both from the geometric and topologi-
cal point of view, heavily relies on the study of its Schubert cells and Schubert varieties. For example,
the former give a stratification of F and the latter turn out to provide a nice understanding of the
multiplicative structure of the cohomology ring of F . In this context, it is important to understand
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how Schubert varieties and opposite Schubert varieties intersect. Such intersections are called Richard-
son varieties; they have been extensively studied for the last twenty years.

It is beyond the scope of the present paper to give a complete overview of these studies and we
will restrict ourselves to a short indicative list of works related to our own interests and considera-
tions in the present work. Further references on the subject may be found by the interested reader in
the papers that we quote.

Early works on Richardson varieties include [D] and [R], where fundamental properties are studied,
including their irreducibility. More recently, the extension of standard monomial theory to Richardson
varieties was investigated in [LLit] in connection with some K -theoretic issues. Related results in the
case of the type A grassmannians may be found in [KL]. Further, these varieties were used as central
tools in [BL] in order to pursue the goal of providing a more geometric understanding of standard
monomial theory.

To finish this quick overview, let us mention the paper [M] where the existence of (semi-)toric
degenerations of Richardson varieties is obtained, by means of representation theoretic methods based
on canonical bases.

Beyond the classical case mentioned above, the theory of quantum groups provides natural ana-
logues of Schubert varieties and, more generally, of Richardson varieties. Undoubtedly, the role of
these quantum analogues in the study of quantum groups and quantum homogeneous spaces will
be as central as it is in the classical setting. The objective of the present article is to establish some
fundamental results regarding these objects, in the case where the flag variety into consideration is a
type A grassmannian.

To start with, let us briefly describe quantum Richardson varieties in the type A grassmannian
case. Fix an arbitrary base field k and q ∈ k∗ . Let m,n be integers such that 1 � m � n. Consider
the quantum analogue of the coordinate ring on the affine space of n × m matrices: Oq(Mn,m(k))

and let Πm,n ⊆ Nm be the set of m-tuples (i1, . . . , im) of integers such that 1 � i1 < · · · < im � n
equipped with the obvious product order inherited from Nm . To any element I ∈ Πm,n , we may as-
sociate the quantum minor of Oq(Mn,m(k)) built on the rows with index in I and columns 1 to m
of the generic matrix of Oq(Mn,m(k)), denoted by [I]. The subalgebra, Oq(Gm,n(k)), of Oq(Mn,m(k))

generated by these quantum minors is a natural analogue of the homogeneous coordinate ring of
the grassmannian with respect to the Plücker embedding. It is then easy to associate to any ele-
ment I ∈ Πm,n a quantum Schubert and quantum opposite Schubert variety by considering the factor
algebras Oq(Gm,n(k))/〈[K ], K ∈ Πm,n, K � I〉 and Oq(Gm,n(k))/〈[K ], K ∈ Πm,n, K � I〉, respectively.
A natural analogue of the Richardson variety associated to a pair (I, J ) of elements of Πm,n being then
defined as the factor algebra Oq(Gm,n(k))/〈[K ], K ∈ Πm,n, K /∈ [I, J ]〉. (Notice the abuse of language:
these algebras are actually quantum analogues of homogeneous coordinate rings rather than quantum
analogues of varieties.) For the convenience of the reader, we have included a short Appendix A at the
end of the paper where classical Richardson varieties in type A grassmannians are described in some
details. The material in Appendix A also provides a justification of the above definition of quantum
Richardson variety.

It is worth noting, at this stage, that quantum analogues of Schubert and Richardson varieties in
partial flag varieties attached to simple Lie algebras of any type may be defined in a natural way (see
[LRes] for the case of Schubert varieties). This requires, however, a representation theoretic approach
which forces to work under the hypothesis that q is not a root of unity. The interested reader may
consult the paper [Y1] by M. Yakimov for such an approach.

In contrast, in the present paper, we adopt a method which allows us to work over any base
field and with no assumption on the deformation parameter. It is inspired by the standard mono-
mial theory which originates in works of De Concini, Eisenbud, Procesi, Lakshmibai, in the classical
setting, and has its roots in early investigations by Hodge on grassmannians. The interested reader
may consult, in particular, the following references: [DEP,GL,LRag]. Indeed, we first show that quan-
tum analogues of Richardson varieties may be endowed with the structure of a (symmetric quantum)
algebra with a straightening law. That is, we exhibit a standard monomial basis for this algebra, built
from a finite ordered set of generators and show that straightening and commutation relations satis-
fying certain very particular combinatorial constraints hold among these generators. We then deduce
that quantum analogues of Richardson varieties may be filtered in such a way that their associated
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graded ring is a tractable quantum analogue of coordinate ring of a toric variety. Hence proving that
quantum analogues of Richardson varieties degenerate to quantum analogues of toric varieties. We
then derive from this important results of quantum analogues of Richardon varieties such as their
irreducibility and Cohen–Macaulayness in the sense of Artin and Shelter.

Actually, we work in a more general context: we first introduce the class of symmetric quantum
algebras with a straightening law and then isolate a subclass, the objects of which can be degenerated
to quantum toric rings. We then show that this machinery applies to quantum Richardson varieties.
Needless to say, since we are working in the non-commutative setting, the aforementioned commu-
tation relations are a main issue in the present work. Actually, these relations are taken into account
in the algebra with a straightening law structure.

We finish this Introduction by stressing two main remarks.
First, similar results have been obtained in [LR1] and [LR2] in the case of quantum analogues

of Schubert varieties (which are special cases of quantum Richardson varieties). However, to deal
with the case of Richardson varieties is significantly harder. For example, to prove that quantum
analogues of Richardson varieties are integral domains already requires the full strength of the results
in the present paper. Namely, the fact that quantum analogues of Richardson varieties degenerate
to quantum analogues of toric varieties. (A much more elementary proof of the fact that quantum
analogues of Schubert varieties are integral domains is given in [LR2].)

Second, quantum Richardson varieties are investigated here from the point of view of non-
commutative algebraic geometry. However, the results of [LR1] and [LR2] concerning the special case
of quantum Schubert varieties have been used in [LLR] to study the latter from a different point of
view. Namely, the non-commutative structure on quantum flag varieties actually comes from a Pois-
son structure on the corresponding classical flag variety, in the spirit of deformation theory. Recent
works have shed light on the connection between certain torus-invariant prime ideals in quantum
flag varieties, symplectic leaves of the corresponding classical objects and certain cell decompositions
in their totally positive counterpart. The reader may also consult the references [GLL1,GLL2,Y2] and the
survey article [LL] for more details on this point of view. We expect quantum Richardson varieties
will be important tools to further study these connections.

The paper is organised as follows. In Section 1, basic results that we need on distributive
lattices are recalled. The material in this section is well known. We have summarised these re-
sults for the convenience of the reader. In Section 2 a class of quantum algebras associated with
any distributive lattice is introduced. These are quotients of quantum affine spaces by binomials
defined on the basis of the attached lattice. They are natural quantum analogues of coordinate
rings of toric varieties. In Section 3, we introduce the notion of symmetric quantum graded alge-
bra with a straightening law (symmetric quantum graded A.S.L., for short). It is a subclass of the
class of quantum graded algebras with a straightening law defined in [LR1, Def. 1.1.1] designed in
order to show that the quantum Richardson varieties enjoy such an A.S.L. structure. A subclass
of the class of symmetric quantum graded A.S.L. is then defined, in Section 4, by means of an
extra condition (C) which is imposed. This class includes the quantum toric varieties introduced
in Section 2 which are particularly simple examples. Actually much more is true: the quantum
toric varieties are “essential” such examples in the sense that any algebra in this class degenerate
to such an algebra. In Section 5 we reach our original motivation. We first show that quantum
grassmannians are symmetric quantum graded A.S.L. satisfying condition (C). It follows that the
same holds for quantum Richardson varieties. Several important properties of the latter are then
derived.

Notation and conventions. Let A be a ring, Π an ordered set and ι : Π −→ A a map. To any fi-
nite increasing sequence α1 � · · · � αt , of length t ∈ N∗ of elements of Π we associate the element
ι(α1) . . . ι(αt), which we call the standard monomial of A associated to the sequence α1 � · · · � αt .
We adopt the convention that there exists a unique increasing sequence of elements of Π of length
0 to which we associate the standard monomial 1A . Hence, we have the family of standard mono-
mials on Π , that we will denote smΠ(A). If any two distinct finite increasing sequences of elements
of Π give rise to distinct standard monomials, there is a well-defined notion of length for standard
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monomials. Namely, in this case, we define the length of a standard monomial as the length of its
associated sequence.

Throughout, k denotes a field. If S is a finite set, its cardinality will be denoted |S|.

1. Reminder on distributive lattices

For the convenience of the reader, we recall well-known facts on distributive lattices that we will
use all along the text. For this exposition, we essentially follow the paragraphs 3.1 to 3.4 of [S].
However, the interested reader may also refer to the foundational book [B] of G. Birkhoff.

Ordered sets. By an ordered set, we will always mean a set endowed with a partial ordering. Let
(Π,�) be an ordered set. We denote by inc(Π × Π) the subset of Π × Π of elements (x, y) such
that x and y are incomparable. The interval associated to a pair (α,β) of elements of Π is defined by
[α,β] = {γ ∈ Π | α � γ � β}. Clearly, it is non-empty if and only if α � β . A subset Ω of Π will be
called a Π -ideal (resp. Πopp-ideal) provided it satisfies the following condition: for all ω ∈ Ω and all
π ∈ Π , if π �ω, then π ∈ Ω (resp. for all ω ∈ Ω and all π ∈ Π , if π �ω, then π ∈ Ω). Let (Π,�) be
a finite ordered set. For any x ∈ Π , the rank of x, denoted rk(x), is defined to be the greatest integer
t such that there exists a strictly increasing sequence x0 < · · · < xt = x in Π . Further, the rank of Π ,
denoted rk(Π), is defined by rk(Π) = max{rk(x), x ∈ Π}.

Distributive lattices. A lattice is an ordered set (Π,�) satisfying the following condition: for any pair
(x, y) of elements of Π , there exists two elements x ∧ y and x ∨ y in Π such that x ∧ y � x, y � x ∨ y,
and for all z ∈ Π , if z � x, y (resp. x, y � z), z � x ∧ y (resp. x ∨ y � z); clearly, such elements are
necessarily unique. Hence, if the ordered set (Π,�) is a lattice, we are given two maps

∧ : Π × Π −→ Π

(x, y) 
−→ x ∧ y
and

∨ : Π × Π −→ Π

(x, y) 
−→ x ∨ y.

A finite lattice is a lattice whose underlying set is finite. Clearly, a finite lattice has a unique minimal
and a unique maximal element. The lattice (Π,�) is said to be distributive if it satisfies the follow-
ing property: for all x, y, z ∈ Π , x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) or, equivalently, the property: for all
x, y, z ∈ Π , x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z). A sub-lattice of (Π,�) is a subset Π ′ of Π endowed with
the restriction of � which is stable under the maps ∧ and ∨. A morphism of lattices is a morphism
of ordered sets which commutes (in the obvious way) with the join and meet maps of each lattice.

Let Π be a lattice. An element z ∈ Π is called join-irreducible provided it is not minimal and
satisfies the following condition: if x, y are elements of Π such that z = x ∨ y, then either z = x, or
z = y. We will denote by irr(Π) the set of join-irreducible elements of Π and by irr+(Π) the set of
elements of Π which are either join-irreducible or minimal. Then, we have the following celebrated
structure theorem due to Birkhoff. The reader is refered to [B, Theorem 3, p. 59] or [S, Section 3.4]
for a proof of this statement.

Theorem 1.1 (Birkhoff). Let Π be a finite distributive lattice and let Π0 = irr(Π). Then, Π is isomorphic, as
a distributive lattice, to J (Π0), where J (Π0) is the set of Π0-ideals of Π0 , ordered by inclusion. Further, the
rank of Π coincides with the cardinality of Π0 .

Finite chain products. Clearly, for all d ∈ N∗ , Nd endowed with the obvious product order, is a
distributive lattice where, for i = (i1, . . . , id) and j = ( j1, . . . , jd) in Nd , i ∧ j = (min{i1, j1}, . . . ,
min{id, jd}) and i ∨ j = (max{i1, j1}, . . . ,max{id, jd}).

The following example will be of crucial importance. For any integer p � 2, we let Cp = {1, . . . , p}.
Now, consider d ∈ N∗ and d integers n1, . . . ,nd � 2. The subset Cn1 × · · · × Cnd of Nd is clearly a (dis-
tributive) sub-lattice of Nd . Such distributive lattices will be called finite chain products. The following
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construction, associated to any finite chain product will be of central importance in the sequel. Fix
d ∈N∗ , integers n1, . . . ,nd � 2 and put N = 2 max{n1, . . . ,nd} + 1. We consider the map

ω : Cn1 × · · · × Cnd −→ N
(i1, . . . , id) 
−→ ∑d

t=1 it Nd−t .

Notice that, by definition, ω assigns to any element I = (i1, . . . , id) ∈ Cn1 × · · · × Cnd the integer for
which the coefficients of the N-adic expansion are the entries of I . Clearly, ω is strictly increasing
and, in particular, injective.

Lemma 1.3 records an important property of ω that we will need latter on. To state it, we need the
following notation and terminology. Let d be a positive integer and I, J be two elements of Nd . We
denote by I � J the union of I and J as multisets. That is, I � J records the elements of N appearing
as coordinates in I or J together with the sum of their number of occurrences in I and their number
of occurrences in J .

Further, an element I = (i1, . . . , id) ∈ Nd will be termed increasing if i1 � · · · � id .

Lemma 1.2. Let d be a positive integer and s an integer such that 1 � s � d. Let I = (it)1�t�d, J = ( jt)1�t�d,
K = (kt)1�t�d, L = (lt)1�t�d be increasing elements of Nd such that K � I � J � L and K � L = I � J . The
following holds: if jt = lt for all 1 � t < s, then it = kt for all 1 � t � s.

Proof. The proof is by finite induction on s. When s = 1, the hypothesis is empty and we must prove
that i1 = k1. Suppose, to the contrary, that k1 < i1. Then, due to the fact that I and J are increasing
and that i1 � j1, no entry in I and J may equal k1, contradicting K � L = I � J . Now, let s be an integer
such that 2 � s � d and suppose the result is true for all integers up to s − 1. Suppose that jt = lt
for 1 � t < s. Then, by the induction hypothesis, we have that it = kt for all 1 � t � s − 1. Suppose
now that ks < is . Since I and J are increasing elements and is � js , the only possible occurrences of
ks in I (resp. J ) are among i1, . . . , is−1 (resp. j1, . . . , js−1). But, since (k1, . . . ,ks−1) = (i1, . . . , is−1),
and (l1, . . . , ls−1) = ( j1, . . . , js−1), this violates the identity K � L = I � J . Hence, ks = is and the result
holds for s. �
Lemma 1.3. Let d, n1, . . . ,nd and ω be as above. Consider increasing elements I, J , K , L of Cn1 × · · · × Cnd

such that K < I, J < L and K � L = I � J , then:

(i) ω(I) + ω( J ) �ω(K ) + ω(L);
(ii) ω(I) + ω( J ) = ω(K ) + ω(L) iff K = I ∧ J and L = I ∨ J .

Proof. We proceed in two steps.
1. Suppose, first, that K < I � J < L. Since J < L, there is an integer s, 1 � s � d, such that jt = lt

for 1 � t < s and js < ls . But then, by Lemma 1.2, we have it = kt for all 1 � t � s. It follows that
it + jt = kt + lt for 1 � t < s and is + js < ks + ls . On the other hand, by the choice of N ,

ω(I) + ω( J ) =
d∑

t=1

(it + jt)Nd−t and ω(K ) + ω(L) =
d∑

t=1

(kt + lt)Nd−t

and these are the N-adic expansions of ω(I) + ω( J ) and ω(K ) + ω(L), respectively. It follows at once
that ω(I) + ω( J ) < ω(K ) + ω(L).

2. We get back to the hypothesis of the lemma’s statement. We have K � I ∧ J � I , J � I ∨ J � L.
Since K � L = I � J , we have either K < I ∧ J � I , J � I ∨ J < L, or K = I ∧ J � I , J � I ∨ J = L. In
the first case, point 1 above shows that ω(I) + ω( J ) = ω(I ∧ J ) + ω(I ∨ J ) < ω(K ) + ω(L), while in
the second case, we clearly have ω(I) + ω( J ) = ω(I ∧ J ) + ω(I ∨ J ) = ω(K ) + ω(L). This proves the
claim. �
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We conclude this section by the following definition, to be used latter in the text.

Definition 1.4. Let (Π,�) be a finite ordered set which is a distributive lattice. A realisation of (Π,�)

in a finite chain product is a datum (d;n1, . . . ,nd; ι) where d ∈ N∗ , n1, . . . ,nd ∈ N \ {0,1} and ι is an
injective morphism of lattices from Π to Cn1 × · · · × Cnd .

We note, in passing, that any finite distributive lattice admits a realisation in a finite chain product.
This is an easy consequence of Theorem 1.1. Indeed, let Π be a finite distributive lattice, and put Π0 =
irr(Π). Then, Birkhoff’s theorem yields an isomorphism of lattices Π ∼= J (Π0) (in the above notation).
On the other hand, the ordered set (P(Π0),⊆) of all subsets of Π0 is a distributive lattice in which
J (Π0) naturally embeds. It remains to notice that (P(Π0),⊆) and C|Π0|

2 are isomorphic as distributive
lattices. Indeed, composing all these lattice morphisms provides us with a lattice embedding of Π in
C|Π0|

2 .

2. A class of quantum toric algebras

In the present section, we introduce a class of algebras associated to the datum consisting of a
distributive lattice Π and two maps q : Π × Π −→ k∗ and c : inc(Π × Π) −→ k∗ .

These algebras will turn out (see Sections 4 and 5) to be natural degenerations of quantum ana-
logues of Richardson varieties. Further, we investigate their basic properties and, notably, we show
that under some hypothesis they are integral domains. These results will turn out to be crucial later
in the paper to derive properties of quantum Richardson varieties.

Let (Π,�) be a finite ordered set which is a distributive lattice. Suppose we are given maps

q : Π × Π −→ k∗
(α,β) 
−→ qα,β

and
c : inc(Π × Π) −→ k∗

(α,β) 
−→ cα,β .

To the data consisting of (Π,�), q and c, we associate the k-algebra, denoted AΠ,q,c , with generators
Xα , α ∈ Π , and relations:

Xα Xβ = qα,β Xβ Xα, ∀(α,β) ∈ Π × Π,

and

Xα Xβ = cα,β Xα∧β Xα∨β, ∀(α,β) ∈ inc(Π × Π).

It is clear that AΠ,q,c is endowed an N-grading where canonical generators all have degree one. It
follows that the map Π −→AΠ,q,c , α 
→ Xα , is injective.

Remark 2.1. Let Π , q and c be as above. Further, assume that standard monomials on Π are linearly
independent elements of the k-vector space AΠ,q,c . Then, AΠ,q,c , endowed with its natural grading, is
a quantum graded A.S.L. on (Π,�) in the sense of [LR1, Def. 1.1.1]. In particular, standard monomials
on Π form a basis of the k-vector space AΠ,q,c (see [LR1, Prop. 1.1.4]).

Remark 2.2. Let Π , q and c be as above. Further, assume that standard monomials on Π are linearly
independent elements of the k-vector space AΠ,q,c (in particular, they must be non-zero).

(i) Let (α,β) ∈ Π × Π . Then, clearly, Xα Xβ is the product of some standard monomial by a non-
zero scalar. It follows that Xα Xβ �= 0.

(ii) Let α ∈ Π . We have the relation Xα Xα = qαα Xα Xα , so that qαα = 1. Further, let (α,β) ∈
Π × Π , we have the relation Xα Xβ = qαβ Xβ Xα = qαβqβα Xα Xβ . It follows that qαβqβα = 1.

(iii) Let (α,β) ∈ inc(Π ×Π). We have the relation Xα Xβ = cαβ Xα∧β Xα∨β and qβα Xα Xβ = Xβ Xα =
cβα Xα∧β Xα∨β . Hence, arguing as above, we get cαβ = qαβcβα .
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Example 2.3. In the above notation, we may consider the case where the maps q and c are con-
stant, equal to 1. In this case, putting q = 1 and c = 1, we get the algebra AΠ,1,1 which is just
the quotient of the (commutative) polynomial ring in the indeterminates {Xα,α ∈ Π} by the ideal
〈Xα Xβ − Xα∧β Xα∨β, (α,β) ∈ inc(Π × Π)〉. This ring has been extensively studied. It has been proved
that it is a (quantum) graded algebra with a straightening law. Hence standard monomials on Π form
a k-basis of AΠ,1,1 . Further, AΠ,1,1 is an integral domain. All the relevant details may be found in
Hibi’s original paper; see [H, p. 100].

Our next aim is to show that AΠ,q,c is an integral domain under the hypothesis that standard
monomials are linearly independent. For this, we need to introduce a kind of universal version of
AΠ,q,c , denoted AΠ , designed in such a way that (under convenient hypotheses), the algebras AΠ,q,c
be quotients of AΠ .

Let Π be a finite ordered set. Consider the free k-algebra, FΠ , on the set

SΠ = {Xα,α ∈ Π} ∪ {
Q αβ, (α,β) ∈ Π × Π

} ∪ {
Cαβ, (α,β) ∈ inc(Π × Π)

}
.

There is an N-grading on FΠ for which elements of {Xα,α ∈ Π} all have degree 1 and elements of
{Q αβ, (α,β) ∈ Π × Π} ∪ {Cαβ, (α,β) ∈ inc(Π × Π)} all have degree zero. Now, consider the ideal IΠ
of FΠ generated by the following elements:

(i) Q αβ Q βα − 1, (α,β) ∈ Π × Π ;
(ii) Cαβ = Q αβ Cβα , (α,β) ∈ inc(Π × Π);

(iii) Q αβa − aQ αβ , (α,β) ∈ Π × Π , a ∈ SΠ ;
(iv) Cαβa − aCαβ , (α,β) ∈ inc(Π × Π), a ∈ SΠ ;
(v) Xα Xβ − Q αβ Xβ Xα , (α,β) ∈ Π × Π ;

(vi) Xα Xβ − Cαβ Xα∧β Xα∨β , (α,β) ∈ inc(Π × Π).

We let

AΠ = FΠ/IΠ.

Clearly, IΠ is generated by homogeneous elements of FΠ , so that AΠ inherits from FΠ an N-grading.
Slightly abusing notation, we still denote by Xα , Cαβ , . . . the images of the corresponding elements
of FΠ under the canonical surjection FΠ −→AΠ . Using the obvious map Π −→ FΠ −→AΠ , we get
standard monomials on Π in AΠ . Recall that

smΠ(AΠ) = {1} ∪ {
Xα1 . . . Xα


, 
 ∈N∗, α1 � · · · � α
 ∈ Π
}
.

Lemma 2.4. Retain the above notation.

(i) Consider maps q : Π × Π −→ k∗ and c : inc(Π × Π) −→ k∗ . If the set of standard monomials on Π is
linearly independent in AΠ,q,c , then there is a surjective k-algebra morphism AΠ −→ AΠ,q,c such that
Xα 
→ Xα , Cα 
→ cα and Q αβ 
→ qαβ . (This applies in particular when q = 1 and c = 1.)

(ii) The elements of smΠ(AΠ) are pairwise distincts.

Proof. Point (i) follows at once from Remark 2.2 and the universal property of free algebras. (See also
Example 2.3). Point (ii) follows from point (i) and the fact that standard monomials form a basis of
AΠ,1,1 . �

Point (ii) of Lemma 2.4 shows that there is a well-defined notion of length for standard monomials
on Π in AΠ (see the end of the Introduction).

We denote by MΠ the multiplicative sub-monoid of AΠ generated by the set {Q αβ, (α,β) ∈
Π × Π} ∪ {Cαβ, (α,β) ∈ inc(Π × Π)}.
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Lemma 2.5. Let s ∈ N∗ and α1, . . . ,αs be s elements in Π . Then, there exist an element ξ ∈ MΠ and a
standard monomial m ∈ smΠ(AΠ) of length s such that Xα1 . . . Xαs = ξm in AΠ .

Proof. We need to recall the notion of depth of an element of the finite ordered set Π . Let α ∈ Π .
The depth of α is defined to be the greatest integer t such that there exists a strictly increasing
sequence α = α0 < · · · < αt in Π .

We prove the statement by induction on s. The result is trivial when s = 1. Let us assume the
result is true up to a certain integer s. We have to prove that any product of s + 1 elements of
{Xα,α ∈ Π} equals a standard monomial of length s + 1, up to multiplication by an element of MΠ .
To do this, we proceed by (finite) induction on the depth of the last of these s + 1 elements. Let
α1, . . . ,αs+1 be elements of Π such that αs+1 has depth 0. By the induction hypothesis, there exists
ξ ∈ MΠ and β1 � · · · � βs ∈ Π such that Xα1 . . . Xαs+1 = ξ Xβ1 . . . Xβs Xαs+1 . On the other hand, αs+1
must be the unique maximal element of Π . Hence, Xβ1 . . . Xβs Xαs+1 is a standard monomial and we
are done. Suppose now the result is true whenever the depth of the last of these s + 1 elements
does not exceed p, for some integer p. Consider α1, . . . ,αs+1, elements of Π such that αs+1 has
depth p + 1. By the first induction hypothesis, there exist ξ ∈ MΠ and β1 � · · · � βs ∈ Π such that
Xα1 . . . Xαs+1 = ξ Xβ1 . . . Xβs Xαs+1 . Three cases may then occur.

1. If βs � αs+1, then Xβ1 . . . Xβs Xαs+1 is a standard monomial, and we are done.
2. If βs > αs+1, then Xβs Xαs+1 = Q βsαs+1 Xαs+1 Xβs . Hence, Xα1 . . . Xαs+1 = ξ Xβ1 . . . Xβs Xαs+1 =

ξ Q βsαs+1 Xβ1 . . . Xβs−1 Xαs+1 Xβs . But, since βs > αs+1, βs has depth at most equal to p, so that we
may apply the second induction hypothesis to the product Xβ1 . . . Xβs−1 Xαs+1 Xβs . Again, we are done.

3. If βs and αs+1 are not comparable, then Xβs Xαs+1 = Cβsαs+1 Xαs+1∧βs Xαs+1∨βs . Using the fact that
αs+1 ∨ βs > αs+1, the same argument as in the second case allows to conclude.

This finishes the proof. �
Proposition 2.6. Let γ be an element of Π .

1. Let m be a standard monomial of AΠ , of length s ∈ N. Then, there exists a unique standard monomial m′
of AΠ such that there exists ξ ∈MΠ satisfying Xγ m = ξm′ .

2. The map φγ : sm(AΠ) −→ sm(AΠ), m 
→ m′ is injective.
3. Consider maps q : Π × Π −→ k∗ and c : inc(Π × Π) −→ k∗ . If the set of standard monomials on Π is

linearly independent in AΠ,q,c , then the element Xγ of AΠ,q,c is regular.

Proof. 1. The existence follows at once from Lemma 2.5. Now, let m be a standard monomial of length
s ∈ N. Suppose there exist distinct standard monomials m′ and m′′ of arbitrary length such that there
exist ξ ′, ξ ′′ ∈ MΠ for which Xγ m = ξ ′m′ = ξ ′′m′′ . The image of these relations under the projection
AΠ −→AΠ,1,1 gives, in AΠ,1,1 , an equality between two distinct standard monomials of AΠ,1,1 . But,
this contradicts the linear independence of standard monomials over Π in AΠ,1,1 (see Example 2.3).
Hence, the required unicity.

2. Consider distinct standard monomials m1 and m2 of AΠ . Suppose there exists a standard
monomial m of AΠ and elements ξ1, ξ2 ∈ MΠ such that Xγ m1 = ξ1m and Xγ m2 = ξ2m. The im-
age of these two relations under the projection p1,1 : AΠ −→ AΠ,1,1 then provide an equality
Xγ p1,1(m1) = Xγ p1,1(m2). But, clearly, p1,1(m1) and p1,1(m2) are two distinct standard monomi-
als over Π of AΠ,1,1 . This contradicts the integrity of AΠ,1,1 (see Example 2.3). Hence, the map φγ

is injective.
3. By Remark 2.1, the set of standard monomials on Π forms a k-basis of AΠ,q,c . Now, using

points 1 and 2 above and the canonical projection AΠ −→ AΠ,q,c , we see that left multiplication
by Xγ in AΠ,q,c is a map which, up to scalar multiplication by elements of k∗ , sends injectively the
standard monomial k-basis of AΠ,q,c into itself. It follows that left multiplication by Xγ in AΠ,q,c is
injective; that is, Xγ is left-regular. Since Xγ commutes, up to multiplication by elements of k∗ with
any standard monomial, it follows that Xγ is also right-regular. This completes the proof. �

Let us consider maps q : Π × Π −→ k∗ and c : inc(Π × Π) −→ k∗ and assume that the set of
standard monomials on Π is linearly independent in AΠ,q,c . By Proposition 2.6, the elements Xγ ,



L. Rigal, P. Zadunaisky / Journal of Algebra 372 (2012) 293–317 301
γ ∈ Π , of AΠ,q,c are regular and, clearly, they are normal. Hence, we may form the left quotient ring
of AΠ,q,c with respect to the multiplicative set generated by {Xγ ,γ ∈ Π}, that we denote by A◦

Π,q,c ,
and we have a canonical injection

AΠ,q,c −→ A◦
Π,q,c.

Hence, in order to prove that AΠ,q,c is an integral domain, it suffices to prove that A◦
Π,q,c is

an integral domain. It turns out that we can do even better. In fact, A◦
Π,q,c is isomorphic to a

quantum torus (that is, a quantum analogue of a Laurent polynomial ring), as we now proceed
to show.

Denote by TΠ,q,c the k-algebra generated by elements X±1
α , α ∈ irr+(Π) subject to the relations

Xα Xβ = qαβ Xβ Xα , for all α,β ∈ irr+(Π). Then, clearly, TΠ,q,c is a quantum torus (see Remark 2.2.) In
addition, there is a k-algebra morphism as follows:

jΠ,q,c : TΠ,q,c −→ A◦
Π,q,c

Xγ 
−→ Xγ .

Theorem 2.7. Let Π be a finite ordered set which is a distributive lattice and consider q : Π × Π −→ k∗ and
c : inc(Π × Π) −→ k∗ . Suppose, further, that the set of standard monomials on Π is linearly independent in
AΠ,q,c . Then, jΠ,q,c is a k-algebra isomorphism. In particular, AΠ,q,c is an integral domain.

Proof. 1. Surjectivity. Let B be the k-subalgebra of A◦
Π,q,c generated by the elements X±1

γ , γ ∈
irr+(Π). To prove that jΠ,q,c is surjective, it suffices to show that B = A◦

Π,q,c . Let us show, by in-

duction on the rank of γ , that for all γ ∈ Π , X±1
γ ∈ B . If γ has rank 0, then γ is the unique minimal

element of Π , so that γ ∈ irr+(Π). Hence X±1
γ ∈ B . Now, suppose the result true up to rank p ∈ N

and consider γ ∈ Π , of rank p + 1. If γ is join-irreducible, then γ ∈ irr+(Π), so that X±1
γ ∈ B . Other-

wise, there exist α,β ∈ Π such that γ = α ∨ β and α ∧ β,α,β < γ . Hence, the rank of the elements
α ∧ β,α,β < γ is less than or equal to p and, X±1

α , X±1
β , X±1

α∧β ∈ B by induction hypothesis. On the

other hand, we have Xα Xβ = cαβ Xα∧β Xγ in AΠ,q,c . Thus, X±1
γ ∈ B . This finishes the induction and

the proof that B =AΠ,q,c .
2. Injectivity. As is well known, TΠ,q,c is an integral domain of Gelfand–Kirillov dimension equal

to the cardinality of irr+(Π). On the other hand, as we saw earlier, AΠ,q,c is a quantum graded A.S.L.
on Π in the sense of [LR1], so that its Gelfand–Kirillov dimension equals the rank of Π plus 1 by
[LR1, Prop. 1.1.5] (beware, in [LR1] a different convention was adopted for the rank). Suppose jΠ,q,c
has a non-trivial kernel J , which hence contains a regular element, then by [KLen, Lemma 3.1, Prop.
3.15], we must have

rk(Π) + 1 = GKdim(AΠ,q,c)

� GKdim
(
A◦

Π,q,c

)

= GKdim(TΠ,q,c/ J )

< GKdim(TΠ,q,c)

= ∣∣irr+(Π)
∣∣

= ∣∣irr(Π)
∣∣ + 1.

But, this contradicts Birkhoff’s theorem (cf. Theorem 1.1). Hence J = {0} and we are done.
As already mentioned, TΠ,q,c is an integral domain, so that AΠ,q,c is also an integral domain. �
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3. Symmetric quantum algebras with a straightening law

The aim of this section is to provide a general framework to study quantum Richardson varieties.
More precisely, we introduce the notion of a symmetric quantum graded algebra with a straightening
law on an ordered set Π . This is a subclass of the class of quantum graded algebras with a straight-
ening law introduced in [LR1]. The main point here is that certain specific quotients of symmetric
quantum graded algebras with a straightening law inherit the same structure from the original alge-
bra. Examples of algebras within this class include the quantum Richardson varieties as will be shown
in Section 5.

Definition 3.1. Let A be an N-graded k-algebra, (Π,�) be a finite ordered set and Π −→ A be a
map whose image consists of homogeneous elements of A of positive degree which generate A as
a k-algebra. We say that A is a symmetric quantum graded algebra with a straightening law on Π

(symmetric quantum A.S.L., for short) if the following three conditions are satisfied:

(i) the set of standard monomials on Π is a linearly independent set;
(ii) for any pair (α,β) of incomparable elements of Π , there exists a relation αβ = ∑

(λ,μ) cα,β
λ,μλμ

where the sum extends over pairs (λ,μ) ∈ Π2, with λ < α,β < μ and where, for such a pair
(λ,μ), cα,β

λ,μ ∈ k;

(iii) for any pair (α,β) of elements of Π , there exists a relation αβ − qαββα = ∑
(λ,μ) dα,β

λ,μλμ where

the sum extends over pairs (λ,μ) ∈ Π2, with λ < α,β < μ, where, for such a pair (λ,μ), dα,β
λ,μ ∈

k and where qαβ ∈ k∗ .

The following remarks aim at clarifying this definition.

Remark 3.2. We retain the notation of Definition 3.1.
(i) By condition (i) of Definition 3.1, the image of Π under the map Π −→ A must be linearly

independent. It follows that the map Π −→ A must be injective. For this reason, we will often identify
Π with its image in A.

(ii) A symmetric quantum graded A.S.L. is a quantum graded algebra with a straightening law in
the sense of [LR1, Def. 1.1.1]. Actually, conditions (1) to (3) of [LR1, Def. 1.1.1] remain unchanged in
Definition 3.1. However, conditions (ii) and (iii) in Definition 3.1 are somewhat stronger than their
analogues in [LR1, Def. 1.1.1]. Indeed, in the relations they require, the left-hand side must be a lin-
ear combination of standard products of two elements of Π unlike in [LR1, Def. 1.1.1]. Further, in
these same relations (and using notation of Definition 3.1) the condition imposed on the pairs (λ,μ),
namely that λ < α,β < μ, is stronger than in [LR1, Def. 1.1.1]; this last stronger condition justifies the
use of the term symmetric.

(iii) By (ii) above and [LR1, Prop. 1.1.4], standard monomials on Π actually form a k-basis of a
symmetric quantum A.S.L.

Remark 3.3 clarifies the status of the relations required by conditions (ii) and (iii) above.

Remark 3.3. We retain the notation of Definition 3.1.
1. Straightening relations. Given any pair (α,β) of incomparable elements of Π , by the linear inde-

pendence of standard monomials, there is a unique relation as required in point (ii) of Definition 3.1.
It will be called the straightening relation associated to the pair (α,β).

2. Commutation relations. Let (α,β) be a pair of elements of Π . A relation as required in point
(iii) of Definition 3.1 need not be unique. Any such relation will be called a commutation relation
associated to the pair (α,β).
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The next remark shows that, for any symmetric quantum graded A.S.L., the straightening and com-
mutation relations provide, actually, a presentation of the algebra. It also states an easy consequence
which will be used latter.

Remark 3.4. We retain the notation of Definition 3.1.
1. Let k〈Π〉 be the free algebra on Π . Hence, k〈Π〉 is freely generated, as an algebra, by elements

Xπ , π ∈ Π .
1.1. Let (α,β) be a pair of incomparable elements of Π . By hypothesis, there is a (unique) straight-

ening relation αβ = ∑
(λ,μ) cα,β

λ,μλμ where the sum extends over pairs (λ,μ) ∈ Π2, with λ < α,β < μ

and cα,β
λ,μ ∈ k are scalars. Put S(α,β) = Xα Xβ − ∑

(λ,μ) cα,β
λ,μ Xλ Xμ ∈ k〈Π〉.

1.2. Let (α,β) be any pair of elements of Π . By hypothesis, we can choose a (not necessar-
ily unique) commutation relation αβ − qαββα = ∑

(λ,μ) dα,β
λ,μλμ where the sum extends over pairs

(λ,μ) ∈ Π2, with λ < α,β < μ, where, for such a pair (λ,μ), dα,β
λ,μ ∈ k and where qαβ ∈ k∗ . For such

a choice, let us put C(α,β) = Xα Xβ − qαβ Xβ Xα − ∑
(λ,μ) dα,β

λ,μ Xλ Xμ ∈ k〈Π〉.
1.3. Let I denote the ideal of k〈Π〉 generated by the elements S(α,β) and C(α,β) of points 1.1

and 1.2 above. Then, clearly, there is a surjective algebra morphism k〈Π〉/I −→ A, Xπ 
→ π . There
is also an obvious injective map Π −→ k〈Π〉 −→ k〈Π〉/I which allows to consider Π as a subset
of k〈Π〉/I . We want to show that (with its usual grading where canonical generators all have degree
one), k〈Π〉/I , is a quantum graded A.S.L. over Π . Notice first that the set of standard monomials on Π

in k〈Π〉/I maps onto the set of standard monomials on Π in A. Hence, the former has to be linearly
independent, since the latter is. Second, observe that the straightening and commutation relations
needed in k〈Π〉/I indeed are available. It follows that k〈Π〉/I is a symmetric quantum graded A.S.L.
(with respect to its canonical grading). In addition, the set of standard monomials on Π in k〈Π〉/I
form a basis and the projection k〈Π〉/I −→ A, Xπ 
→ π must be an isomorphism.

2. It follows from the algebra isomorphism k〈Π〉/I −→ A, Xπ 
→ π , that (apart from its original
grading) A can be endowed with an alternative grading where elements of Π all are homogeneous
of degree 1 and that A is a quantum graded A.S.L. over Π with respect to this grading. From this,
it follows that if π1, . . . ,πs are elements of Π (s ∈ N∗), the expression of the product π1 . . .πs as
a linear combination of standard monomials involve only standard monomials which are ordered
products of s elements of Π .

Next, we want to show that factors of a symmetric quantum graded A.S.L. by certain classes of
ideals, arising from certain subsets of Π , inherit from A a natural structure of symmetric quantum
graded A.S.L. Recall the notion of Π -ideal and Πopp-ideal from Section 1.

Recall from [LR1] that, given α ∈ Π , we say that a standard monomial of A on Π involves α
provided it may be written as α1 . . . αs (s ∈N∗) with α1 � · · · � αs ∈ Π and α ∈ {α1, . . . ,αs}. We then
have the following result which will be useful latter.

Proposition 3.5. Let A be an N-graded k-algebra, Π a finite generating subset of the k-algebra A which
consists in homogeneous elements of positive degree and suppose that Π is ordered in such a way that A be a
symmetric quantum graded A.S.L.

1. Let Ω be a Π -ideal of Π . Then the set of standard monomials of A on Π involving an element of Ω is a
k-basis of the ideal 〈Ω〉 of A.

2. Let Ω be a Πopp-ideal of Π . Then the set of standard monomials of A on Π involving an element of Ω

is a k-basis of the ideal 〈Ω〉 of A.
3. Let s ∈ N∗ and consider subsets Ω1, . . . ,Ωs of Π which are either Π -ideals or Πopp-ideals of Π .

Then, the set of standard monomials of A on Π involving an element of
⋃

1�i�s Ωi is a k-basis of the ideal
〈⋃1�i�s Ωi〉 of A.

Proof. Recall that standard monomials of A on Π form a k-basis of A.
1. This is Proposition 1.2.5 of [LR1].
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2. This is proved in a similar fashion as point 1 above. Here is a sketch of a proof, for the conve-
nience of the reader. First, arguing as in [LR1, Lemma 1.2.1], one can show that any element α ∈ Π is
normal modulo the ideal of A generated by {π ∈ Π,π > α}. Second, if <tot is any total order on Π

which respects � in the sense of [LR1, p. 676], then the elements of Π increasingly ordered following
<tot form a normalising sequence, so that 〈Ω〉 is the left ideal generated by Ω . Then, the same proof
as in [LR1, Prop. 1.2.5] leads to the result.

3. This follows from points 1 and 2 above. �
Corollary 3.6. Let A be an N-graded k-algebra, Π a finite generating subset of the k-algebra A which consists
of homogeneous elements of positive degree and suppose that Π is ordered in such a way that A is a symmetric
quantum graded A.S.L. Further, let s ∈ N∗ , Ω1, . . . ,Ωs ⊆ Π be either Π -ideals or Πopp-ideals of Π and put
Ω = ⋃

1�i�s Ωi . Then, A/〈Ω〉 is a symmetric quantum graded A.S.L. on Π \ Ω , equipped with the order
induced from that of Π .

Proof. By Proposition 3.5, it is clear that the obvious map Π \ Ω −→ A −→ A/〈Ω〉 is injective. In
addition, A/〈Ω〉 clearly inherits an N-grading from that of A such that images of the above map are
a generating set of the k-algebra A/〈Ω〉 which are homogeneous of positive degree. Further, using
again Proposition 3.5 and the fact that the set of standard monomials of A on Π form a k-basis
of A, we get that standard monomials of A/〈Ω〉 on Π \ Ω form a k-basis of A/〈Ω〉. The existence of
convenient straightening and commutation relations in A/〈Ω〉 follows immediately from the existence
of such relations in A. �
4. Toric degeneration for a certain class of symmetric A.S.L.

In this section, we show that a certain class of quantum graded symmetric A.S.L. may be endowed
with a filtration in such a way that the corresponding associated graded ring is a quantum toric alge-
bra (in the sense of Section 2 above). This class is determined by a combinatorial condition that the
underlying ordered set has to satisfy. Hence, we will heavily rely on material of Section 1. Roughly
speaking, this class consists of symmetric quantum graded A.S.L. whose underlying poset may be
realised (in the sense of Definition 1.4) by means of a sub-lattice of a chain product consisting of in-
creasing elements of Nd and whose straightening and commutation relations must also satisfy certain
combinatorial constraints.

Definition 4.1. Let A be an N-graded k-algebra, Π be a finite subset of A which generates A as a k-
algebra and consists of homogeneous elements of positive degree and � be an order on Π . Suppose
A is a symmetric quantum graded A.S.L. on (Π,�). We say that A satisfies condition (C) provide the
following hold:

(iv) (Π,�) is a distributive lattice and there exists d ∈ N∗ , integers n1, . . . ,nd � 2 and a lattice
embedding ι : Π −→ Cn1 × · · · × Cnd whose images are all increasing elements of Nd;

(v) for any pair (α,β) of incomparable elements of Π , in the straightening relation associated to
(α,β), we have cα,β

α∧β,α∨β �= 0 and, for all (λ,μ) such that cα,β
λ,μ �= 0, α�β = λ�μ (identifying elements

of Π with their image under ι);
(vi) for any pair (α,β) of elements of Π , there exists a commutation relation associated to (α,β)

such that dα,β
α∧β,α∨β = 0 and, for all (λ,μ) such that dα,β

λ,μ �= 0, α � β = λ � μ (identifying elements of
Π with their image under ι).

Remark 4.2. The present remark clarifies point (vi) in the conditions of Definition 4.1.
Assume A is a symmetric quantum graded A.S.L. and retain the notation of Definition 3.1.
1. Let (α,β) be a pair of comparable elements of Π . If αβ − qαββα = ∑

(λ,μ) dα,β
λ,μλμ is a commu-

tation relation associated to (α,β), then the condition dα,β
α∧β,α∨β = 0 is automatically satisfied.

2. Suppose A satisfies condition (iv) and (v) of Definition 4.1. If (α,β) is a pair of incomparable
elements of Π , then a commutation relation associated to this pair of the type required in Defini-
tion 4.1 always exists. Indeed, by condition (v), we have a straightening relation associated to both
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(α,β) and (β,α) with cα,β
α∧β,α∨β �= 0 and cβ,α

α∧β,α∨β �= 0. Combining them in the obvious way, we get

the desired expansion of αβ − cα,β
α∧β,α∨β(cβ,α

α∧β,α∨β)−1βα.

For the rest of this section, we fix the following notation. We let A be an N-graded k-algebra,
Π be a subset of A which generates A as a k-algebra and consists of homogeneous elements of
positive degree and � be an order on Π and we assume that A is a symmetric quantum graded
A.S.L. on (Π,�) which satisfies condition (C) for a fixed choice of a realisation of (Π,�) by means of
d ∈N∗ , integers n1, . . . ,nd � 2 and a lattice embedding ι : Π −→ Cn1 × · · · × Cnd whose images are all
increasing elements of Nd . We may then associate to the distributive lattice Cn1 × · · · × Cnd a map ω
as defined in Section 1 and consider the composition

Π
ι−→ Cn1 × · · · × Cnd

ω−→ N

which we still denote ω for simplicity. This map allows to associate to any element of Π , and more
generally to any standard monomial, an integer which we call its weight. For this purpose, we let

M = max
{
ω(π), π ∈ Π

}
.

Definition 4.3. Retain the above notation.
1. The weight of an element π ∈ Π is the positive integer, denoted wt(π), and defined by:

wt(π) = M + 1 − ω(π).

2. Let π1 � · · · � πs be elements of Π , the weight of the standard monomial π1 . . .πs is the positive
integer, denoted wt(π1 . . .πs), and defined by wt(π1 . . .πs) = wt(π1) + · · · + wt(πs). Moreover, we let
the weight of the standard monomial 1 be 0.

The following lemma states some properties of weights.

Lemma 4.4. Retain the above notation.

(i) If α,β are elements of Π such that α < β , then wt(α) > wt(β).
(ii) Any element of Π whose weight is one is maximal.

(iii) For elements α,β ∈ Π , wt(α) + wt(β) = wt(α ∧ β) + wt(α ∨ β).
(iv) Let (α,β) be a pair of incomparable elements of Π . For any pair (λ,μ) different from (α ∧ β,α ∨ β)

appearing in the straightening relation associated to (α,β), we have wt(λμ) < wt(α) + wt(β).
(v) Let (α,β) be a pair of elements of Π and consider any commutation relation associated to this pair and

satisfying condition (vi) in Definition 4.1. For any pair (λ,μ) appearing on the right-hand side of this
commutation relation, we have wt(λμ) < wt(α) + wt(β).

Proof. As noticed earlier, the map ω is strictly increasing, which proves (i) and (ii). Point (iii) is clear
by point (ii) of Lemma 1.3. Finally, Lemma 1.3, gives (iv) and (v). �

Using weights, we can filter the k-vector space A. For all i ∈ Z, we denote by Fi the k-subspace
of A with basis the set of standard monomials of weight less than or equal to i. Clearly, for i < 0,
Fi = {0} and F0 = k.1. It is obvious that F = (Fi)i∈Z is an ascending, exhaustive (i.e.

⋃
i∈ZFi = A)

and separated (i.e.
⋂

i∈ZFi = {0}) filtration of the k-vector space A. The next proposition shows it is
also a filtration of A as a k-algebra.

Lemma 4.5. Let s ∈N∗ and π1, . . . ,πs be elements of Π . Then, π1 . . .πs ∈F∑
wt(πi) .
1�i�s
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Proof. We proceed by induction on s. The result is obvious if s = 1. Fix now an integer s ∈ N∗
and assume that the result holds for s. We must show that, given any π1, . . . ,πs+1 ∈ Π , the prod-
uct π1 . . .πs+1 belongs to F∑

1�i�s+1 wt(πi) . For this, we proceed by induction on wt(πs+1). Suppose
that wt(πs+1) = 1. Then πs+1 is the unique maximal element of Π (recall that Π is a distributive
lattice). On the other hand, by the induction hypothesis and point 2 of Remark 3.4, π1 . . .πs is a lin-
ear combination of standard monomials π ′

1 . . .π ′
s such that wt(π ′

1 . . . π ′
s) = wt(π ′

1) + · · · + wt(π ′
s) �

wt(π1) + · · · + wt(πs). Hence, π1 . . . πs+1 is a linear combination of terms π ′
1 . . . π ′

sπs+1 which are
all standard monomials of weight wt(π ′

1 . . .π ′
sπs+1) = wt(π ′

1) + · · · + wt(π ′
s) + wt(πs+1) � wt(π1) +

· · · + wt(πs) + wt(πs+1) and we are done. Consider now an integer r ∈ N∗ , and assume the result is
true for any product of s + 1 elements of Π whose last element has weight less than or equal to r.
Consider π1, . . . ,πs+1 ∈ Π such that wt(πs+1) = r + 1. Again, by the first induction hypothesis and
point 2 of Remark 3.4, π1 . . .πs = ∑

j f jπ1, j . . . πs, j , where, for all j, f j ∈ k, π1, j � · · · � πs, j ∈ Π and
wt(π1, j . . . πs, j) = wt(π1, j) + · · · + wt(πs, j) � wt(π1) + · · · + wt(πs). Hence, we have

π1 . . . πsπs+1 =
∑

j

f jπ1, j . . . πs, jπs+1.

The right-hand side summands in the above equation fall into three possible cases.
First case: πs, j � πs+1. For such a j, π1, j . . .πs, jπs+1 is a standard monomial of weight wt(π1, j) +

· · · + wt(πs, j) + wt(πs+1)� wt(π1) + · · · + wt(πs) + wt(πs+1). So, π1, j . . .πs, jπs+1 ∈F∑
1�i�s+1 wt(πi) .

Second case: πs, j > πs+1. But, we have a commutation relation of the form

πs, jπs+1 = dπs+1πs, j +
∑

λ,μ

dλ,μλμ

where the sum extends over pairs (λ,μ) of elements of Π such that λ < πs, j,πs+1 < μ. Hence,

π1, j . . . πs, jπs+1 = dπ1, j . . . πs−1, jπs+1πs, j +
∑

λ,μ

dλ,μπ1, j . . .πs−1, jλμ.

On the other hand, since πs, j,μ > πs+1, we have wt(πs, j),wt(μ) < wt(πs+1), by Lemma 4.4. The
second induction thus yields

π1, j . . . πs−1, jπs+1πs, j ∈ Fwt(π1, j)+···+wt(πs−1, j)+wt(πs+1)+wt(πs, j)

and

π1, j . . . πs−1, jλμ ∈ Fwt(π1, j)+···+wt(πs−1, j)+wt(λ)+wt(μ) ⊆ Fwt(π1, j)+···+wt(πs−1, j)+wt(πs+1)+wt(πs, j),

the last inclusion being provided by Lemma 4.4 which asserts that wt(λ) + wt(μ) � wt(πs, j) +
wt(πs+1). At this stage, we have that

π1, j . . .πs, jπs+1 ∈ Fwt(π1, j)+···+wt(πs−1, j)+wt(πs+1)+wt(πs, j) ⊆ Fwt(π1)+···+wt(πs−1)+wt(πs)+wt(πs+1),

since wt(π1, j) + · · · + wt(πs, j) � wt(π1) + · · · + wt(πs).
Third case: πs, j and πs+1 are not comparable. Proceeding as in case two by means of the

straightening relation associated to the pair (πs, j,πs+1), we get also that π1, j . . . πs, jπs+1 ∈
Fwt(π1)+···+wt(πs−1)+wt(πs)+wt(πs+1) .

Summing up the results of the three cases, we end up with π1 . . .πs+1 ∈ F∑
1�i�s+1 wt(πi) , as de-

sired to complete the second induction and the proof. �
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Proposition 4.6. In the above notation, F is a filtration of the k-algebra A.

Proof. This follows at once from Lemma 4.5. �
Our next aim in this section is to describe the associated graded ring, grF (A), of A with respect

to the filtration F . Hence,

grF (A) =
⊕

i∈Z
Fi/Fi−1 =

⊕

i�0

Fi/Fi−1.

Since F is separated and exhaustive, any non-zero element x ∈ A has a principal symbol denoted
gr(x). Namely, for any non-zero x ∈ A there is a least integer i ∈ Z such that x ∈ Fi ; then we let
gr(x) = x +Fi−1 ∈Fi/Fi−1. Notice that, for all x ∈ A \ {0}, gr(x) �= 0.

It is clear, by definition of F , that two distinct elements of Π have distinct principal symbols.
Hence, gr(Π) = {gr(x), x ∈ Π} ⊆ grF (A) identifies with Π and inherits an order from it, together
with a natural lattice structure such that Π −→ gr(Π), x 
→ gr(x), be a lattice isomorphism. As a
consequence, we get a natural realisation of gr(Π) in a finite chain product by means of that of Π .

Our next aim is to show that grF (A) is a symmetric quantum graded A.S.L. on gr(Π) satisfying
condition (C). Notice that grF (A) is naturally N-graded. Notice, further, that for any standard mono-
mial x in A, then gr(x) is homogeneous of degree wt(x).

Lemma 4.7. Retain the above notation. For s ∈ N∗ and π1 � · · ·� πs ∈ Π , we have

gr(π1 . . . πs) = gr(π1) . . . gr(πs).

Proof. If w1, . . . , ws denote the weights of π1, . . . ,πs , respectively, and if w = w1 +· · ·+ ws , then by
definition of the ring structure on gr(A), we have gr(π1) . . . gr(πs) = π1 . . .πs + Fw−1. On the other
hand, the standard monomial π1 . . .πs is in Fw \Fw−1 since it has weight w; so that gr(π1 . . .πs) =
π1 . . .πs +Fw−1. Hence the result. �
Proposition 4.8. Retain the above notation.

1. The set gr(Π) generates grF (A) as a k-algebra.
2. Standard monomials of grF (A) on gr(Π) are linearly independent.
3. For any pair (α,β) of incomparable elements of Π , there exists cα,β ∈ k∗ such that the following relation

holds in grF (A):

gr(α)gr(β) = cα,β

(
gr(α) ∧ gr(β)

)(
gr(α) ∨ gr(β)

)
.

4. For any pair (α,β) of elements of Π , there exists qα,β ∈ k∗ such that the following relation holds in
grF (A):

gr(α)gr(β) = qα,β gr(β)gr(α).

5. The algebra grF (A) is a symmetric quantum graded algebra on gr(Π) satisfying condition (C).

Proof. Points 1 and 2 follow easily from Lemma 4.7.
Let (α,β) be a pair of incomparable elements of Π . By condition (v) of Definition 4.1 and

Lemma 4.4, we have that αβ ∈ Fwt(α)+wt(β) \ Fwt(α)+wt(β)−1. So that, the straightening relation cor-
responding to these elements together with Lemma 4.7 leads to a relation gr(α)gr(β) = gr(αβ) =
cα,β gr((α∧β)(α∨β)) = cα,β gr(α∧β)gr(α∨β) = cα,β(gr(α)∧gr(β))(gr(α)∨gr(β)), where cα,β ∈ k∗ .
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Further, by condition (vi) of Definition 4.1, and using the above, we get point 4 of the proposition for
such a pair.

Let now β � α ∈ Π . Using condition (vi) of Definition 4.1 for the pair (α,β), we see that αβ ∈
Fwt(α)+wt(β) \ Fwt(α)+wt(β)−1. Arguing as above, it follows that gr(α)gr(β) = gr(αβ) = qα,β gr(βα) =
qα,β gr(β)gr(α), where qα,β ∈ k∗ .

Points 3 and 4 are now proved. Point 5 is an obvious consequence. �
We now come to the description of grF (A).

Theorem 4.9. Let A be a symmetric quantum graded A.S.L. on Π satisfying condition (C). Then, there exist
maps q : Π × Π −→ k∗ , c : inc(Π × Π) −→ k∗ and a filtration F of the k-algebra A such that:

(i) grF (A) is isomorphic (as a k-algebra) to AΠ,q,c;
(ii) standard monomials on Π in AΠ,q,c are linearly independent.

Further, A is an integral domain.

Proof. By the hypotheses, A is an N-graded k-algebra, equipped with a finite generating subset Π

consisting of homogeneous elements of positive degree, endowed with an order such that A is a
symmetric quantum graded A.S.L. Further, we suppose that A satisfies condition (C). Then, by Propo-
sition 4.6, A admits a filtration F which gives rise to an associated graded ring grF (A). Now, using
Proposition 4.8 and the notation therein, consider the maps q : Π × Π −→ k∗ , (α,β) 
→ qα,β and
c : inc(Π × Π) −→ k∗ , (α,β) 
→ cα,β . By Proposition 4.8, there is a surjective k-algebra morphism

AΠ,q,c −→ grF (A)

Xα 
−→ gr(α).

Further, Proposition 4.8 ensures that standard monomials on gr(Π) are linearly independent elements
of grF (A), so that standard monomials on Π are linearly independent elements of AΠ,q,c . In addi-
tion, by Remark 2.1, standard monomials on Π form a basis of AΠ,q,c . Hence, the above map is an
isomorphism. From this and Theorem 2.7, we get that grF (A) is an integral domain. By well-known
results, it follows that A is an integral domain. �

The following remark clarifies the non-unicity of commutation relations in symmetric quantum
graded A.S.L satisfying condition (C).

Remark 4.10. Let A and Π be as in Definition 4.1 and assume A satisfies condition (C) with respect
to a realisation (d;n1, . . . ,nd; ι) of Π (see Definition 1.4).

1. Let (α,β) ∈ Π2. Suppose that in A there exist two commutation relations as required by point
(vi) of Definition 4.1, namely αβ −qαββα = ∑

(λ,μ) dα,β
λ,μλμ and αβ −q′

αββα = ∑
(λ,μ)(d

α,β
λ,μ)′λμ. Then,

by Proposition 4.8 (and its proof), in grF (A), we get the two relations: gr(α)gr(β) = qαβ gr(β)gr(α)

and gr(α)gr(β) = q′
αβ gr(β)gr(α). Hence, 0 = (qαβ − q′

αβ)gr(β)gr(α). But, grF (A) is an integral do-
main (see Proposition 4.9 and its proof). So, we must have qαβ = q′

αβ . From this, we get that
commutation relations as required by point (vi) of Definition 4.1 are actually unique.

2. By point 1 above, Remark 3.3 and Proposition 4.8, we may canonically associate to A two maps:

q : Π × Π −→ k∗
(α,β) 
−→ qαβ

and
c : inc(Π × Π) −→ k∗

(α,β) 
−→ cα,β
α∧β,α∨β

using the relevant non-zero scalars appearing in straightening relations and commutation relations as
required by Definitions 3.1 and 4.1, in such a way that the associated graded ring of A with respect
to the filtration F of Proposition 4.6 be isomorphic to AΠ,q,c . Using Remark 2.2, we then get that,
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(i) ∀(α,β) ∈ Π × Π , qαβqβα = 1 and qαα = 1;

(ii) ∀(α,β) ∈ inc(Π × Π ), cα,β
α∧β,α∨β = qαβcβ,α

α∧β,α∨β .

We conclude this section by an easy observation, which will allow us latter to apply the above
results to interesting classes of quantum algebras.

Let Π be an ordered set, (α,β) ∈ Π2 and [α,β] the corresponding interval (see Section 1). Letting

Πα = {γ ∈ Π | α � γ }, Πβ = {γ ∈ Π | γ � β} and Π
β
α = Πα ∪ Πβ,

we have that [α,β] = Π \ Π
β
α .

Corollary 4.11. Let A be a symmetric quantum graded A.S.L. on the ordered set Π and suppose that A satisfies
condition (C). Then, for any pair (α,β) of elements of Π such that α � β , the quotient k-algebra A/〈Πβ

α 〉
is a symmetric quantum graded A.S.L. on the ordered set [α,β], which satisfies condition (C). In particular,
A/〈Πβ

α 〉 is an integral domain.

Proof. Clearly, Πα is a Π -ideal, Πβ is a Πopp-ideal and the interval [α,β] is the complement of Π
β
α

in Π . Hence, by Corollary 3.6 and its proof, the k-algebra A/〈Πβ
α 〉 is a symmetric quantum graded

A.S.L. on the ordered set [α,β] by means of the natural map [α,β] ⊆−→ A
can. proj.−→ A/〈Πβ

α 〉. Further,
[α,β] clearly inherits from Π a distributive lattice structure as well as a realisation as required by
Definition 4.1. It is then obvious that the straightening and commutation relations in A/〈Πβ

α 〉, as
required by Definition 4.1, may be obtained by applying the canonical projection A −→ A/〈Πβ

α 〉 to
the corresponding relations in A. It remains to apply Theorem 4.9 to conclude that A/〈Πβ

α 〉 is an
integral domain. �
5. Quantum analogues of Richardson varieties

In this section, we study quantum analogues of coordinate rings of Richardson varieties in the
grassmannians of type A. The final aim is to show that these are symmetric quantum graded A.S.L.
satisfying condition (C) and to derive from this some of their important properties.

Consider positive integers u, v and a scalar q ∈ k∗ . Following [LR1, Section 3.1], we let Oq(Mu,v(k))

denote the quantum analogue of the affine coordinate ring of the space of u × v matrices with entries
in k. This is the k-algebra with generators Xij , 1 � i � u and 1 � j � v and relations as in [LR1,
Def. 3.1.1]. If u = v , we put Oq(Mv (k)) = Oq(Mu,v(k)). Recall that there is a transpose automorphism
of algebras trv : Oq(Mv(k)) −→ Oq(Mv(k)), Xij 
→ X ji . Recall in addition that, if u′, v ′ are positive
integers such that u′ � u and v ′ � v , then the assignment Xij 
→ Xij defines an injective algebra
morphism from Oq(Mu′,v ′ (k)) to Oq(Mu,v(k)). To any index sets I, J of cardinality t � u, v with
I ⊆ {1, . . . , u} and J ⊆ {1, . . . , v} we may associate a quantum minor, denoted [I| J ], and defined as in
[LR1, Section 3.1]. Then, it is well known that the transpose automorphism sends [I| J ] to [ J |I].

Suppose now we are given integers u, v such that 1 � u � v . We let Oq(Gu,v(k)) denote the quan-
tum analogue of the coordinate ring of the grassmannian of u-dimensional subspaces in kv . It is the
subalgebra of Oq(Mv,u(k)) generated by the u × u quantum minors of Oq(Mv,u(k)). Notice that we
adopt here a convention exchanging rows and columns with respect to the convention of [LR1] and
[LR2]. However, embedding all the relevant algebras in Oq(Mv(k)) and using the transpose automor-
phism introduced above shows that the two different conventions lead to isomorphic algebras. Hence,
we are in position to use all of the results in the aforementioned papers.

Finally, we denote by Πu,v the subset of Nu of elements (i1, . . . , iu) such that 1 � i1 < · · · < iu � v
endowed with the restriction of the natural product order of Nu . It is easy to see that Πu,v is a
(distributive) sub-lattice of Nu . Clearly, an element I = {i1 < · · · < iu} of Πu,v determines a u × u
quantum minor of Oq(Mv,u(k)) by sending I to the minor built on rows i1, . . . , iu ; we denote this
minor by [I]. The corresponding map Πu,v −→Oq(Gu,v(k)) turns out to be injective (with image the
canonical generators of Oq(Gu,v(k))).
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5.1. On the quantum grassmannians

We first prove some results on the quantum analogue of the coordinate ring of the grassmannians.
Namely, we show that this k-algebra is a symmetric quantum graded A.S.L. satisfying condition (C).
Part of this result is already contained in [LR1], where it is shown that this k-algebra is a quantum
graded A.S.L. in the sense of [LR1, Def. 1.1.1].

Let m � n be positive integers and let q ∈ k∗ . Recall that to each elements I ∈ Πm,n we may
associate the m × m quantum minor [I] in Oq(Gm,n(k)) and that the map

Πm,n −→ Oq
(
Gm,n(k)

)

I 
−→ [I]
is injective. We will often identify an element of Πm,n with its image in Oq(Gm,n(k)). By the definition
of Oq(Gm,n(k)), the set {[I], I ∈ Πm,n} is a set of generators of the k-algebra Oq(Gm,n(k)) since any
m × m quantum minor of Oq(Mm,n(k)) equals [I] for some I ∈ Πm,n . Recall, further, that Oq(Gm,n(k))

has an N-grading with respect to which the elements [I], I ∈ Πm,n , are homogeneous of degree 1.
It is proved in [LR1, Section 3] that Oq(Gm,n(k)) is a quantum graded A.S.L. on Πm,n . More pre-

cisely, the following is proved:

(ASL-1) standard monomials on Πm,n form a basis of the k-vector space Oq(Gm,n(k));
(ASL-2) for any (I, J ) ∈ inc(Πm,n × Πm,n), there exists a (necessarily unique) relation

[I][ J ] =
∑

(K ,L)

cI, J
K ,L[K ][L],

where the sum extends over pairs (K , L) of elements of Πm,n such that K � L and K < I, J

and where, for such a pair, cI, J
K ,L ∈ k;

(ASL-3) for any (I, J ) ∈ Πm,n × Πm,n , there exists a relation

[I][ J ] − q f I, J [ J ][I] =
∑

(K ,L)

dI, J
K ,L[K ][L],

where f I, J ∈ Z and where the sum extends over pairs (K , L) of elements of Πm,n such that

K � L and K < I, J and where, for such a pair, dI, J
K ,L ∈ k.

We now establish a series of results allowing to get further information on the relations appearing
in conditions (ASL-2) and (ASL-3) above. This will allow us to prove that Oq(Gm,n(k)) is a symmetric
quantum graded A.S.L. satisfying condition (C) on Πm,n . Notice that Πm,n is a distributive sub-lattice
of Nm included in the finite chain product Cn × · · · × Cn (m copies). Hence, the data (m;n, . . . ,n; ι) is
a realisation of Πm,n in a finite chain product in the sense of Definition 1.4, where ι : Πm,n −→ (Cn)m

is the obvious inclusion map. Further, the elements of Πm,n are all increasing elements of Nm . Hence,
in order to prove that Oq(Gm,n(k)) satisfies condition (C), we will use this realisation.

In view of the defining relations of Oq(Mn,m(k)), it is easy to check that there exists an Nn-grading
on Oq(Mn,m(k)) such that, for 1 � i � n and 1 � j � m, Xij be of degree εi . (Here, {ε1, . . . , εn} is the
canonical basis of the Z-module Zn .) Clearly, for I = (i1, . . . , im) ∈ Πm,n , [I] is a homogeneous element
of degree

∑
1� j�m εi j . Hence, this Nn-grading on Oq(Mn,m(k)) induces by restriction an Nn-grading

on Oq(Gm,n(k)).

Proposition 5.1.1. Let m � n be positive integers and q ∈ k∗ .

(i) Let (I, J ) ∈ inc(Πm,n × Πm,n). In the straightening relation associated to (I, J ) in (ASL-2), if c I, J
K ,L �= 0,

then K � L = I � J .
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(ii) Let (I, J ) ∈ Πm,n ×Πm,n. In any commutation relation associated to (I, J ) as in (ASL-3), if dI, J
K ,L �= 0, then

K � L = I � J .

Proof. Using the Nn-grading of Oq(Gm,n(k)) introduced above, the result follows from the linear
independence of standard monomials in Oq(Gm,n(k)). �

We now need a technical lemma.
Notice that, for positive integers u � v , there is an obvious one-to-one correspondence between

elements of Πu,v and subsets of {1, . . . , v} of cardinality u. Given I ∈ Πu,v , we will call the corre-
sponding subset the underlying set of I .

Lemma 5.1.2. Let h,m,n be integers such that 1 � h � m � n.

(i) Let I, J be elements of Πm,2m. Denote by Ic (resp. J c) the element of Πm,2m whose underlying set is
{1, . . . ,2m} \ I (resp. {1, . . . ,2m} \ J ). The following holds: if I � J , then Ic � J c .

(ii) Let I, K ⊆ Πh,n and S ⊆ {1, . . . ,n} of cardinality m − h be such that I ∩ S = K ∩ S = ∅. The following
holds: if I � K in Πh,n, then I � S � K � S in Πm,n.

Proof. Let u � v be positive integers. Observe that, for I, J ∈ Πu,v , we have: I � J if and only if, for
all 1 � i � v , |I ∩ {1, . . . , i}| � | J ∩ {1, . . . , i}|. (Here, we identify an element in Πu,v and its underlying
set.) The lemma follows at once. �
Proposition 5.1.3. Let m � n be positive integers and q ∈ k∗ .

(i) Let (I, J ) ∈ inc(Πm,n × Πm,n). In the straightening relation associated to (I, J ) in (ASL-2), if c I, J
K ,L �= 0,

then K < I, J < L.
(ii) Let (I, J ) ∈ Πm,n × Πm,n. There exists a commutation relation associated to (I, J ) as in (ASL-3) and such

that, if dI, J
K ,L �= 0, then K < I, J < L.

Proof. (i) To prove the first point, we proceed in several steps.
First case: n = 2m and I, J are elements of Πm,2m whose underlying sets have empty intersection.

The straightening relation associated to (I, J ) in (ASL-2) is of the form

[I][ J ] =
∑

(K ,L)

cI, J
K ,L[K ][L],

where the sum extends over pairs (K , L) of elements of Πm,2m such that K � L and K < I, J and
where, for such a pair, cI, J

K ,L ∈ k. Now, let (K , L) be a pair such that cI, J
K ,L �= 0. By point (i) of Proposi-

tion 5.1.1, the underlying sets of K and L are disjoint (and cover {1, . . . ,2m}). Hence, in the notation
of Lemma 5.1.2, K c = L and Lc = K . But, since K < I , Lemma 5.1.2 gives that L = K c > Ic = J . And we
get that L > I in the same way. Thus point (i) holds in this case.

Second case: n is arbitrary and I, J are elements of Πm,n whose underlying sets have empty inter-
section (hence n � 2m). Letting A denote the subalgebra of Oq(Mn,m(k)) generated by the Xij with
i ∈ I ∪ J , we have the obvious k-algebra map Oq(M2m,m(k)) −→ Oq(Mn,m(k)) which is an embed-
ding with image A. Further, this map induces an embedding Oq(Gm,2m(k)) −→ Oq(Gm,n(k)). Now,
a convenient choice of elements I0, J0 ∈ Πm,2m provides, using the first case above, a relation whose
image under this last embedding is the desired relation in Oq(Gm,n(k)).

Third case: n is arbitrary and I, J are arbitrary elements of Πm,n (i.e. the general case).
Let S stand for the intersection of the sets I and J . So, there exists an integer h such that 1 � h � m

and elements I0, J0 ∈ Πh,n satisfying I = S � I0 and J = S � J0. By definition, I0 and J0 do not
intersect. Hence, the second case above provides a relation
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[I0][ J0] =
∑

cK0,L0 [K0][L0]

in Oq(Gh,n(k)), where the sum extends on the pairs (K0, L0) of elements of Πh,n such that K0 � L0
and K0 < I0, J0 < L0 and where, for such a pair, cK0,L0 ∈ k. Then, using Muir’s law of extension of
minors (see [LRu, Prop. 2.4]), we get a relation

[I][ J ] = [I0 � S][ J0 � S] =
∑

cK0,L0 [K0 � S][L0 � S]

in Oq(Gm,n(k)). Using Lemma 5.1.2, we see that this is the desired relation.
The proof of point (i) is now complete.
(ii) The same reasoning as in point (i) may be applied. �

Proposition 5.1.4. Let m � n be positive integers and q ∈ k∗ . For all (I, J ) ∈ inc(Πm,n × Πm,n), there exists

eI, J ∈ Z such that, in the straightening relation associated to (I, J ) in (ASL-2), we have cI, J
I∧ J ,I∨ J = ±qeI, J .

Proof. We will have to use quantum grassmannians defined over arbitrary commutative integral do-
mains as defined in [LR1, Def. 3.1.4] and will make extensive use of [LR1, Rem. 3.1.5]. Put A= Z[t±1].

Let I, J be non-comparable elements of Πm,n . By [LR1, Theorem 3.3.8], in Ot(Gm,n(A)), we have
a relation

[I][ J ] =
∑

(K ,L)

cK ,L(t)[K ][L]

where the sum extends over pairs (K , L) of elements of Πm,n such that K < I, J and K � L and
where, for such a pair, cK ,L(t) ∈A.

Let u be any non-zero complex number and consider the obvious morphism Z[t±1] −→
C[t±1] −→ C, where the second map is evaluation at u. It induces a map Ot(Gm,n(Z[t±1])) −→
Ot(Gm,n(C[t±1])) −→Ou(Gm,n(C)) under which the image of the above straightening relation is

[I][ J ] =
∑

(K ,L)

cK ,L(u)[K ][L].

Now, let δ = I ∧ J and μ = I ∨ J . We consider the quantum Schubert variety associated to δ. This is
the factor ring, Ou(Gm,n(C))δ of Ou(Gm,n(C)) as defined in [LR1, Def. 3.1.7] and [LR2, Def. 1.1]. By
Proposition 5.1.1, the image of the above relation in Ou(Gm,n(C))δ is

[I][ J ] = cδ,μ(u)[δ][μ].

But, by [LR2, Cor. 3.1.7], Ou(Gm,n(C))δ is a domain and by [LR1, Cor. 3.4.5] it is a quantum graded
A.S.L. on the subset {π ∈ Πm,n | π � δ}, so that the images of [I] and [ J ] in Ou(Gm,n(C))δ are non-
zero. Hence, we must have cδ,μ(u) �= 0.

This shows that there exist integers d, e such that cδ,μ(t) = dte . Now, suppose that d is divisible
by some prime number p ∈ Z, put Fp = Z/pZ and consider the ring morphism Z[t±1] −→ Z −→ Fp ,
where the first map is evaluation at 1 and the second is the canonical projection. We then have a
natural ring morphism

Ot
(
Gm,n

(
Z
[
t±1])) −→ O1

(
Gm,n(F)

) −→ O1
(
Gm,n(F)

)
δ

(the first arrow is obtained from the former morphism via [LR1, Rem. 3.1.5] and the second is the
canonical projection). Applying this morphism to the above straightening relation would lead to the
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equation [I][ J ] = 0 in the (quantum) Schubert variety O1(Gm,n(F))δ which would violate [LR2, Cor.
3.1.7] and [LR1, Cor. 3.4.5], as we argued above. So, d = ±1.

Consider now the obvious ring morphism Z[t±1] −→ k, t 
→ q. It induces a map Ot(Gm,n(A)) −→
Oq(Gm,n(k)) under which the image of the above straightening relation gives a straightening relation
in Oq(Gm,n(k)) which establishes the claim. �
Remark 5.1.5. Actually, Proposition 5.1.4 can be strengthened as follows. Let m � n be positive inte-
gers and q ∈ k∗ . For all (I, J ) ∈ inc(Πm,n × Πm,n), there exists eI, J ∈ Z such that, in the straightening

relation associated to (I, J ) in (ASL-2), we have cI, J
I∧ J ,I∨ J = qeI, J . Indeed, it is known that in the clas-

sical case where k = C and q = 1, the coefficient cI, J
I∧ J ,I∨ J equals 1; see [GL, Cor. 7.0.4, p. 236]. Using

specialisation methods as in the proof of Proposition 5.1.4, and using the notation therein, this easily
leads to d = 1. The result follows.

Theorem 5.1.6. Let m � n be positive integers and q ∈ k∗ . The k-algebra Oq(Gm,n(k)) is a symmetric quan-
tum graded A.S.L. on Πm,n, which satisfies condition (C).

Proof. We have already mentioned that standard monomials on Πm,n form a basis of the k-vector
space Oq(Gm,n(k)). Together with Proposition 5.1.3, this shows that Oq(Gm,n(k)) is a symmetric quan-
tum graded A.S.L. Further, recall that we have the obvious realisation (m;n, . . . ,n; ι) of Πm,n in a finite
chain product discussed at the beginning of this subsection. Let us show that Oq(Gm,n(k)) satisfies
condition (C) with respect to this realisation. The existence of straightening relations as required by
condition (v) of Definition 4.1 is proved by Propositions 5.1.1 and 5.1.4. It remains to show, for each
pair (I, J ) ∈ Πm,n × Πm,n , the existence of commutation relations as required by condition (vi) of 4.1.
If I and J are not comparable, this follows from the above, by point 2 in Remark 4.2. Suppose now
I and J comparable. By Propositions 5.1.1 and 5.1.3, there exists a commutation relation as in (ASL-3)
such that, if dI, J

K ,L �= 0, then K < I, J < L and I � J = K � L. But, since I and J are comparable, we have

in particular that dI, J
I∧ J ,I∨ J = 0. This finishes the proof. �

5.2. Quantum Richardson varieties

In this subsection, we are interested in some quotients of the k-algebra Oq(Gm,n(k)). These rings
are natural quantum analogues of coordinate rings on Richardson varieties in the Grassmannian
Gm,n(k) (see the Introduction).

In the sequel, we use the notation introduced before Corollary 4.11.

Definition 5.2.1. Let m � n be positive integers and q ∈ k∗ . To each pair (α,β) of elements of Πm,n

such that α � β , we associate the quantum analogue of the homogeneous coordinate ring on the
Richardson variety corresponding to (α,β) also called, to simplify, the quantum Richardson variety
associated to (α,β), defined as the quotient:

Oq
(
Gm,n(k)

)
/
〈
Π

β
α

〉

of Oq(Gm,n(k)) by the ideal generated by the complement Π
β
α = Πm,n \ [α,β] of the interval [α,β]

in Πm,n .

Theorem 5.2.2. Let m � n be positive integers and q ∈ k∗ . For any pair (α,β) of elements of Πm,n such that

α � β , the quantum Richardson variety Oq(Gm,n(k))/〈Πβ
α 〉 is a symmetric quantum graded A.S.L. on the

ordered set [α,β], which satisfies condition (C). In particular, it is an integral domain.

Proof. This follows at once from Theorem 5.1.6 and Corollary 4.11. �
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Theorem 5.2.3. Let m � n be positive integers and q ∈ k∗ . For any pair (α,β) of elements of Πm,n such that
α = (α1, . . . ,αm) � (β1, . . . , βm) = β ,

GKdim
(
Oq

(
Gm,n(k)

)
/
〈
Π

β
α

〉) =
m∑

k=1

(βk − αk) + 1.

Proof. By Theorem 5.2.2, Oq(Gm,n(k))/〈Πβ
α 〉 is a symmetric quantum graded A.S.L. on the ordered set

[α,β]. In particular, it is a quantum graded A.S.L. (in the sense of [LR1, Def. 1.1.1]) on the ordered set
[α,β]. Thus, its Gelfand–Kirillov dimension is rα,β + 1, where rα,β is the rank of the interval [α,β];
see [LR1, Prop. 1.1.4]. (Beware, the rank of an ordered set as defined in [LR1] differ from the definition
adopted in the present paper by one.) But, it is easy to show that rk([α,β]) = ∑m

k=1(βk −αk). We are
done. �
Remark 5.2.4. Let m � n be positive integers and q ∈ k∗ . For any positive integer d, we let Sd de-
note the d-th symmetric group. Identify Sm × Sn−m in the natural way with a subgroup of Sn . Then,
it is well known that Πm,n identifies with the quotient set Sn/(Sm × Sn−m). More precisely, each
coset of Sn modulo Sm × Sn−m has a unique minimal element (with respect to the Bruhat order-
ing). Then, Πm,n identifies with the set of minimal coset representatives via the assignment sending
(α1, . . . ,αm) to the permutation wα = (α1, . . . ,αm, β1, . . . , βn−m), where β1, . . . , βn−m are the ele-
ments of the complement of {α1, . . . ,αm} in {1, . . . ,n} arranged in ascending order. It is then easily
verified that, for each α ∈ Πm,n , the length of wα is


(wα) =
m∑

k=1

αk − 1

2
m(m + 1).

It follows that, for α � β ∈ Πm,n , the formula of Theorem 5.2.3 may be rewritten as:

GKdim
(
Oq

(
Gm,n(k)

)
/
〈
Π

β
α

〉) = 
(wβ) − 
(wα) + 1.

This applies in particular when the deformation parameter q equals 1 and shows that the Krull di-
mension of the homogeneous coordinate ring of the classical Richardson variety determined by α and
β (under the Plücker embedding) is 
(wβ) − 
(wα) + 1 from which it follows that, as a projective
variety, it has dimension 
(wβ) − 
(wα). Hence, we recover a well-known result (see for example
[LLit, Theorem 16]).

We now investigate homological properties, namely the AS-Cohen–Macaulay and AS-Gorenstein
properties. For an overview on these notions as well as details useful in the sequel, the reader is
refered to [LR1, Section 2] where, moreover, a list of further references is available.

Theorem 5.2.5. Let m � n be positive integers and q ∈ k∗ . For any pair (α,β) of elements of Πm,n such that

α � β , the k-algebra Oq(Gm,n(k))/〈Πβ
α 〉 is AS-Cohen–Macaulay.

Proof. By Theorem 5.2.2, Oq(Gm,n(k))/〈Πβ
α 〉 is a symmetric quantum graded A.S.L. on the ordered

set [α,β]. Further, the interval [α,β] is a distributive lattice, hence a wonderful poset in the sense of
[LR1, Def. 2.2.3]. So, the result follows from a direct application of [LR1, Theorem 2.2.5]. �
Remark 5.2.6. Let m � n be positive integers, q ∈ k∗ and consider a pair (α,β) of elements of Πm,n

such that α � β . We already argued that the N-graded connected k-algebra Oq(Gm,n(k))/〈Πβ
α 〉 is

a quantum graded A.S.L in the sense of [LR1, Def. 1.1.1]. It follows from Lemma 1.2.3 and Remark
2.1.4 of [LR1] that Oq(Gm,n(k))/〈Πβ

α 〉 is a noetherian algebra with enough normal elements (see [LR1,
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Section 2.1]). Since, further, it is a domain and an AS-Cohen–Macaulay algebra, the fact that it is AS-
Gorenstein or not can be read off from its Hilbert series. The interested reader may use Section 4 of
[LR1] to get details on this. However, the Hilbert series of Oq(Gm,n(k))/〈Πβ

α 〉 is independent of the
value of q ∈ k∗ since the standard monomials form a basis of this algebra consisting of homogeneous
elements. Hence, the k-algebra Oq(Gm,n(k))/〈Πβ

α 〉 is AS-Gorenstein if and only if the homogeneous

coordinate ring of the Richardson variety Xβ
α is Gorenstein.

Remark 5.2.7. It is worth noting, at this point, that in the proof of Theorem 5.2.5 as well as in Re-
mark 5.2.6, the degeneration of quantum analogues of Richardson varieties to quantum toric varieties
is not used. Indeed, the proof of these results only relies on the notion of a symmetric quantum
graded A.S.L. as developed in Section 3.

Remark 5.2.8. We finish this work with a note concerning the normality of quantum Richardson vari-
eties and, more generally, of symmetric quantum graded algebras with a straightening law satisfying
condition (C).

1. Let R be a noetherian domain, and denote by Q its division ring of fractions. Then R is a
maximal order in Q if, whenever T is a subring of Q such that R ⊆ T ⊆ Q and there are elements
a,b ∈ R \ {0} with aT b ⊆ R , then T = R . Recall that if, in addition, R is commutative, the above notion
coincides with the usual notion of normality. Hence, we will say that a ring R is normal if it is a
noetherian domain which is a maximal order in its division ring of fractions.

2. Let Π be a distributive lattice and consider maps q : Π × Π −→ k∗ and c : inc(Π × Π) −→ k∗ .
Suppose further that standard monomials on Π are linearly independent in AΠ,q,c . As shown in
Theorem 2.7, AΠ,q,c is an integral domain. Further, AΠ,q,c is noetherian by [LR1, Lemma 1.2.3], since
it is a quantum graded A.S.L. It can be shown that AΠ,q,c is a normal ring. The natural way to
prove this goes beyond the scope of the present paper. Actually AΠ,q,c turns out to belong to a class
of natural quantum analogues of normal affine semigroup rings which can be shown to be normal
domains. We intend to study this larger class of rings in a future article.

3. Now, recall from Theorem 4.9 that if A is a symmetric quantum graded A.S.L. satisfying condition
(C), then A can be filtered by an exhaustive separated filtration F such that grF (A) is isomorphic to
an algebra of type AΠ,q,c as in point 2 above. It follows that A is a normal ring by standard results on
the maximal order property concerning filtrations and associated graded rings (see [MR, Chapter X]
or [McCR, Section 5.1.6]).

4. As a consequence of point 3 above, quantum Richardson varieties are normal rings (see Theorem
5.2.2).
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Appendix A

In the present appendix, we briefly recall the definition of Richardson varieties in the classical set-
ting. For the sake of simplicity, we work over the field C of complex numbers and confine ourselves
to Richardson varieties in the type A grassmannians. For this, we use results and notation from [GL,
Chapter 6]. Let m,n be positive integers such that 1 � m < n. We let Gm,n(C) denote the grassman-
nian of m-dimensional subspaces of Cn . Let U ∈ Gm,n(C). To an arbitrary basis {a1, . . . ,am} of U we
may associate the element a1 ∧ · · · ∧ am ∈ ∧m Cn and its image [a1 ∧ · · · ∧ am] in P(

∧m Cn). Clearly,
[a1 ∧ · · · ∧ am] is independent of the choice of the basis {a1, . . . ,am} of U . Hence, we have defined
a map p : Gm,n(C) −→ P(

∧m Cn); the famous Plücker map. As is well known, p is an embedding
and its image is a closed subset of P(

∧m Cn), so that Gm,n(C) acquires the structure of a projective
variety. We put G = SL(Cn). Recall the natural action of G on P(

∧m Cn).



316 L. Rigal, P. Zadunaisky / Journal of Algebra 372 (2012) 293–317
Let {e1, . . . , en} be the canonical basis of Cn . Identifying G with SLn(C), we get the subgroups
T , B, B− of G corresponding to diagonal, upper-triangular and lower-triangular matrices. Denote by
Πm,n the set of m-tuples (i1, . . . , im) of integers such that 1 � i1 < · · · < im � n. Further, for I =
(i1, . . . , im) ∈ Πm,n , let eI = ei1 ∧ · · · ∧ eim (of course [eI ] ∈ Gm,n). It is easy to see that {[eI ], I ∈ Πm,n}
is the set of fixed points of P(

∧m Cn) for the natural action of T . For I ∈ Πm,n , the Schubert cell
associated to I is defined as the B-orbit of [eI ]: C I = B.[eI ], while the Schubert variety, XI , associated
to I is defined as the Zarisky closure of C I in P(

∧m Cn): XI = C I . It is not difficult to show that
Schubert cells partition Gm,n . Of course, we can do the same looking at B−-orbits rather than B-

orbits. We then get opposite Schubert cells and varieties: C I = B−.[eI ] and X I = C I , for all I ∈ Πm,n .
At this point, we may define the Richardson variety X I

J associated to a pair (I, J ) of elements of Πm,n

as: X I
J = X I ∩ X J .

Let C[pI , I ∈ Πm,n] be the homogeneous coordinate ring of P(
∧m Cn). The image by p of the

grassmannian Gm,n(C) is the set of points in P(
∧m Cn) satisfying the Plücker relations. In addition,

the algebra morphism from C[pI , I ∈ Πm,n] to the polynomial ring C[Xi, j,1 � i � n,1 � j � m] send-
ing pI to the m × m (formal) minor [I] of the generic matrix (Xij) built on rows i1, . . . , im , where
I = (i1, . . . , im), induces an isomorphism of algebras between the homogeneous coordinate ring of
p(Gm,n(C)) and the subalgebra of C[Xi, j,1 � i � n,� 1 � j � m] generated by the elements [I],
I ∈ Πm,n .

Let us now endow Πm,n with the obvious product order induced by Πm,n ⊆ Nm . Consider I, J ∈
Πm,n . It can be shown that the variety X J is the intersection of p(Gm,n(C)) with the closed set of
P(

∧m Cn) defined by the vanishing of pK , for K � J . Similarly, the variety X I is the intersection of
p(Gm,n(C)) with the closed set of P(

∧m Cn) defined by the vanishing of pK , for I � K . Hence, the
variety X I

J is the intersection of p(Gm,n(C)) with the closed set of P(
∧m Cn) defined by the vanishing

of pK , for K ∈ Πm,n \ [I, J ]. Notice that Schubert and opposite Schubert varieties are special cases of
Richardson varieties since Πm,n has a lowest and a greatest element.

References

[B] G. Birkhoff, Lattice Theory, third edition, Amer. Math. Soc. Colloq. Publ., vol. XXV, American Mathematical Society, Prov-
idence, RI, 1967.

[BL] M. Brion, V. Lakshmibai, A geometric approach to standard monomial theory, Represent. Theory 7 (2003) 651–680.
[DEP] C. De Concini, D. Eisenbud, C. Procesi, Hodge Algebras, Astérisque, vol. 91, Société Mathématique de France, Paris, 1982.
[D] V. Deodhar, On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells, Invent. Math. 79 (3)

(1985) 499–511.
[GLL1] K.R. Goodearl, S. Launois, T.H. Lenagan, Totally nonnegative cells and matrix Poisson varieties, Adv. Math. 226 (2011)

779–826.
[GLL2] K.R. Goodearl, S. Launois, T.H. Lenagan, Torus-invariant prime ideals in quantum matrices, totally nonnegative cells and

symplectic leaves, Math. Z. 269 (1–2) (2011) 29–45.
[GL] N. Gonciulea, V. Lakshmibai, Flag Varieties, Travaux en Cours, vol. 63, Hermann, 2001.
[H] T. Hibi, Distributive lattices, affine semigroup rings and algebras with straightening laws, in: Commutative Algebra and

Combinatorics, Kyoto, 1985, in: Adv. Stud. Pure Math., vol. 11, North-Holland, Amsterdam, 1987, pp. 93–109.
[KLen] G.R. Krause, T.H. Lenagan, Growth of Algebras and Gelfand–Kirillov Dimension, revised edition, Grad. Stud. Math., vol. 22,

American Mathematical Society, Providence, RI, 2000.
[KL] V. Kreiman, V. Lakshmibai, Richardson varieties in the Grassmannian, in: Contributions to Automorphic Forms, Geome-

try, and Number Theory, Johns Hopkins Univ. Press, Baltimore, MD, 2004, pp. 573–597.
[LLit] V. Lakshmibai, P. Littelmann, Richardson varieties and equivariant K -theory, Special issue celebrating the 80th birthday

of Robert Steinberg, J. Algebra 260 (1) (2003) 230–260.
[LRag] V. Lakshmibai, K. Raghavan, Standard Monomial Theory. Invariant Theoretic Approach, Encyclopaedia Math. Sci.

(Invariant Theory and Algebraic Transformation Groups VIII), vol. 137, Springer-Verlag, Berlin, 2008.
[LRes] V. Lakshmibai, N. Reshetikhin, Quantum flag and Schubert schemes, in: Deformation Theory and Quantum Groups with

Applications to Mathematical Physics, Amherst, MA, 1990, in: Contemp. Math., vol. 134, American Mathematical Society,
Providence, RI, 1992, pp. 145–181.

[LL] S. Launois, T.H. Lenagan, From totally nonnegative matrices to quantum matrices and back, via Poisson geometry, in:
Proceedings of the Belfast Workshop on Algebra, Combinatorics and Dynamics, 2009, in press.

[LLR] S. Launois, T.H. Lenagan, L. Rigal, Prime ideals in the quantum Grassmannian, Selecta Math. (N.S.) 13 (4) (2008) 697–725.
[LR1] T.H. Lenagan, L. Rigal, Quantum graded algebras with a straightening law and the AS-Cohen–Macaulay property for

quantum determinantal rings and quantum Grassmannians, J. Algebra 301 (2) (2006) 670–702.
[LR2] T.H. Lenagan, L. Rigal, Quantum analogues of Schubert varieties in the Grassmannian, Glasg. Math. J. 50 (1) (2008)

55–70.



L. Rigal, P. Zadunaisky / Journal of Algebra 372 (2012) 293–317 317
[LRu] T.H. Lenagan, E.J. Russell, Cyclic orders on the quantum Grassmannian, Arab. J. Sci. Eng. Sect. C Theme Issues 33 (2)
(2008) 337–350.

[MR] G. Maury, J. Raynaud, Ordres maximaux au sens de K. Asano, Lecture Notes in Math., vol. 808, Springer-Verlag, Berlin,
1980.

[McCR] J.C. McConnell, J.C. Robson, Noncommutative Noetherian Rings, Grad. Stud. Math., vol. 30, American Mathematical Soci-
ety, Providence, RI, 2001.

[M] S. Morier-Genoud, Geometric lifting of the canonical basis and semitoric degenerations of Richardson varieties, Trans.
Amer. Math. Soc. 360 (1) (2008) 215–235.

[R] R. Richardson, Intersections of double cosets in algebraic groups, Indag. Math. (N.S.) 3 (1) (1992) 69–77.
[S] R.P. Stanley, Enumerative Combinatorics, vol. 1, Cambridge Stud. Adv. Math., vol. 49, Cambridge University Press, Cam-

bridge, 1997.
[Y1] M. Yakimov, A classification of H-primes of quantum partial flag varieties, Proc. Amer. Math. Soc. 138 (4) (2010) 1249–

1261.
[Y2] M. Yakimov, Invariant prime ideals in quantizations of nilpotent Lie algebras, Proc. Lond. Math. Soc. (3) 101 (2) (2010)

454–476.


	Quantum analogues of Richardson varieties in the grassmannian and their toric degeneration
	Introduction
	1 Reminder on distributive lattices
	2 A class of quantum toric algebras
	3 Symmetric quantum algebras with a straightening law
	4 Toric degeneration for a certain class of symmetric A.S.L.
	5 Quantum analogues of Richardson varieties
	5.1 On the quantum grassmannians
	5.2 Quantum Richardson varieties

	Acknowledgments
	References


