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The  topological  derivative  measures  the  sensitivity  of  a given  shape  functional  with  respect  to  an infinites-
imal  singular  domain  perturbation.  According  to the  literature,  the  topological  derivative  has  been
fully  developed  for a wide  range  of  physical  phenomenon  modeled  by partial  differential  equations,
considering  homogeneous  and  isotropic  constitutive  behavior.  In  fact,  only  a few  works  dealing  with
heterogeneous  and  anisotropic  material  behavior  can  be  found  in  the  literature,  and,  in general,  the
derived  formulas  are  given  in  an  abstract  form.  In  this  work,  we  derive  the  topological  derivative  in  its
opological asymptotic analysis
eterogeneous and anisotropic heat
iffusion
eat conductor topology optimization

closed  form  for the  total  potential  energy  associated  to  an anisotropic  and  heterogeneous  heat  diffusion
problem,  when  a small  circular  inclusion  of  the  same  nature  of  the  bulk  phase  is  introduced  at an  arbitrary
point  of  the  domain.  In addition,  we provide  a  full mathematical  justification  for the  derived  formula  and
develop  precise  estimates  for  the  remainders  of the  topological  asymptotic  expansion.  Finally,  the  influ-
ence of  the  heterogeneity  and  anisotropy  are shown  through  some  numerical  examples  of  heat  conductor
topology  optimization.
. Introduction

The topological derivative measures the sensitivity of a
iven shape functional with respect to an infinitesimal singular
omain perturbation, such as the insertion of holes, inclusions,
ource-terms or even cracks (Eschenauer et al., 1994). The topo-
ogical derivative was rigorously introduced by Sokołowski and
okołowski (1999).  Since then, this concept has proved to be
xtremely useful in the treatment of a wide range of problems,
or instance, topology optimization (Amstutz and Novotny, 2010;
ovotny et al., 2007), inverse analysis (Amstutz et al., 2005;
intermüller et al., 2012) and image processing (Hintermüller and
aurain, 2009; Larrabide et al., 2008), and has became a subject
f intensive research. See, for instance, applications of the topo-
ogical derivative in the multi-scale constitutive modeling context
Amstutz et al., 2010; Giusti et al., 2009) and fracture mechanics
ensitivity analysis (Goethem and Novotny, 2010). Concerning the
heoretical development of the topological asymptotic analysis, the

eader may  refer to the papers by Amstutz (2006) and Nazarov and
okołowski (2003),  for instance.

∗ Corresponding author.
E-mail addresses: sgiusti@civil.frc.utn.edu.ar (S.M. Giusti), novotny@lncc.br

A.A. Novotny).

093-6413/$ – see front matter ©  2012 Elsevier Ltd. All rights reserved.
ttp://dx.doi.org/10.1016/j.mechrescom.2012.08.005
© 2012 Elsevier Ltd. All rights reserved.

In order to introduce these concepts, let us consider a bounded
domain  ̋ ⊂ R

2, which is subject to a nonsmooth perturbation con-
fined in a small ball Bε(x̂) of size ε and center at x̂, as shown in Fig. 1.
We introduce a characteristic function x �→ ��(x), x ∈ R

2, associated
to the unperturbed domain, given by

��(x) :=
{

1 if x ∈ ˝

0 if x /∈ ˝
. (1)

Then, we define a characteristic function associated to the topo-
logically perturbed domain of the form x �→ ��ε(x̂), x ∈ R

2. In the
case of a perforation, for instance, ��ε(x̂) := �ε(x̂) = �� − �

Bε(x̂)
and

the perforated domain is obtained as ˝ε(x̂) =  ̋ \ Bε(x̂). Then, we
assume that a given shape functional  (�ε(x̂)), associated to the
topologically perturbed domain, admits the following topological
asymptotic expansion

 (�ε(x̂)) =  (��) + f (ε)DT (x̂) + o(f (ε)) , (2)

where  (��) is the shape functional associated to the original
(unperturbed) domain and f(ε) is a positive function such that
f(ε) → 0, when ε → 0. The function x̂ �→ DT (x̂) is called the topo-
logical derivative of   at x̂.  Therefore, this derivative can be seen as
a first order correction of  (� ) to approximate  (�ε(x̂)). In fact,
�

after rearranging (2) we have

 (�ε(x̂)) −  (��)
f (ε)

= DT (x̂) + o(f (ε))
f (ε)

. (3)

dx.doi.org/10.1016/j.mechrescom.2012.08.005
http://www.sciencedirect.com/science/journal/00936413
http://www.elsevier.com/locate/mechrescom
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ε :=
{

1 in  ̋ \ Bε


 in Bε
. (9)
Fig. 1. Topologic

he limit passage ε → 0 in the above expression leads to

T (x̂) = lim
ε→0

 (�ε(x̂)) −  (��)
f (ε)

. (4)

ince we are dealing with singular domain perturbations, the shape
unctionals  (�ε(x̂)) and  (��) are associated to topologically dif-
erent domains. Therefore, the above limit is not trivial to calculate.
n particular, we need to perform an asymptotic analysis of the
hape functional  (�ε(x̂)) with respect to the small parameter ε.

According to the literature, the topological derivative has been
ully developed for a wide range of physical phenomenon modeled
y partial differential equations, considering homogeneous and

sotropic constitutive behavior. In fact, only a few works dealing
ith heterogeneous and anisotropic material behavior can be found

n the literature, and, in general, the derived formulas are given in
n abstract form (see, for instance, Cardone et al. (2010)). In par-
icular, the topological sensitivity associated to the nucleation of

 hole in a domain characterized by an orthotropic and homoge-
eous heat diffusion problem was calculated by Sokołowski and
okołowski (1999).  In order to simplify the analysis, the domain
as perturbed by introducing an elliptical hole oriented in the
irections of the orthotropy and with semi-axis proportional to the
aterial properties coefficients in each orthogonal direction. More

ecently in Giusti et al. (2010),  the previous result was extended
y considering as topological perturbation a small circular inclu-
ion of the same nature as the bulk material, instead of an elliptical
ole. In this work, we derive the topological derivative in its closed

orm for the total potential energy associated to an anisotropic
nd heterogeneous heat diffusion problem, when a small circu-
ar inclusion of the same nature of the bulk phase is introduced
t an arbitrary point of the domain. In addition, we  provide a full
athematical justification for the derived formula and develop

recise estimates for the remainders of the topological asymp-
otic expansion. Finally, the influence of the heterogeneity and
nisotropy are shown through some numerical examples of heat
onductor topology optimization. We  note that this result can be
pplied in technological research areas such as topology design of
iezoresistive membranes. In fact, under a deformation process,
he constitutive properties of such membranes change according
o the stress state. Hence, their material properties become highly
nisotropic and heterogeneous.

This paper is organized as follows. Section 2 describes the
odel associated to an anisotropic and heterogeneous heat dif-

usion problem. In Section 3, we present the main result of the
aper: a closed formula for the topological derivative. In Section 4

s presented a numerical experiment showing the influence of the
onductivity tensor in the optimal design of heat conductor. The
aper ends in Section 5 where concluding remarks are presented.
. Formulation of the problem

As mentioned in the previous section, the topological asymp-
otic analysis of the total potential energy associated to an
ivative concept.

anisotropic and heterogeneous heat diffusion problem is calcu-
lated. Thus, the unperturbed shape functional is defined as:

 (��) := J�� (�) = 1
2

∫
�

K∇� · ∇� +
∫
�N

q� , (5)

where K = K(x) is a symmetric second order conductivity tensor and
� is solution of the following variational problem: find the field
� ∈ U,  such that∫
�

K∇� · ∇� +
∫
�N

q� = 0 ∀� ∈ V . (6)

In the variational problem (6) the set U of admissible functions and
the space V of admissible variations are given by

U :=
{
� ∈ H1(˝)  : �|�D = �

}
, V :=

{
� ∈ H1(˝) : �|�D = 0

}
. (7)

In addition, ∂  ̋ = �N ∪ �D with �N∩ �D = ∅,  where �N and �D are
Neumann and Dirichlet boundaries, respectively. Thus, � is a Dirich-
let data on �D and q is a Neumann data on �N, both assumed to be
smooth enough, see Fig. 2.

In our particular case, we  consider a perturbation on the domain
given by the nucleation of a small circular inclusion with conduc-
tivity 
K, where the parameter 
 ∈ [0, ∞)  represents the contrast
in the material property. Taking into account the definition of the
characteristic function associated to the perturbed domain �ε(x̂) =
�� − (1 − 
)�Bε(x̂), the perturbed shape functional can be written
as:

 (�ε(x̂)) := J�ε (�ε) = 1
2

∫
�


εK∇�ε · ∇�ε +
∫
�N

q�ε , (8)

where parameter 
ε is defined as
Fig. 2. Formulation of the problem.
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n addition, in (8) the function �ε is the solution of the following
ariational problem: find the field �ε ∈ Uε, such that

�


εK∇�ε · ∇� +
∫
�N

q� = 0 ∀� ∈ Vε , (10)

nd the set Uε and the space Vε are defined as

ε := {� ∈ U : ��� = 0 on ∂Bε}, Vε := {� ∈ V : ���  = 0 on ∂Bε}, (11)

here we use �(·) � to denotes the jump of function (·) across the
oundary ∂Bε. Note that the domain  ̋ is topologically perturbed by
he introduction of an inclusion Bε(x̂) of the same nature as the bulk

aterial, but with contrast 
 . Finally, the Euler–Lagrange equation
ssociated to the variational problem (10) reads: find field �ε, such
hat

div
(

εK∇�ε

)
= 0 in ˝

�ε = � on �D

−K∇�ε · n = q on �N

��ε�  = 0 on ∂Bε

�
εK∇�ε�  · n = 0 on ∂Bε

. (12)

. Topological derivative

In this Section we present the main result of this work: a
losed formula for the topological derivative of the total potential
nergy associated to an anisotropic and heterogeneous heat diffu-
ion problem. Tacking into account the problems defined over the
riginal and perturbed domains, we can choose an admissible test
unction � = �ε− �. Then the state equations, given by (6) and (10),
an be respectively written as

�

K∇� · ∇(�ε − �) +
∫
�N

q(�ε − �) = 0, (13)

�


εK∇�ε · ∇(�ε − �) +
∫
�N

q(�ε − �) = 0. (14)

fter rearranging the above expressions, we obtain

�

K∇� · ∇� =
∫
�

K∇�ε · ∇� +
∫
�N

q(�ε − �), (15)

�


εK∇�ε · ∇�ε =
∫
�


εK∇�ε · ∇� −
∫
�N

q(�ε − �). (16)

Introducing the above expressions in the definition of the shape
unctionals  (��) and  (�ε(x̂)), we have that the total potential
nergy associated to both problems can be written alternatively as

(��) = 1
2

∫
�

K∇�ε · ∇� + 1
2

∫
�N

q(�ε + �), (17)

(�ε(x̂)) = 1
2

∫
�


εK∇�ε · ∇� + 1
2

∫
�N

q(�ε + �). (18)

With the above results in hand, the difference of the shape
unctionals associated to the unperturbed and perturbed problems
eads

1
∫

1
∫

(�ε(x̂)) −  (��) =
2

�


εK∇�ε · ∇� −
2

�

K∇�ε · ∇�. (19)

Next, by considering the definition of the contrast 
ε in
he previous results, we have that the difference of the total
rch Communications 46 (2012) 26– 33

potential energy is given by an integral concentrated in the inclu-
sion Bε, namely

 (�ε(x̂)) −  (��) = −1
2

(1 − 
)

∫
Bε

K∇�ε · ∇�. (20)

Let us assume that the conductivity tensor K(x) is smooth
enough such that it admits an expansion in Taylor series around the
point x̂ of the form K(x) = K(x̂) + ∇K(�)(x − x̂), where � ∈ (x, x̂). In
order to analytically solve the above integral, we introduce the fol-
lowing ansatz for the solution associated to the perturbed problem
�ε:

�ε(x) = �(x) + wε(x) + �̃ε(x), (21)

where the function wε is the solution of the following exterior
problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

div
(

εK(x̂)∇wε

)
= 0 in R

2

wε → 0 at ∞
�wε�  = 0 on ∂Bε

�
εK(x̂)∇wε�  · n = (1 − 
)K(x̂)∇�(x̂) · n on ∂Bε

, (22)

and the remainder �̃ε must satisfy the following equations:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

div(
εK∇�̃ε) = div(
ε∇K(�)(x − x̂)∇wε) in ˝

�̃ε = −wε on �D

K∇�̃ε · n = K∇wε · n on �N

�̃�ε�  = 0 on ∂Bε

�
εK∇�̃ε�  · n = −ε�
ε (∇K (�)n)
(
∇�(x̂) + ∇wε

)
�  · n on ∂Bε

, (23)

which yields the following estimate ‖�̃ε‖H1(˝) ≤ Cε2, with the con-
stant C independent of ε (see Appendix A). Then, by introducing the
first order Pólya–Szegö polarization tensor P (Ammari and Kang,
2004; Pólya and Szegö, 1951), the solution of the exterior problem
(22) can be written as:

wε(x)|
R2\Bε(x̂)

= ε2

‖x − x̂‖2
P∇�(x̂) · (x − x̂) , (24)

wε(x)|Bε(x̂) = P∇�(x̂) · (x − x̂) . (25)

Taking into account (21), the difference between the shape func-
tionals (20) reads

 (�ε(x̂)) −  (��) = −1
2

(1 − 
)

∫
Bε

K(∇� + ∇wε) · ∇� + E(ε), (26)

where the term E(ε) is given by

E(ε) = −1
2

(1 − 
)

∫
Bε

K∇�̃ε · ∇�, (27)

which has the following estimate E(ε) = o(ε2) as shown in Appendix
A. Next, by using the interior elliptic regularity of the function � in
Bε, the difference of the shape functionals (26) satisfies the follow-
ing identity:

 (�ε(x̂)) −  (��) = − 1
2

(1 − 
)

∫
Bε

K(x̂)
(
∇�(x̂) + ∇wε

)
· ∇�(x̂) + o(ε2), (28)

where the expansion of the tensor K(x) has been used again.

With the results (21), (24) and (25) in hand, the above expression

can be analytically solved, leading to

 (�ε(x̂)) −  (��) = �ε2R�TR∇�(x̂) · ∇�(x̂) + o(ε2), (29)



 Research Communications 46 (2012) 26– 33 29

w
t

T

w
w
c

S

t
u

D

t
a
e
t
a
i
e
d

R
t
p
w

•

•

R
o
i
f

•

•

4

o
c
t
r

S.M. Giusti, A.A. Novotny / Mechanics

here R is the rotation matrix that diagonalizes the conductivity
ensor K at the point x̂, the matrix T is given by

 = −
√

det(K̃(x̂))K̃(x̂)S(x̂), (30)

ith K̃(x̂) the diagonalized conductivity tensor at the point x̂,
ith eigenvalues k1 and k2, and the matrix S(x̂) depending on the

oefficients  ̨ = 1/
√
k1 and  ̌ = 1/

√
k2, that is

(x̂) = 1
2

(1 − 
)˛ˇ

⎛⎜⎝
 ̨ + ˇ

 ̨ + 
ˇ
0

0
 ̨ + ˇ

 ̌ + 
˛

⎞⎟⎠ . (31)

Finally, using the definition for the topological derivative (4) and
aking f(ε) = |Bε| = �ε2, the topological derivative for the problem
nder consideration is given explicitly by

T (x̂) = R�TR∇�(x̂) · ∇�(x̂) ∀x̂ ∈ ˝.  (32)

Note that in the topological derivative formula, the constitu-
ive properties and the gradient of the field � are evaluated at an
rbitrary point x̂ of the original domain. This means that in order to
valuate the topological derivative (32), we need to solve the unper-
urbed anisotropic and heterogeneous heat diffusion problem (6)
nd determine the bases (eigenvectors) in which the conductiv-
ty tensor is diagonal. In others words, the rotation matrix R and
igenvalues k1 and k2 should be determined for each point of the
omain.

emark 3.1. From the final expression for the topological deriva-
ive associated to the anisotropic and heterogeneous heat diffusion
roblem (32), we can analyze the limits cases of the parameter 
 ,
hich are:

ideal thermal insulator (
 → 0):

S(x̂) = 1
2
˛ˇ

⎛⎜⎝
 ̨ + ˇ

˛
0

0
˛ + ˇ

ˇ

⎞⎟⎠ ∀x̂ ∈  ̋ , (33)

ideal thermal conductor (
→ ∞):

S(x̂) = −1
2
˛ˇ

⎛⎜⎝  ̨ + ˇ

ˇ
0

0
˛ + ˇ

˛

⎞⎟⎠ ∀x̂ ∈  ̋ . (34)

emark 3.2. It is interesting to observe that for an homogeneous
rthotropic or isotropic material behavior, we have R = I. In addition,
n the second case we have k1 = k2 = k. Then, the final expressions
or the topological derivative (32) degenerates to:

orthotropic material behavior (Giusti et al. (2010)):

DT (x̂) = −
√

det(K̃)K̃S∇�(x̂) · ∇�(x̂) ∀x̂ ∈  ̋ , (35)

isotropic material behavior (Amstutz (2006)):

DT (x̂) = −k1 − 


1 + 

∇�(x̂) · ∇�(x̂) ∀x̂ ∈  ̋ . (36)

. Numerical example

To illustrate the applicability of expression (32) in the context

f topology optimization, in this section we present an example
onsidering different heterogeneous and anisotropic conductivity
ensors K(x). To this end we use the topology optimization algo-
ithm proposed by Amstutz and Andrä (2006).  In this example we
Fig. 3. Domain of the numerical example.

consider a square domain  ̋ = (0, 1.0) × (0, 1.0), subjected to Neu-
mann data q = 1.0 on �N1 and �N2 and homogeneous Dirichlet data
on �D1 and �D2 . The remainder parts of the boundary remain iso-
lated. The domain and boundary conditions for this example are
shown in Fig. 3, where a = 0.2. The volume constraint is chosen to
be 80% of the initial volume.

In this example, we  explore the influence of the heterogene-
ity and anisotropy of the conductivity tensor K(x) in the numerical
results. We  also present the obtained results for the homogeneous
case. The conductivity matrix K(x) is constructed as:

K(x) = Kipj(x) with i ∈ [a, b, c] and j ∈ [a, b, c, d] , (37)

where Ki is a constant matrix and pi(x) are smooth functions that
depend on the coordinate system x = (x1, x2). In particular, four dif-
ferent functions pi(x) are introduced, see Fig. 4, which are:

pa(x1, x2) = 1
2

(x1 + x2) + 1; (38)

pb(x1, x2) = 1
2

(x2
1 + x2

2) + 1; (39)

pc(x1, x2) = 1
2

cos(10x1) cos(20x2) + 3
2

; (40)

pd(x1, x2) = 1
2

cos(2x1) sin(10x2) + 3
2
. (41)

The constant matrixes Ki used in the numerical experiments are
given by

Ka =
[

1.0 0.5

0.5 1.0

]
; Kb =

[
1.0 0.5

0.5 2.0

]
; Kc =

[
1.0 0.5

0.5 3.0

]
, (42)

and the parameter 
 is fixed as 0.001.
In Figs. 5–9 we show the obtained topologies for the homo-

geneous and nonhomogeneous anisotropic material properties
previously presented. According to Fig. 5, the results for the homo-
geneous case are qualitatively similar between them. This seems to
indicate that the given anisotropy in the conductivity tensor does
not affect the optimal topology, at least for this benchmark exam-
ple. However, in the other cases the optimal topologies are strongly
dependent on the heterogeneity profiles pi(x). In fact, in some of
the obtained results, the topologies change drastically when the
anisotropy of the tensor K becomes stronger, as can be seen in
Figs. 6–9.
5. Final remarks

An analytical expression for the topological derivative of
the total potential energy associated to an anisotropic and
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Fig. 4. Non-homogeneity profile pi(x).

Fig. 5. Optimized topologies for anisotropic homogeneous case.

Fig. 6. Optimized topologies for anisotropic nonhomogeneous case pa(x1, x2).
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Fig. 7. Optimized topologies for anisotropic nonhomogeneous case pb(x1, x2).

Fig. 8. Optimized topologies for anisotropic nonhomogeneous case pc(x1, x2).
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Fig. 9. Optimized topologies for ani

eterogeneous heat diffusion problem, when a circular inclusion
f the same nature as the bulk material is introduced at an arbi-
rary point of the domain, has been derived. From the asymptotic
nalysis, it was proved that the heterogeneous behavior of the
aterial properties does not contribute to the first order topo-

ogical derivative. The final formula is a general simple analytical
xpression in terms of the solution of the state equation and the
onstitutive parameters evaluated at each point of the unperturbed
omain. In fact, from the obtained result, the classical expression
or the topological derivative for orthotropic and isotropic consti-
utive properties has been derived as particular cases. Finally, we

emark that this information can be potentially used, as shown in
he numerical example, in a number of applications of practical
nterest such as, for instance, inverse problem, image restora-
ion, design and optimization of mechanical, thermal or electronic
ic nonhomogeneous case pd(x1, x2).

devices designed to achieve a specified behavior. In particular, the
constitutive behavior of piezoresistive membranes, under a defor-
mation process, becomes highly anisotropic and heterogeneous.
Therefore, the obtained result can be directly applied in the topol-
ogy design of such membranes.

Acknowledgments

This research was partly supported by CICAL program from the
Ministry of Science of the Province of Cordoba and the National
Agency for Scientific Promotion, Argentina, and by CNPq (Brazil-

ian Research Council) and FAPERJ (Research Foundation of the
State of Rio de Janeiro) under grants 470597/2010-0 and E-
26/102.204/2009, respectively. All of this support is gratefully
acknowledged.



3  Resea

A

i
t
I
i
t

D
t
t

g

g

g

g

g

L
D

t∫
w

Ũ
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ppendix A. Estimation of the remainders

In this section we proceed with the estimation of the remainders
n the topological asymptotic expansion used in the derivation of
he topological derivative expression (32) presented in Section 3.
n particular, we study the asymptotic behavior of the remainder �̃ε
n (23) and the residue E(ε) defined in (27). Let us start introducing
he following auxiliary functions:

efinition 1. Let wε and � be solutions to (22) and (6),  respec-
ively. Then, we introduce the following functions independent of
he small parameter ε:

1 = (1 − 
)(∇K(�)n)∇�(x̂) · n on ∂Bε, ∀� ∈ (x, x̂), (A.1)

2 = −ε−2K(x̂)∇wε(x) · n on �N, (A.2)

3 = −ε−2wε on �D, (A.3)

4 = ε−2
ε∇K(�)(x − x̂)∇wε in ˝,  ∀� ∈ (x, x̂), (A.4)

5 = ε−2∇K(�)(x − x̂)∇wε · n on �D. (A.5)

emma  1. Let us consider the functions gi, for i = 1, . . .,  5, given in

efinition 1 and let �̃ε be a solution to (23) or equivalently a solution

o the following variational problem: Find �̃ε ∈ Ũε, such that

�


εK∇�̃ε · ∇� = −ε2

∫
�

g4 · ∇� + ε2

∫
�N

g2� + ε

∫
∂Bε

g1� ∀� ∈ Ṽε , (A.6)

here the set Ũε and the space Ṽε are defined as

ε :=
{
� ∈ H1(˝)  : ���  = 0 on ∂Bε, � = ε2g3 on �D

}
, (A.7)

ε :=
{
� ∈ H1(˝)  : ���  = 0 on ∂Bε, � = 0 on �D

}
. (A.8)

hen, for the tensor K smooth enough, we have the following estimate
or the solution to (A.6):

�̃ε‖H1(˝) ≤ Cε2, (A.9)

ith constant C independent of ε.

roof. By taking � = �̃ε − ϕε in (A.6), where ϕε is the lifting of
he Dirichlet boundary data ε2g3 on �D, and after performing an
ntegration by parts, we have∫
�


εK∇�̃ε · ∇�̃ε = −ε2

∫
�

g4 · ∇�̃ε + ε2

∫
�N

g2̃�ε + ε

∫
∂Bε

g1̃�ε

+ε2

∫
�D

(K∇�̃ε · n)g3 + ε2

∫
�D

g5̃�ε,

(A.10)

ere we have considered the restriction of the function �̃ε on the
oundary �D. From the Cauchy–Schwarz inequality we obtain∫

�

εK∇�̃ε · ∇�̃ε ≤ ε2‖g4‖L2(˝)‖∇�̃ε‖L2(˝) + ε2‖g2‖H−1/2(�N ) ‖̃�ε‖H1/2(�N )

+ε‖g1‖H−1/2(∂Bε) ‖̃�ε‖H1/2(∂Bε) + ε2‖g3‖H1/2(�D)‖K∇�̃ε · n‖H−1/2(�D)

+ε2‖g5‖H−1/2(�D) ‖̃�ε‖H1/2(�D).

(A.11)

Taking into account the trace theorem, we have∫
�


εK∇�̃ε · ∇�̃ε ≤ ε2C1‖�̃ε‖H1(˝) + ε2C2‖�̃ε‖H1(˝)

+ε‖g1‖L2(Bε)‖�̃ε‖H1(Bε)

+ε2C3‖�̃ε‖H1(˝) + ε2C4‖�̃ε‖H1(˝),

≤ ε2C1‖�̃ε‖H1(˝) + ε2C2‖�̃ε‖H1(˝)

+ε2C5‖�̃ε‖ 1

(A.12)
H (Bε)

+ε2C3‖�̃ε‖H1(˝) + ε2C4‖�̃ε‖H1(˝),

≤ ε2C6‖�̃ε‖H1(˝),
rch Communications 46 (2012) 26– 33

where we have used the interior elliptic regularity of the function
� and the regularity of the tensor K. Next, from coercivity of the
bilinear form on the left-hand side of (A.6), we have∫
�


εK∇�̃ε · ∇�̃ε ≥ c‖�̃ε‖2
H1(˝)

. (A.13)

Finally, from (A.12) and (A.13),  we obtain

‖�̃ε‖H1(˝) ≤ Cε2, (A.14)

which leads to the result, with C = C6/c independent of ε.

Lemma  2. Let �̃ε and � be solutions to (23) and (6),  respectively.
Then, we have the following estimate for the remainder E(ε) in (27):

1
2

(1 − 
)

∫
Bε

K∇�̃ε(x) · ∇� = o(ε2). (A.15)

Proof. From the Cauchy–Schwarz inequality we  obtain

E(ε) = −1
2

(1 − 
)

∫
Bε

K∇�̃ε(x) · ∇�

≤ C1‖∇�‖L2(Bε)‖∇�̃ε‖L2(Bε)

≤ εC2‖∇�̃ε‖L2(Bε)

≤ εC3‖∇�̃ε‖L2(˝)

≤ εC4‖�̃ε‖H1(˝)

(A.16)

where we have used the interior elliptic regularity of the function
�. Next, by taking into account Lemma  1, we  have

E(ε) ≤ ε3C , (A.17)

which leads to the result.
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