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In this paper, we study the basic problem of counting independent sets in a graph and,
in particular, the problem of counting antichains in a finite poset, from an algebraic per-
spective. We show that neither independence polynomials of bipartite Cohen—Macaulay
graphs nor Hilbert series of initial ideals of radical zero-dimensional complete intersec-
tions ideals, can be evaluated in polynomial time, unless # P = P. Moreover, we present
a family of radical zero-dimensional complete intersection ideals Jp associated to a finite
poset P, for which we describe a universal Grobner basis. This implies that the bottle-
neck in computing the dimension of the quotient by Jp (that is, the number of zeros of
Jp) using Grobner methods lies in the description of the standard monomials.
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1. Introduction

We approach the basic problem of counting independent sets in a graph and, in
particular, the problem of counting antichains in a finite partially ordered set,
from an algebraic perspective. We derive structural considerations and complexity
results.

The use of algebraic methods in the study of discrete problems, in particular
problems in graph theory, was pioneered by Stanley [24] and Lovéasz [20], from
the combinatorics side, and Herzog and Hibi [17], Simis and Vasconcelos [23] and
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Villarreal [26] from the commutative algebra side. The enumeration of indepen-
dent sets has been approached using Reverse Search (see [10]), the Belief Propa-
gation heuristic (see [5]) and Binary Decision Diagrams (see [27]), to name a few
techniques.

The main algebraic object we will use is the Hilbert Series of the initial mono-
mial ideal associated with a graph. The problem of computing a Hilbert Series is
NP-Complete (see [1]). There is a standard algorithm (first proposed in [21]) for
computing the Hilbert Series of a quotient C[x]/I, where I is a homogeneous ideal
in C[x]. There are some classes of ideals for which this algorithm finishes in time
polynomial in the input, e.g. Borel (see [1]) and Borel-type ideals (see [14]). Open
computer algebra systems (CoCoA [6], SINGULAR [13], Macaulay2 [12]) implement
the standard algorithm in subtly different ways. We suggest [18, Chap. 5] as a
general reference on Hilbert Series.

The connection between independent sets and commutative algebra is spear-
headed by the following construction.

Definition 1.1. Let G = (V, E) be a graph, with V' = {v1,...,v,}. The edge ideal
([23, 26]) I/, C Clz1,...,2,] of G is defined as

It = (z;xj, for all (v;,v;) € E). (1)

This ideal links independent sets in G and certain monomials. If ® is a mono-
mial not in I, (termed a standard monomial), then it encodes an independent set
S of G in this way:

v, €S & x| x°. (2)

This encoding is not one-to-one. For example, the monomials z; and x? represent
the same independent set: {v;}. We introduce a slightly modified version of If,,
with which we obtain a bijective encoding.

Definition 1.2. Let G = (V, E) be a graph. We define the modified edge ideal I
of G as

I = I}, + (2, for all v;). (3)

Notice that Ig is zero-dimensional (the origin is the only root), and that its
standard monomials are square-free, with the degree of a monomial equal to the
size of the corresponding independent set. The number of independent (or stable)
sets in G thus coincides with the k-vector space dimension of the quotient of the
polynomial ring in n variables over any field k£ by the ideal I. This dimension is
computed in [6, 12, 13] using the additivity of the Hilbert function in short exact
sequences.

In Sec. 2, we recall the definition of the Hilbert function (see (4)) and we ana-
lyze the instantiation of the standard algorithm for computing the Hilbert Series
for the ideals I. Our main result in this section shows that the recursive calls
simply correspond to counting independent sets of G that contain a pivot vertex,
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and those that do not contain it. In Sec. 3, we turn our attention to the subprob-
lem of counting the antichains of a finite poset. We present the universal reduced
Grobner Basis for a family of zero-dimensional radical ideals derived from posets.
In Sec. 4, we specialize our study in the case of Cohen—Macaulay bipartite graphs,
corresponding to Cohen-Macaulay ideals I/,. Using the characterization in [17],
we show that counting independent sets in such graphs is equivalent to evaluating
at 2 the independence polynomial of the comparability graph of a general finite
poset. Section 5 contains our complexity study. We prove that antichain polyno-
mials cannot be evaluated in polynomial time at any non-zero rational number ¢
unless P = #P. When combined with the algebraic results from the previous sec-
tions we deduce Corollaries 5.4 and 5.5 on the intractability of the evaluation of
Hilbert Series of initial ideals of zero-dimensional complete intersections and inde-
pendence polynomials of Cohen—Macaulay bipartite graphs. We close with a few
experimental observations in Sec. 6.

2. Counting Independent Sets via the Computation
of Hilbert Series

We start by recalling a few definitions concerning Hilbert Series. Let M be a pos-
itively graded finitely generated C[x]-module (e.g. the quotient C[x]/Is for some
graph G). We can write

M =P M;,

0<i

where M; is the subspace of M of degree i. The Hilbert Function (HFj;) of M
maps ¢ onto dimg(M;). The Hilbert Series (HSar) of M is the generating function

HSu(2) = Y HFpr(i)2". (4)
0<i
If M = C[x]/I for a monomial ideal I, then HF /(i) is the number of standard
monomials of degree ¢ (that is, monomials which are not in I).

If we take I = I for some graph G, as we mentioned in Sec. 1, HF /() is then
the number of independent sets of size 4 in G. In this case, the Hilbert Series of
C[x]/I¢ is a polynomial, called the independence polynomial of G. As usual, we
denote this polynomial by I(G,x). We refer the reader to [19] for a comprehensive
survey of independence polynomias.

The standard algorithm for computing HSj; hinges on the following property. If
we have a homogeneous exact sequence of finitely generated graded C[x]-modules

0—-M —-M-—M"—0, (5)
then
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Given a finitely generated graded C[x]-module M and f # 0 a homogeneous poly-
nomial of degree d, we have the following multiplication sequence

0 — [M/(0 s (f))(—d) == M — M/fM — 0, (7)

where ¢ is induced by multiplication by f. Here, (0 :5; (f)) = {g € M, such that
gf = 0}, and (—d) induces a degree shift, so that ¢ is a homogeneous map of
degree 0. Rewriting equation (6) we obtain

HS s (2) = HSpy 00 (2) + 2" HS (0., (1)) (8)

The polynomial f above is called a pivot.

Actually, the standard algorithm does not directly compute the Hilbert Series.
We can see in [18, Theorem 5.2.20] that in the case of the modified edge ideal I¢,
the Hilbert Series of M = C[z1,...,2,]/I¢ has the form

HNM(Z)
(1—2)

where HN;(2) is called the Hilbert Numerator. The algorithm computes HN s (z),
and the series is then obtained by dividing it by (1 — 2)™.

We reproduce the algorithm for computing the Hilbert Numerator of a monomial
ideal (see [18, Theorem 5.3.7]).

HSy = (9)

Algorithm 2.1. Algorithm to compute the Hilbert Numerator of a mono-
mial ideal I (called HN).

Require: A set of minimal monomial generators for the ideal I.
Ensure: The Hilbert Numerator of C[x|/I.
1: if the minimal generators of I are pairwise coprime then
2. return [[;_, (1 — 2z%), where d; is the degree of the ith generator of I.
3: else
4 Choose a monomial p as pivot.
5. f1 < HN(I : p).
6:  fo < HN(I +p).
7. return 2980 £ (2) + fo(2).
8: end if

Notice that the sets of generators of I/, and I described in (1) and (3) are min-
imal. The process of obtaining minimal sets of generators for the ensuing recursive
calls can be optimized by performing careful interreductions.

The choice of pivot must satisfy one condition. Namely,

Zdeg([ ip) < Zdeg(]) and Zdeg(] +p) < Zdeg([). (10)
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Here, > deg(I) denotes the sum of the degrees of all the minimal monomial gen-
erators of I. Intuitively, this condition says that the recursive calls are made on
“smaller” ideals, and shows that the algorithm terminates.

The program CoCoA implements this algorithm, and uses a certain strategy for
the choice of pivot in step 4. First, it chooses any variable x; appearing in the most
number of generators of I. Then it picks two random generators containing that
variable. The pivot is the highest power of x; that divides both random generators.

We present a specialized version of Algorithm 2.1, suited for the computation
of the Hilbert Series of C[x]|/Ig for any graph G.

Theorem 2.2. Let Ig be the modified edge ideal of a graph G. The general
algorithm for computing the Hilbert Series of C[x|/Ig has the specialized version
presented in Algorithm 2.3.

This algorithm has an obvious graphical interpretation. The choice of step 4 cor-
responds to choosing a node v of the graph. The recursive calls of step T correspond
to counting the independent sets of G that contain v (HScolon) and those that do
not contain v (HSpyyus).

Algorithm 2.3. Specialized algorithm to compute the HS of C[x]/Is.

Require: The list L of minimal monomial generators of I described in (3).
Ensure: The Hilbert Series of C[x]/I¢.
1: if L consists only of variables and squares of variables then
2. return (1 + 2)¥, where k is the number of variables which appear squared
in L.
3: else
4 Choose a variable x; that appears squared in L.
5. Colon < a minimal set of monomial generators of ((L) : x;).
6:  Plus < a minimal set of monomial generators of (L, z;).
7. return zHScolon(2) + HSpius(2)
8: end if

Proof. Algorithm 2.3 differs from Algorithm 2.1 in two key steps. In step 1, the
special version does not check coprimality, as is done in Algorithm 2.1. The other
difference is in step 4: The specialized version chooses a variable, instead of an
arbitrary monomial.

We make a claim that helps us understand why this specialized version is correct.
In every call to the algorithm, each of the n variables appears in L raised to the
first or to the second power. Furthermore, in each call, L contains only the powers
just mentioned and the “edge monomials” x;z; of G such that both z; and =z;
appear squared in L. This leads to an obvious graphical interpretation: The list L
represents the subgraph of GG induced by those variables that appear squared in L.
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We prove the correctness of the algorithm by showing that the choice of a pivot
in Algorithm 2.1 must always yield a variable when applied to a modified edge
ideal, and that the claim of the previous paragraph is true.

When the algorithm is originally invoked, every variable appears squared in L.
Besides the squares of variables, L contains the “edge monomials” z;z; for every
edge (i, ) of G. This proves that the claim above holds in the first call.

Assuming that the elements of L have the structure we claim, let us show that
any choice of pivot yields a variable. Suppose that we employ any conceivable
strategy for the choice of pivot, always subject to condition (10). The pivot p cannot
be a multiple of any monomial in L. If it is, then Plus = L, and the decreasing
total degree condition (10) is not satisfied. The pivot p must then be a product
of variables that appear squared in L, but it must not be divisible by any “edge
monomial.” Suppose that the pivot is the product of at least two variables. That
is, z;x; | p, where 27 and z7 are in L, and x;z; is not in L. Then Plus violates the
decreasing total degree condition (10), because it has the same generators as L, plus
p. If p =1, then Colon = L, and this violates the decreasing total degree condition.
The only valid choice is then p = x;, for some x; that appears squared in L.

Once we know that the pivot is always a variable, we can show that the claim
above holds for Plus and for Colon. In doing so, we also explain the second part of
the theorem.

The list of minimal monomial generators for Plus contains all the variables that
were raised to the first power in L. Furthermore, it must also contain the pivot x;.
The square of x; is not in Plus, because Plus is minimal, and the “edge monomials”
that contained xz;, are not present in Plus. The rest of the generators in L are
unaffected. Therefore, we have that every variable appears in Plus either squared
or raised to the first power, as we wanted to show. Plus corresponds to the graph
obtained by removing the node that corresponds to x; and all the edges incident
with it.

The analysis of Colon is somewhat similar. To obtain a minimal set of monomial
generators, we just cross out the pivot x; from every generator in L that contains
it, and then eliminate multiples. If we had an “edge monomial” x;x;, then z; is in
Colon. Therefore, the square of z; is no longer a generator, and all the “edge mono-
mials” containing x; are also missing from Colon. Again, every variable appears
either squared or raised to the first power. In this case, we remove the node cor-
responding to z;, all its adjacent nodes and all the edges incident with x; or with
any node adjacent to z;.

Let v be the node of GG associated with the pivot z;. The combination step of
the algorithm reflects the meaning of Colon and Plus: The independent sets of G
are those of Plus (i.e. those do not that contain v) and those of Colon (i.e. those
that contain v).

The algorithm terminates when there are no more “edge monomials”. Since all
the generators are variables, or squares of variables, then they are pairwise coprime
and satisfy the stopping criterion of Algorithm 2.1.
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A note is in order about the value returned in the base case. Algorithm 2.1
returns
n
[Ia-=%), (11)
i=1
where d; is the degree of the ith generator. Since in the specialized case the gener-
ators are of the form x; or 22, expression (11) has the form

(1—2)"(1+ 2)*, (12)

where k is the number of variables that appear squared in L. According to
formula (9), the value returned by Algorithm 2.3 is the Hilbert Series of
Clz1,...,xn]/IG.

All these observations show that the graphical interpretation is accurate and
that the specialized version is indeed correct. |

3. Partially Ordered Sets and Grobner Bases

In this section, we study a family of zero-dimensional radical complete intersection
polynomial ideals associated with posets, first proposed in [4].

Recall that a poset (or partially ordered set) is a set P, together with a (partial
order) relation < satisfying

e a<a,forall a e P;
e ¢ <band b < aimplies a =b, for all ¢ and b in P;
e ¢ <band b < cimplies a < ¢ for all a, b and ¢ in P.

Two elements a and b of P are comparable if a < b or if b < a. Otherwise, they are
incomparable. We will usually just write P and drop the partial order relation from
the notation.

We can associate to a poset P its comparability graph.

Definition 3.1. Let P be a poset. The comparability graph G(P) has the set P
as nodes and there is an edge between two different nodes a and b if and only if a, b
are comparable in P.

A subset S of a poset P is an antichain if all the elements of S are pairwise
incomparable in P. We write A(P) for the set of antichains of P. Note that S €
A(P) if and only if S is an independent set of G(P).

Definition 3.2. For any poset P we define the antichain polynomial A(P,x) by
A(P,x) =1(G(P),x).

Thus, the kth coefficient of A(P,z) equals the number of antichains of P with
k elements and the cardinal |A(P)| is given by the evaluation A(P,1).

1250014-7



A. Dickenstein & E. A. Tobis

Given a finite poset (P, <), we define a polynomial ideal Jp C Clz1, ..., x,] by:

Jp = <xl — H xj, for all v; € P>. (13)

v <v;

Lemma 3.3. Let P be a finite poset. Then the elements of V(Jp) are strings of
0’s and 1’s.

Proof. Leta € V(Jp). Suppose that an element v; € P is minimal. Then z; —xf €
Jp, hence a; is 0 or 1. Now, take any v;, and assume that for every v; < v; we know
that a; is 0 or 1. Note that z; — 2 [[, <, #; = zi(1 =i [],, ., @5)- If any a; is O,
then a; must be 0 too. If all a; are 1 then a;(1 — a;) = 0. O

Moreover, we have the following theorem.

Theorem 3.4 ([4]). For any finite poset P, Jp is a radical zero-dimensional ideal.
Then, it has a finite number of simple zeros. Furthermore,

V(Jp)| = |A(P)]- (14)

We now show that we can present Jp as a zero-dimensional complete intersection
by means of generators of lower degree. A standard alternate way of dealing with
a poset P is to look at the cover relation. Given a and b in P, we say that a < b
(read “b covers a”) if and only if @ < b and there is no ¢ € P such that a < ¢ < b.
Using this relation we define the ideal

Jp = <acz — H z;, for all v; € P> . (15)

v 2v;
Lemma 3.5. Let P be a finite poset. Then

Jp = Jb. (16)

Proof. It is straightforward to see that the varieties of Jp and Jp coincide. We
show that Jp is radical. Since we already know that Jp is radical, this proves the
equality.

It is enough to prove that the square-free polynomial z; — 2? is in J} for all
v; € P. We know this to be true for the minimal elements of P, by the very
definition of Jp. Suppose we have a non-minimal element v; in P. Let vj,,...,v;,
be the elements such that vj, < v;, and assume that x;, — 23 is in Jp for all .
First, we observe that x;x;, — x; is in Jp for all [. Indeed,

T T
2 2 2N e o
(sz -1) (xl - H xjk-) I H Ly, (sz - le) = Lilj — T
k=1 k=1
£l
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Now, consider the following step:

r r—1 r—1
2 | = (@ — 2z ) . 2 ,
€T; Ty Xy xT; ZTiTj,.)T; Tj, = T; Xy Ty
k=1 k=1 k=1

Since (z; — 22 [[f_, ;,) and (z; — z42;,) are in J}, we have that z; — 22 [[}_] zj,
is also in Jp. If we apply this procedure repeatedly, we eliminate variables from the
product, and eventually find that z; — 2% is in J}. m|

We now take Theorem 3.4 one step further, and give an explicit bijection between
A(P) and V(Jp).

Proposition 3.6. Let P be a finite poset. Define the function f:V (Jp) — A(P) by
f(a) ={v; € P, such that a; =1 and aj =0 for all v; > v;}.
The map f is bijective, and its inverse g: A(P) — V(Jp) is defined by

g(S) =d, where a; =1 if Jvj; € S such that v; < v, and a; =0 otherwise.

Proof. It is clear from the definition of f that no pair of elements of the subset
f(a) can be comparable for any a € V(Jp), that is, that f(a) is indeed an antichain.
Reciprocally, let S be an antichain of P and let o’ = g(S). We need to see that
ai(1 —a;[[,, <,, ai) = 0 for all 4. This is clear if aj = 0. When a; = 1, there exists
vj € S with vj; > v;. By the transitivity of the order relation we deduce that aj, =1
for all vi < v; and so the equation is satisfied.

Let a be an element of V(Jp). Let S = f(a) and ¢’ = ¢(5). We want to show
that a = a’. Suppose that a; = 1. Then Jv; € S such that v; < vj, and therefore

a; = 1. By a similar argument, if a; = 0, then a; = 0. O

We now describe the universal reduced Grobner basis of Jp = Jp.

Proposition 3.7. The universal, reduced Grébner Basis of Jp is the set Gbp of
polynomials

gb; =x? —x; Yuv;, €P,

gb(jy = miz; —x Vvu; <we

Proof. Lemma 3.3 shows that the elements of V(Jp) are strings of 0’s and 1’s.
The polynomials 27 — z; are in Gbp, and therefore the elements of V(Gbp) are also
strings of 0’s and 1’s. Let x = (x;)y,ep be a string of 0’s and 1’s. x € V(Jp) if and
only if Vv; € P, (z; = 0 & (Jv; < v; such that 2; = 0)). But this is equivalent to
x € V(Gbp). Then, Gbp is zero-dimensional, and contains a square-free univariate
polynomial in each variable (gb;). Therefore it is also radical. This shows that the
ideal generated by Gbp coincides with Jp.

We now prove that Gbp is a Grobner Basis for any monomial order <. Recall
that, given < and a non-zero polynomial p, LT (p) denotes the largest term of p,
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with respect to <. Clearly, LT<(gb;) = «7 and LT<(gb(; ;) = ®;x;. Given any two
polynomials in the set Gbp, we show that their S-polynomial is divisible by the
polynomials in (Gbp). If we let p = x;z; —x; and ¢ = zpx, — x) be two polynomials
in Gbp, all possible combinations of the indices 7, j, k£ and ¢ boil down to the
following non-trivial possibilities for (p, q) (with ¢, j, k, £ all different):

(1) (2 — @i, gy — ap) or (zixy; — x4, 2pxy; — 1) = S(p,q) = 0.

(2) (963 —xi, 2z — ;) = S(p,q) = gb; — gb([,i)'

(3) (zizj — @i, wiwe — ;) = S(p,q) = gb(j.0) — 90 (00)-

(4) (zizj — @i, opw; — ) = S(P:q) = b k) — 90k -

(5) (zizj —wiszjwe —x5) = S(P,q) = gbesy — 9b(j.40)-

6) (22 —x;, 22 —x) or (22 — x4, xrae — ok) Or (32 — x;, xRy — 2 ). In all three
7 k 7 J

cases, since the leading monomials of p and ¢ are coprime, S(p, ¢) is divisible

by (p,q).
(7) (zixj — x4, xj2; — ;). This can only hold if v; < v; and v; < v;, that is, v; = v,.

In cases (4) and (5) above, we know that gb(; ) and gb, ;), respectively, are
in Gbp, because a partial order relation is transitive. Therefore, Gbp is a Grobner
Basis.

Finally, none of the polynomials are redundant, all of the leading coefficients
are one, and the “other” monomial in each polynomial of Gbp has degree 1, so it
cannot be divisible by any leading monomial of Gbp. Therefore, Gbp is a reduced
universal Grobner Basis of Jp. O

We can count the antichains of P by studying Jp. We have seen that |A(P)| =
[V (Jp)|. It is well-known (see [8, Theorem 2.2.10]) that as Jp is radical, it holds
that

[V(Jp)| = dime(C[x]/ Jp).

The Hilbert Series algorithm could help us to compute dime(C[x]/Jp), but it
requires that the ideal Jp be homogeneous, which is not the case. This is cir-
cumvented by considering an initial ideal of Jp. If < is a monomial order and I is
an ideal, the initial ideal of LT (I) is defined by

LT<(I) = (LT<(p),p € I).
By [7, Chap. 5, Sec. 3]
dime(C[x]/I) = dime(C[x]/LT<(I)).
In particular, we have the following equality
|A(P)| = dime(C[x]/LT<(Jp)). (17)

Let Gbp be the (universal) Grobner basis of Jp in the statement of Proposi-
tion 3.7. By the definition of a Grébner Basis, it holds that for any monomial order,
LT«(Jp) = (LT<(g),g € Gbp). Note that this initial ideal has the same structure
of the ideals I in Sec. 2. In fact, it equals Ig(p).
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I~

Fig. 1. The path of length three Ps.

4. Independent Sets in Bipartite Cohen—Macaulay Graphs

Let G be a graph, and I7, its edge ideal. We say that G is a Cohen-Macaulay graph if
C[x]/I{, is a Cohen-Macaulay C[z]-module. The quotient C[x]/I¢ is always Cohen—
Macaulay, because I is zero-dimensional. Cohen—Macaulay rings and modules are
extensively studied in [16], and the article [25] covers Cohen—-Macaulay graphs.

Not every graph is Cohen—Macaulay, of course. For example, the path of length
three (see Fig. 1) has the edge ideal Jp, = (z129,x9x3), defined in Clay, zq, 23].
The quotient C[z1,x2,x3]/Jp, is not Cohen—-Macaulay. It is not even equidimen-
sional, since the zero set of Jp, consists of the plane zo = 0, together with the line
Tr1 = T3 = 0.

One particularly interesting subfamily of Cohen—Macaulay graphs are bipartite
Cohen—Macaulay graphs.

Definition 4.1. Let G = (V3 U V5, E) be a bipartite graph. Then G is a Cohen—
Macaulay graph if and only if C[x]/I/; is a Cohen-Macaulay C[z]-module.

There is an equivalent characterization, given by the following result.

Theorem 4.2 ([17]). Let G = (V4 UV, E) be a bipartite graph. We say that G
is a Cohen—Macaulay graph if |Vi| = |Va|, and the vertices Vi = {x1,...,x,} and
Vo ={y1,...,yn} can be labeled in such a way that

(1) (zi,y;) EE foralli=1,...,n;
(2) if (xs,y;) € E, theni < j;
(3) if (xs,y;) and (x;,yx) are edges, then (z;,yx) is also an edge.

There are two ways of seeing a bipartite Cohen-Macaulay graph G = (V5 U
Va2, E) as a poset. The obvious way is to set the following partial order on the nodes
of G:x <yifandonly if z =y or x € V1, y € V5 and (x,y) is an edge of G. That
is, one chooses one of the parts as the “upper” one.

The other way, which we will consider here, involves a different construction. Let
G = (V1 U Va, E) be a bipartite Cohen-Macaulay graph. We define a poset Pg as
follows. The elements of Pz are those of V;. Given z; and x;, we set z; < x; if and
only if the edge (x;,y;) is in E. From the transitivity of bipartite Cohen-Macaulay
graphs, we see that Pg is a poset.

Conversely, let P be a poset, with elements z1,...,z,.. We build a bipartite
graph Gp = (V, E) as follows. We set V = V; U Vs, with V; = {x,...,2,} and
Vo ={y1,...,yr}. We put the edges (z;,y;) in E for all i, and we have the edge
(xi,y;) if and only if z; < x; in P. In this case, the transitivity of < ensures that
G p is a bipartite Cohen—Macaulay graph.
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The following lemma is straightforward.

Lemma 4.3. The two transformations
P—Gp and G Pg
are Inverses.

We now compare the independence polynomial of a bipartite Cohen—-Macaulay
graph G with the antichain polynomial of the poset Pg.

Lemma 4.4. Let I(G,x) be the independence polynomial of a bipartite Cohen—
Macaulay graph G and let A(Pg,x) be the antichain polynomial of its associated
poset Pg. Then

I(G,z) = A(Pg, 2x).

Proof. The construction outlined above expands every element of the poset Pg
into a segment in the bipartite Cohen—Macaulay graph G. An antichain S of size k
in Pg gives rise to 2¥ independent sets of size k in the bipartite graph G, since we
can replace any x; € S by either the node x; or the node y; of G. It is clear that
any independent set of G can be seen in this way for a unique antichain S of Pg.
O

5. Complexity Results

Is it classically known that it is not possible to count the number of antichains of
a general poset (that is, to evaluate its antichain polynomial at 1) in polynomial
time unless P = #P [22]. We extend this result in Theorem 5.3 to the evalu-
ation at any non-zero rational number ¢, by a translation and specialization of
[3, Theorem 2.2] to the context of finite posets. We then use our previous results
to deduce in Corollaries 5.4 and 5.5 the hardness of evaluating the Hilbert function
of initial ideals of zero-dimensional radical ideals and the independence polynomial
of Cohen—Macaulay bipartite graphs.
We start with some definitions.

Definition 5.1. We define the lexicographic product poset P;[P] of two finite
posets P and P as the set P; X Py, ordered by the relation (z,i) < (y,j) if
x <yAx =1y =1i<j. Similarly, we define the lexicographic product graph G;[G2]
of two graphs as the set G; x Gy with (i,7) adjacent to (k,l) if and only if 4 is
adjacent to k or if ¢ = k and j is adjacent to [.

It is easy to check that Pj[P] is indeed a poset.

Given a natural number m, denote by K, the poset given by the set {1,...,m},
ordered with the usual < relation. The associated comparability graph is the com-
plete graph K,, in m nodes, whose independence polynomial equals I(K,,,z) =
1+ ma.

It is straightforward to check that the comparability graph of the lexicographic
product P [P;] of two posets equals the lexicographic product G(P;)[G(P)] of the
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respective comparability graphs. We therefore have:

Lemma 5.2. For any poset P and m € N, the comparability graph of the lexico-

graphic product P[K,,] equals the lezicographic product of the graphs G(P)[Ky,].
We are now ready to prove the following theorem.

Theorem 5.3. FEvaluating the antichain polynomial of any finite poset P at any
non-zero rational number t is #P-hard.

Proof. We mimic the arguments in [3, Theorem 2.2]. Suppose, on the contrary,
that given any poset P on n vertices, there exists an O(n*)-algorithm to compute
A(P,t) for some constant k. Then, given a poset P with n vertices, consider the
posets P[f(m] for m = 1,...,n + 1. It follows from Lemma 5.2 that we can use
the reasoning in [3, Theorem 2.2] to deduce that A(P,mt) = A(P[K],t). In fact,
by [2, Theorem 1)), A(P[K]m,t) = A(P,A(K,,,t) — 1) = A(P,mt). As the posets
P[f(m], m = 1,...,n+1 can be constructed in polynomial time from the data of P, it
would be possible to compute A(P, mt) in polynomial time form =1,...,n+1. But
then, the coefficients i; of A(P,x) = Z?:o i;27 would be computed in polynomial
time by solving the (n+1) x (n+1) linear system with invertible matrix M = (M,;)

given by M;; = (jt)" i, j=1,...,n+ 1.
It follows that the number of antichains |A(P)| of P would be computable in
polynomial time by adding ; ;- But this counting problem is #P-complete [22].
O

Combining this complexity results with the algebraic results of the previous
sections, we have the following two corollaries.

Corollary 5.4. No algorithm can evaluate the Hilbert Series at a fixed non-zero
rational number t in polynomial time when applied to initial ideals of radical zero-
dimensional complete intersections, unless #P = P.

Proof. By the results of Secs. 2 and 3, the Hilbert Series of the initial ideal I (p) of
the radical zero-dimensional ideal Jp associated to any poset, equals the antichain
polynomial A(P, ). The result follows from Theorem 5.3. |

Corollary 5.5. There can be no polynomial algorithm to evaluate at any non-zero
rational number t the independence polynomial of bipartite Cohen—Macaulay graphs
unless #P = P.

Proof. By Lemma 4.4, the independence polynomial I(G, p) of a bipartite Cohen—
Macaulay graph G and the antichain polynomial A(Pg,x) of its associated poset
Pg are related by the equality I(G, x) = A(Pg,2x). So, any polynomial algorithm
to evaluate I(G,t/2) in polynomial time for any Cohen-Macaulay graph G, would
allow us to evaluate A(P,t) in polynomial time for any poset by Lemma 4.3. The
result now follows from Theorem 5.3. |
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6. Some Experimental Observations

We tested the three Computer Algebra Systems CoCoA, SINGULAR and Macaulay 2.
The examples we used were the posets consisting of the power set of {1,...,n},
ordered by inclusion (Boolean lattice). Of the three systems, only CoCoA managed
to count the antichains for n = 7. These numbers (called Dedekind numbers) are
known for n up to 13. However, those computations required many hours of super-
computer time [15].

The strategy employed by CoCoA for the Hilbert Numerator algorithm seems to
be generally good. We made some observations about it in [9]. We have also tested
a recent software package, Edgeldeals [11]. Edgeldeals allows us to compute the
Hilbert Series of a modified edge ideal of a graph G by computing the f-vector of
the simplicial complex associated with the edge ideal of G. The simplicial complex
also contains a description of the standard monomials of the modified edge ideal of
G. The computation of both objects (the f-vector and the standard monomials) was
faster using Edgeldeals for the Boolean lattice, compared to the native Macaulay
2 implementation of Hilbert Series, for n up to 6.
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