
W
eb

 S
er

vi
ce

s

48 	 Published by the IEEE Computer Society	 1089-7801/10/$26.00 © 2010 IEEE� IEEE INTERNET COMPUTING

F rom their origins, Web service
technologies were conceived for
enabling Web-based application

reuse. As Ian Foster stated, “Web ser-
vices have little value if others can-
not discover, access, and make sense
of them.”1 Service providers should
clearly describe what a Web service
offers (making sense of the service)
and how to use it (accessing the ser-
vice). Service descriptions are mostly
brought down to Earth using the Web
Services Description Language (WSDL),
an XML dialect sponsored by the W3C
(www.w3.org/TR/wsdl). WSDL docu-
ments are crucial in enabling third
parties to make sense of services and
access them. Such descriptions also
play an important role in discovering
services2,3 because Web service search

engines rely on WSDL documents to
support discovery.4,5 Third parties must
be able to achieve all three functions
for WSDL documents to be of use.

Despite service descriptions’ impor-
tance, consensus doesn’t yet exist on
how to create them. For instance, fol-
lowing the principles of model-driven
architecture, the focus should be on
how the service problem domain is
modeled rather than on how providers
developed the service or how its offered
functionality is exposed.6 Furthermore,
a dichotomy exists between describing
a service before implementing it and
vice versa. We see the glaring headline
“code first vs. contract first” every time
we look around — on the Internet, in
blogs, and even in magazines. Broadly,
code first, means inferring a WSDL

Although Web service technologies promote reuse, Web Services Description

Language (WSDL) documents that are supposed to describe the API

that services offer often fail to do so properly. Therefore, finding services,

understanding what they do, and reusing them are challenging tasks. The

authors describe the most common errors they’ve found in real WSDL

documents, explain how these errors impact service discovery, and present

some guidelines for revising them.

Marco Crasso,
Juan Manuel Rodriguez,
Alejandro Zunino,
and Marcelo Campo
Universidad Nacional del Centro
de la provincia de Buenos Aires

Revising WSDL Documents:
Why and How

SEPTEMBER/OCTOBER 2010� 49

Revising WSDL Documents

document from a service implementation,
whereas contract first means describing the ser-
vice before implementing it. Both approaches
have pros and cons, making it impossible to
claim that one over the other will always be a
better choice.

Independent of how services were cre-
ated, however, service providers should always
“revise” service descriptions to ensure that they
meet the three criteria for third-party reuse.
Although this suggestion might sound obvious,
paradoxically, developers tend to create descrip-
tions that hinder services’ understandability
and discoverability, as several researchers have
pointed out.2,3,7–9 This situation motivated us to
survey common mistakes that service providers
should avoid when creating WSDL documents,
and create guidelines to correct them.

Common Mistakes in WSDL Documents
With service-oriented architecture (SOA), sys-
tems are composed of independent software
components, called services, that interact with
each other through remote call mechanisms.
When developers implement such services using
standard Web languages and protocols, we call
them Web services. To access a Web service, a
service consumer must obtain the associated
WSDL document. Commonly, WSDL documents
are made available through Web service search
engines representing a crossroad in the path
of service providers and consumers. A typical
WSDL document is structured as sets of inter-
faces, called port types, that consist of opera-
tions with input, output, and, optionally, fault
messages. Additionally, each port type is linked
to one or more access protocols, such as SOAP
or HTTP, via bindings. Operation messages
have one or more parts for transporting XML
data defined using the XML Schema Definition
(XSD). Each element of a service description
has a name and might have a textual comment
associated with it. We can summarize WSDL
grammar as Figure 1 shows.

We’ve analyzed 391 WSDL documents gath-
ered from the Internet3 and found that the func-
tionality of many would be hard for third-party
consumers to understand. We extrapolated
poor practices found in the surveyed WSDL
documents from well-known bad practices for
coding component interfaces, using other pro-
gramming paradigms — such as structured and
object-oriented ones — to analyze these bad

practices’ implications and suggest solutions to
them in the context of Web services.

First, we noted that developers seem to
take little care of the names and comments in
WSDL documents. Nobody would argue that
commenting source code is a good practice,
but fewer than 50 percent of the documents in
the analyzed dataset have some documenta-
tion. This percentage is in accord with findings
from Jianchun Fan and Subbaras Kambham-
pati, who analyzed comments from a different
set of WSDL documents in 2005.8 Furthermore,
we detected that part names are commonly
related to their role in the operation or the sup-
ported communication protocols — the names
we encountered most frequently were param-
eters, body, and return — but don’t give an
idea of what they represent. This is undesirable
because, when WSDL elements are undocu-
mented, names are the only available element
description. In Amazon’s AWSECommerce ser-
vice (http://webservices.amazon.com/AWSE
CommerceService/AWSECommerceService.

<documentation />?

<types>?
 <documentation />?
 < schema />*
</types>
<message name=”nmtoken”>*
 <documentation />?
 <part name=”nmtoken” element=”qname”?
type=”qname”?/>*
</message>
<portType name=”nmtoken”>*
 <documentation />?
 <operation name=”nmtoken”>*
 <documentation />?
 <input name=”nmtoken”? message=”qname”>?
 <documentation />?
 </input>
 <output name=”nmtoken”? message=”qname”>?
 <documentation />?
 </output>
 <fault name=”nmtoken” message=”qname”>*
 <documentation />?
 </fault>
 </operation>
</portType>

Figure 1. Web Services Description Language (WSDL) grammar
version 1.1. Note that ? means optional and * means none or many.

Web Services

50 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

wsdl), which is bound to SOAP over HTTP,
all message parts are named body. Clearly,
the lack of comments and the proliferation
of cryptic names won’t be helpful to poten-
tial service users. This finding is supported
by results from M. Brian Blake and Michael F.
Nowlan,2 who detected name tendencies within
WSDL documents.

The second identified bad practice is tying
port types to concrete protocols, given that the
real purpose of port types is to enable differ-
ent bindings for a single type, such as SOAP/
HTTP or SOAP/SMTP. However, we found that
port types are tied to bindings in 60 percent
of our dataset. For example, the FraudLab ser-
vice (http://ws.fraudlabs.com/fraudlabsweb-
service.asmx?wsdl) defines the “same” port
type three times but binds each one to a dif-
ferent protocol. Such port types usually con-
tain a protocol reference in their names, such as
FindServiceSoap from Microsoft’s Bing Maps
platform services (http://staging.mappoint.net/
standard-30/mappoint.wsdl). In some way, port
types are to Web services what headers are to C,
so this practice is similar to redefining OpenGL
headers for each implementation — clearly, a
weird thing to do, which generates unnecessar-
ily big and puzzling WSDL documents.

Another commonly found bad practice is to
place semantically unrelated operations in a
unique port type, although modules with high
cohesion tend to be preferable in structured
design. Cohesion refers to how strongly opera-
tions are functionally related within a service.
The operations in these services must be highly
related to one another — that is, highly cohe-
sive.10 For example, the Amazon Elastic Com-
pute Cloud (EC2) service (http://s3.amazonaws.
com/ec2-downloads/2009-10-31.ec2.wsdl) has
74 operations for managing images, volumes,
security, instances, and snapshots, grouped in
a single port type. By grouping cohesive oper-
ations within separate port types — that is, a
port type for managing images, another for
volumes, and so on — each port type might be
more cohesive while avoiding problems similar
to “God classes” (that is, a single class in charge
of everything). Another problematic practice
is to include operations that return informa-
tion about service performance or availability
within the same port type.

Another detected problem that occurs in 10
percent of our dataset is overloading output

messages to transport operation results and pig-
gyback errors. This can make the service func-
tionally difficult for third-party developers to
understand because it requires service opera-
tions to use flexible data types for conveying
either output results or error data.7 We can see
a clear example in Amazon’s SimpleDB service
(http://sdb.amazonaws.com/doc/2009-04-15/
AmazonSimpleDB.wsdl). This service offers an
operation named Select whose output message
carries a set of items when everything goes
well; otherwise, it carries error information. By
contrast, services within NASA’s Earth Observ-
ing System (EOS) Clearing House (ECHO) proj-
ect provide a good example of how to deal with
operation errors — in this case, all offered oper-
ations use fault messages to transport different
kinds of errors, such as InvalidArgument-
Fault, ItemNotFoundFault, and Authoriza-
tionFault (http://api.echo.nasa.gov/echo-wsdl/
v10/ExtendedServicesService.wsdl).

Finally, we found two recurrent data mod-
eling problems: defining general-purpose data
types and repeating data types. Some XSD
constructors can define data types capable of
exchanging any XML content. James Pasley
called these constructors wild cards.9 If a mes-
sage is associated with a wild card, a potential
user can’t predict how its content will look.
Although wild cards obscure the operations’
domain and range, they’re present in 15 percent
of our dataset.

With regard to the second data model-
ing problem, 28 percent of the WSDL docu-
ments contained at least one repeated data type
definition. We noticed that service provid-
ers commonly defined specific data types for
each message, regardless of whether the mes-
sages needed to convey the same information.
Repeated structures ranged from simple XSD
built-in types, such as double or string, to
user-defined ones such as PayOrder. This seems
to be related to the fact that 70 percent of the
documents we analyzed have the data model —
that is, the XSD code — defined within them. To
clarify, suppose you have a service for checking
stocks when the market is open and another for
when the market is closed. Both services offer
an operation that retrieves market information;
the only difference is when the service collects
that information. To define data types, devel-
opers can repeat the data model in both WSDL
documents. Alternatively, they can define

SEPTEMBER/OCTOBER 2010� 51

Revising WSDL Documents

the data model in an XSD document and then
import or include it from the WSDL ones. In gen-
eral, the latter approach is the best alternative
(see this service from the Argentinean interior
ministry: http://webservices.mininterior.gov.ar/
Feriados/Service.svc?wsdl).

WSDL documents aren’t supposed to be
big, puzzling, noncohesive, undocumented, or
wrongly named, mainly because their real con-
sumers are third-party developers. However, as
Figure 2 shows, the creators of the WSDL docu-
ments we analyzed appeared to ignore ongoing
service design principles and years of consen-
sus on the right and wrong way to codify soft-
ware APIs.10,11

Revising Your WSDL Documents
No silver bullet guarantees that potential con-
sumers will discover, understand, and access
a particular Web service. However, we believe
that you can improve a WSDL document by fol-
lowing six steps:

1.	separating the schema from the definition of
the offered operations;

2.	 removing repeated WSDL and XSD code;
3.	putting error information within fault mes-

sages and only conveying operation results
within output ones;

4.	 replacing WSDL element names with explan-
atory names if original names are cryptic;

5.	moving noncohesive operations from their
original port type to separate port types; and

6.	documenting the operations.

The first step means moving complex data-
type definitions into a separate XSD document
and adding the corresponding import sentence
into the WSDL document. However, when a
developer isn’t going to reuse data types, those
types can be included in the WSDL document to
make it self-contained.

The second step deals with redundant code
in both the WSDL document and the schema.
Repeated WSDL code might stem from port
types tied to a specific protocol, whereas redun-
dant XSD comes from data definitions bounded
to a particular operation. So, you can remove
repeated WSDL code by defining a protocol-
independent port type. Similarly, to elimi-
nate redundant XSD code, you should abstract
repeated data types into a single type and
change message part references for references
to the new data type.

The third step intends to separate error
information from output information. To do
this, you should remove error information from
output messages and place it in fault messages.
Moreover, you should define fault messages to
transport the different errors that the operation
might throw.

The fourth step aims to improve how repre-
sentative WSDL element names are by renam-
ing nonexplanatory ones. Grammatically, an
operation’s name should be in the form <verb> +
<noun> because an operation is an action; mes-
sage, message part, or data-type names should
be a noun or noun phrase because they repre-
sent the objects on which the operation executes.

0

 50

 100

 150

 200

 250

 300

Ba
d

pr
ac

tic
es

 a
bs

ol
ut

e
fr

eq
ue

nc
ie

s

Ambiguous
names

322

Enclosed
data model

274

Inappropriate
or lacking
comments

269

Repeated
port types

233

Repeated
data models

114

General-
purpose

data types

63

Piggyback
fault

information

59

Low cohesive
operations
of the same
port type

39

Figure 2. Identified bad practices in WSDL documents. Less than 50% of the analyzed services
are well documented, while less than 20% of them have carefully selected names.

Web Services

52 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

If message names represent actions rather than
objects, the information conveyed in those mes-
sages might modify the operation’s behavior,
hindering the operation’s purpose. Additionally,
you should write names according to common
notations, and they should be between three
and 15 characters long,2 because these practices
facilitate automatic analyses and human reading,
respectively.4 For example, you should rewrite
the name theelementname as theElementName.

The fifth step is to place operations in dif-
ferent port types based on their cohesion. To do
this, you should divide the original port type
into smaller and more cohesive port types. You
should repeat this step until new port types are
cohesive enough.

Finally, all operations must be well docu-
mented. We can say an operation is well docu-

mented when it has a concise and explanatory
comment that describes the offered function-
ality. Moreover, because WSDL lets developers
comment on each part of a service description
separately, a good practice is to place every
<documentation> tag in the most restrictive
ambit possible. For instance, if the comment
refers to a specific operation, you should place it
in that operation.

Except for steps 4 and 6, the other steps might
require that you modify service implementations.
Moreover, as a result of applying this guide,
you’ll have two versions of a revised service
description. Although further discussion is out of
this article’s scope, we’ll note that some version-
support technique is necessary to let clients that
use the old service version continue using the
service until they migrate to the new one.12

<type>.. </type>

<message name="ChangeForceUnitSoapIn">

 <part name="parameters" element="s0:ChangeForceUnit" />

</message>

<message name="ChangeForceUnitSoapOut">

 <part name="parameters" element="s0:ChangeForceUnitResponse" />

</message>

<message name="ChangeForceUnitHttpGetIn">

 <part name="ForceValue" type="s:string" />

 <part name="fromForceUnit" type="s:string" />

 <part name="toForceUnit" type="s:string" />

</message>

<message name="ChangeForceUnitHttpGetOut">

 <part name="Body" element="s0:double" />

</message>

<message name="ChangeForceUnitHttpPostIn">

 ...

</message>

<message name="ChangeForceUnitHttpPostOut">

 <part name="Body" element="s0:double" />

</message>

<portType name="ForceUnitSoap">

 <operation name="ChangeForceUnit">

 <input message="s0:ChangeForceUnitSoapIn" />

 <output message="s0:ChangeForceUnitSoapOut" />

 </operation>

</portType>

<portType name="ForceUnitHttpGet">

 <operation name="ChangeForceUnit">...</operation>

</portType>

<portType name="ForceUnitHttpPost">

 <operation name="ChangeForceUnit">...</operation>

</portType>

Original WSDL

XML Schema (enclosed in the WSDL)

Repeated
port
types

 <types>

 <s:schema elementFormDefault="qualified"

 targetNamespace="http://www.webserviceX.NET/">

 <s:element name="ChangeForceUnit">

 <s:complexType>

 <s:sequence>

 <s:element minOccurs="1" maxOccurs="1"

 name="ForceValue" type="s:double" />

 <s:element minOccurs="1" maxOccurs="1"

 name="fromForceUnit" type="s0:Forces" />

 <s:element minOccurs="1" maxOccurs="1"

 name="toForceUnit" type="s0:Forces" />

 </s:sequence>

 </s:complexType>

 </s:element>

 <s:simpleType name="Forces">

 <s:restriction base="s:string">

 <s:enumeration value="dyne" />

 ...

 </s:restriction>

 </s:simpleType>

 <s:element name="ChangeForceUnitResponse">

 <s:complexType>

 <s:sequence>

 <s:element minOccurs="1" maxOccurs="1"

 name="ChangeForceUnitResult" type="s:double" />

 </s:sequence>

 </s:complexType>

 </s:element>

 <s: element name="double" type="s:double" />

 </s:schema>

 </types>

Ambiguous
identi�ers

Repeated data type

Enclosed data model

(a) (b)

Figure 3. Original WSDL document demonstrating bad practices. We can see (a) the messages and port types and (b)
the enclosed XML Schema Definition code.

SEPTEMBER/OCTOBER 2010� 53

Revising WSDL Documents

Revising an
Illustrative WSDL Document
We conducted a case study that exemplifies
how to use our described approach. We selected
a WSDL document from our dataset (www.web
servicex.net/ConvertForec.asmx?WSDL) and, in
turn, followed the steps in our guide.

The selected Web service converts a force
measure given in some unit, such as dyne,
gram-force, or newtons, to another unit. This
service offers one operation, ChangeForceUnit,
that receives a force value, its force unit, and
the target force unit, and returns a force value.
This service, albeit simple, contains several bad
practices, making it an excellent candidate to
illustrate the reviewing process.

Figure 3a shows the messages and port types
for the selected WSDL document, whereas Fig-
ure 3b shows the enclosed XSD code. As we can
see, four bad practices occur in this description:
an enclosed data model, ambiguous identifi-
ers, repeated data types and port types, and no
documentation.

First, we separated the schema from the
original WSDL document (step 1) and imported
the resulting XSD file from the revised WSDL
document. Then, we removed the repeated code
in both the WSDL document and its schema
(step 2) — that is, the redefinition of the type
double and the redefinition of the same port
type. Specifically, we remedied the data model
problem by deleting the redefinition of double

and replacing all references with references
to the built-in s:double type. To handle the
repeated port types, we removed all but one,
after which dangling messages appeared, which
we also removed. Finally, we updated all bind-
ing elements to point to the new port type.

We applied step 4 by replacing all nonex-
planatory names with names that represent
port-type semantics, operation semantics, and
the information the messages exchange. Finally,
we documented the operation (step 6).

Because the service offers only one opera-
tion, we didn’t need to draw noncohesive oper-
ations (step 5). With regard to step 3, removing
error information from output messages
might be the most difficult step to accomplish
because, if the output data type is too generic,
we can’t know the output message’s purpose
unless we also revise the service’s implementa-
tion and invoke it until it fires an error or its
documentation explicitly indicates this anom-
aly. Because we didn’t have enough informa-
tion to detect this problem in the case study, we
omitted step 3.

Figure 4 depicts the revised WSDL docu-
ment. Its first characteristic is that it’s shorter
than the original, but the number of descrip-
tive words, such as unit, force, or change,
has increased. Moreover, the revised descrip-
tion uses more specific words, and the port-
type name is protocol-independent — that is, we
removed the Soap term.

<types>
 <xsd:schema targetNamespace="...">
 <xsd:import schemaLocation="forces.xsd"
 namespace="..." />
 </xsd:schema>
</types>

<message name="ChangeForceUnitIn">
 <part name="ForceValue" type="s:double" />
 <part name="fromForceUnit" type="s0:Force" />
 <part name="toForceUnit" type="s0:Force" />
</message>

<message name="ChangeForceUnitOut">
 <part name="ForceValue" element="s:double" />
</message>

<portType name="ChangeForceUnit">
 <operation name="ChangeForceUnit">
 <documentation>This service converts a force measure
 in a force unit to the same measure
 in another force unit</documentation>
 <input message="s0:ChangeForceUnitIn" />
 <output message="s0:ChangeForceUnitOut" />
 </operation>
</portType>

"forces.xsd"
<?xml version="1.0"?>
<s:schema xmlns:s="http://www.w3.org/2001/XMLSchema">
<s:simpleType name="Forces">
 <s:restriction base="s:string">
 <s:enumeration value="dyne" />
 <s:enumeration value="gramforce" />
 <s:enumeration value="poundals" />
 <s:enumeration value="newtons" />
 <s:enumeration value="pounds" />
 <s:enumeration value="kilopondkgmforce" />
 <s:enumeration value="Kip" />
 </s:restriction>
</s:simpleType>
</s:schema>

Figure 4. Revised WSDL document. We refactored it using four of the six steps in our approach to improve the WSDL
document’s understandability.

Web Services

54 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

Discovering Revised WSDL Documents
To measure whether revising WSDL documents
impacts discovery, we fed both the original and
revised versions of the dataset to three Web ser-
vice search engines. We compared each search
engine’s effectiveness when using original
WSDL documents against their effectiveness
using revised versions.

For this comparison, we employed Lucene
(http://lucene.apache.org), Web Service Query
by Example (WSQBE),4 and Eleni Stroulia and
Yiqiao Wang’s approach.5 Lucene is a well-
known open source search software that follows
a classic information retrieval (IR) approach.
Because we modified Lucene to ignore WSDL-
reserved words that could negatively affect
its performance, we refer to it here as Lucene
4WSDL. WSQBE combines IR techniques with
a search-space reduction mechanism based
on WSDL document classification. We call the
final approach5 ILS (IR + Lexical + Structural)
because it combines IR techniques with term
expansion based on lexical relations, such as
synonyms, hypernyms, and hyponyms, and
compares the retrieved candidates’ structure
to a WSDL specification of the desired service,
which the user who performs the discovery
must supply. Notwithstanding their differences,
the three search engines return a ranked list of
candidate services for a given query.

To ensure that our experiment was fair,
we took two precautions. First, because the
employed search engines’ performance depends

on the dataset and the queries given as inputs,
we used the same 30 queries (described else-
where4) with each version of the dataset. Sec-
ond, to avoid influencing the results, the
developers who revised the dataset didn’t know
the queries. The time needed to improve each
WSDL document was 15 minutes per developer,
on average. We didn’t assess the time needed for
synchronizing the improved WSDL documents
and their underlying implementations. Because
ILS’s inquiry interface optionally accepts a
functional description of the desired services
using WSDL, we built a WSDL document for
representing each query.

Our experimental methodology was to query
the search engines, calculate whether the first
ranked service was relevant (termed “preci-
sion-at-1”), and calculate how many relevant
services were ranked before the 11th position
(“recall-at-10”). Finally, we averaged the results
over the 30 queries.

Figure 5 shows that the search engines per-
formed better using the revised version of the
dataset. Concretely, the precision-at-1 results
suggest that the revised dataset retrieved more
relevant services in the first position. Lucene
4WSDL obtained a gain of 6.67 points (that is,
precision-at-1 was 6.67 percent higher), WSQBE
gained 10 points, and ILS gained 13 points.

Recall-at-10 results indicate that the search
engines retrieve more relevant services within a
window of 10 candidates with the revised data-
set. Specifically, we observed improvements of
2.18, 3.34, and 5.63 points with Lucene4WSDL,
WSQBE, and ILS, respectively.

Although all the search engines behaved
better with the revised dataset, ILS and WSQBE
achieved higher improvements. If a WSDL docu-
ment contains nonexplanatory terms, ILS’s term
expansion technique will generate a service
representation that contains even more non-
explanatory terms, degrading its effectiveness.
Additionally, as it was reported previously,4
WSQBE’s search-space reduction mechanism
performs better when WSDL documents con-
tain domain-specific terms rather than too-
general ones. Most likely, this accounts for the
outstanding improvements in WSQBE, but this
topic deserves a deeper analysis.

The results related to the revised data-
set surpass those achieved using the origi-
nal, regardless of the search engine employed,
which suggests that improvements are due to

 60

 65

 70

 75

 80

 85

 90

 95

A
ve

ra
ge

d
m

ea
su

re
s

(%
)

(m
or

e
is

 b
et

te
r)

Original WSDL documents
Revised WSDL documents

Precision-at-1

Recall-at-10

Precision-at-1
Recall-at-10

Precision-at-1

Recall-at-10

WSQBE WSQBE Lucene4WSDL Lucene4WSDL ILS ILS

Figure 5. Impact of revising WSDL documents on Web service
search engines. The better performance of search engines fed
with the improved dataset implies that service will be ranked more
according to the service consumer’s needs.

SEPTEMBER/OCTOBER 2010� 55

Revising WSDL Documents

the revised WSDL documents rather than the
underlying search engine.

Note that when using the revised data-
set, the employed search engines performed
better in retrieving a relevant service at the
top of the rank. Different experiments sup-
port this result: because users tend to select
higher-ranked search results, even a small
improvement in a rank has a great impact on
discoverability. For instance, the probability
that a user accesses the first ranked result is
90 percent and 60 percent that the user will
access the second.13 This further strengthens
the importance of our proposed guidelines in
improving the “value” (to use Foster’s words1)
of service descriptions.

T he results of our research show that we can
reasonably expect that removing detected

bad practices will result in at least a small
improvement to WSDL documents’ discover-
ability, but developers currently don’t often
revise such documents. Perhaps the presented
evidence will nudge them to do it.

We’re now conducting research on heu-
ristics for automatically detecting poor prac-
tices in Web service descriptions.14 We aim to
assist developers in making more representative
descriptions by automatically identifying the
poor practices and suggesting suitable refac-
torizations. Moreover, we’re surveying popu-
lar tools for building WSDL documents from
source code (that is, those that follow the code-
first approach) because we suspect that some
of the aforementioned bad practices can stem
from these tools. Furthermore, we’re planning
to extend this study for analyzing how devel-
opers use WSDL extensions. Regarding ser-
vice discovery, we’ll analyze semantic WSDL
(WSDL-S)15 as a next step for improving service
description quality.�

Acknowledgments
We thank the associate editor, anonymous reviewers, and

the content editor for their comments on this article. Also,

thanks to ANPCyT for supporting this research through

grants PAE-PICT 2007-02311 and PAE-PICT 2007-02312.

References
1.	 I. Foster, “Service-Oriented Science,” Science, vol. 308,

no. 5723, 2005, pp. 814–817.

2.	 M.B. Blake and M.F. Nowlan, “Taming Web Services

from the Wild,” IEEE Internet Computing, vol. 12, no.

5, 2008, pp. 62–69.

3.	 J.M. Rodriguez et al., “Discoverability Anti-Patterns:

Frequent Ways of Making Undiscoverable Web Service

Descriptions,” Proc. 10th Argentine Symp. Software

Eng., SADIO, 2009, pp. 1–15.

4.	 M. Crasso, A. Zunino, and M. Campo, “Easy Web Service

Discovery: A Query-by-Example Approach,” Science of

Computer Programming, vol. 71, no. 2, 2008, pp. 144–164.

5.	 E. Stroulia and Y. Wang, “Structural and Semantic

Matching for Assessing Web Service Similarity,” Int’l

J. Cooperative Information Systems, vol. 14, no. 4,

2005, pp. 407–438.

6.	 T.O. Meservy and K.D. Fenstermacher, “Transforming

Software Development: An MDA Road Map,” Computer,

vol. 38, no. 9, 2005, pp. 52–58.

7.	 J. Beaton et al., “Usability Challenges for Enterprise

Service-Oriented Architecture APIs,” Proc. IEEE Symp.

Visual Languages and Human-Centric Computing, IEEE

CS Press, 2008, pp. 193–196.

8.	 J. Fan and S. Kambhampati, “A Snapshot of Public Web

Services,” ACM SIGMOD Record, vol. 34, no. 1, 2005,

pp. 24–32.

9.	 J. Pasley, “Avoid XML Schema Wildcards for Web Ser-

vice Interfaces,” IEEE Internet Computing, vol. 10, no.

3, 2006, pp. 72–79.

10.	 M.P. Papazoglou and W.-J. Van Den Heuvel, “Service-

Oriented Design and Development Methodology,” Int’l

J. Web Eng. Technology, vol. 2, no. 4, 2006, pp. 412–442.

11.	 T. Erl, SOA Principles of Service Design, Prentice Hall,

2007.

12.	 M.B. Juric et al., “WSDL and UDDI Extensions for Ver-

sion Support in Web Services,” J. Systems and Soft-

ware, vol. 82, no. 8, 2009, pp. 1326–1343.

13.	 E. Agichtein et al., “Learning User Interaction Models

for Predicting Web Search Result Preferences,” Proc.

29th Ann. Int’l ACM SIGIR Conf. Research and Devel-

opment in Information Retrieval, ACM Press, 2006, pp.

3–10.

14.	 J.M. Rodriguez et al., “Automatic Web Service Dis-

coverability Anti-Patterns Detection,” Proc. 10th IFIP

Conf. E-Business, E-Services, and E-Society (I3C 10), to

appear, 2010.

15.	 K. Li et al., “Designing Semantic Web Processes: The

WSDL-S Approach,” Semantic Web Services, Processes

and Applications, Dec. 2006, pp. 161–193.

Marco Crasso is a teaching assistant at the Universidad

Nacional del Centro de la provincia de Buenos Aires

(UNICEN). His research interests include the applica-

tion of machine learning and data mining techniques

to ease the development of service-oriented applica-

tions, and programming models for Web service con-

Web Services

56 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

sumption. Crasso has a PhD in computer science from

UNICEN. He’s a member of the ISISTAN Research

Institute. Contact him at mcrasso@exa.unicen.edu.

ar; www.exa.unicen.edu.ar/~mcrasso/.

Juan Manuel Rodriguez is a teaching assistant and PhD

candidate at the Universidad Nacional del Centro de

la provincia de Buenos Aires (UNICEN). His research

interests are in grid computing, service-oriented com-

puting, Web services, and mobile devices. Rodriguez

has a system engineer degree from UNICEN. He’s a

member of the ISISTAN Research Institute. Contact

him at jmrodri@exa.unicen.edu.ar; www.exa.unicen.

edu.ar/~jmrodri/.

Alejandro Zunino is an adjunct professor at the Univer-

sidad Nacional del Centro de la provincia de Buenos

Aires (UNICEN). His research interests are in grid

computing, service-oriented computing, Web services,

Semantic Web services, agent development tools, agent

frameworks, mobile agents, and reactive mobility.

Zunino has a PhD in computer science from UNICEN.

He’s a member of the ISISTAN Research Institute and

Consejo Nacional de Investigaciones Científicas y Téc-

nicas (CONICET). Contact him at azunino@conicet.gov.

ar; www.exa.unicen.edu.ar/~azunino.

Marcelo Campo is an associate professor at the Univer-

sidad Nacional del Centro de la provincia de Buenos

Aires (UNICEN) and the head of the ISISTAN Research

Institute. His research interests include intelligent

aided software engineering, software architecture and

frameworks, agent technology, and software visual-

ization. Campo has a PhD in computer science from

the Universidade Federal do Rio Grande do Sul, Porto

Alegre, Brazil. He’s a research fellow at Consejo Nacio-

nal de Investigaciones Científicas y Técnicas (CONI-

CET). Contact him at mcampo@exa.unicen.edu.ar;

www.exa.unicen.edu.ar/~mcampo.

Selected CS articles and columns are also available
for free at http://ComputingNow.computer.org.

—George Orwell, “Why I Write” (1947)

All writers are vain,
sel� sh and lazy.

(except ours!)

“
”

The world-renowned IEEE Computer Society Press is currently
seeking authors. The CS Press publishes, promotes, and
distributes a wide variety of authoritative computer science
and engineering texts. It offers authors the prestige of the
IEEE Computer Society imprint, combined with the worldwide
sales and marketing power of our partner, the scientifi c and
technical publisher Wiley & Sons.

For more information contact Kate Guillemette,
Product Development Editor, at kguillemette@computer.org.

www.computer.org/cspress

