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Bekenstein has shown that violation of Weak Equivalence Principle is strongly sup-
pressed in his model of charge variation. In this paper, it is shown that nuclear magnetic
energy is large enough to produce observable effects in Eötvös experiments.
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1. Introduction

The variation of fundamental constants has been an important subject of research

since Dirac stated the Large Number Hypothesis (LNH).1,2 In the latter times, the

interest in that subject has been aroused again since such a variation is a common

prediction of several “Theories of Everything” (TOEs), such as string theories.3 One

possible low-energy limit of these TOEs is Bekenstein’s variable charge model,4–6

since it has all desirable properties that such low-energy limit should exhibit.

Since Dirac’s proposal, many attempts have been made to detect the proposed

variations, most of them with null results (for reviews, see Refs. 3, 7 and 8). An

interesting possibility is that a space variation of fundamental constants should

produce a violation of the Weak Equivalence Principle,9 a fact that can be proved

easily using energy conservation.10
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The Weak Equivalence Principle (WEP) states that the world line of a body

immersed in a gravitational field is independent of its composition and structure,9,11

a generalization of Galileo’s law of Universality of Free Fall: the local acceleration g

of a body is independent of its composition and structure. Since General Relativity

has the Equivalence Principle as one of its consequences, testing for its validity is

an important form of the search of “new physics”.

The most sensitive forms of those tests are the Eötvös experiments: testing

the equality of acceleration for bodies of different composition or structure.9,12,13

Several accurate tests have been carried in the second half of the 20th century and

up to now.14–19 These tests impose strict bounds on parameters describing WEP

violations.11,20–24

However, in his 2002 paper, Bekenstein5 proved that a violation of WEP is

highly unlikely in his model. We shall discuss briefly this issue later on, but the

origin of this statement is a wonderful cancellation of electrostatic sources of the ψ

field, leading to a null effect in the lowest order. No such cancellation happens for

magnetostatic contribution, but a simple examination of the Solar System magnetic

energy density suggests that a breakdown of WEP should be inobservable.

In this paper, we discuss the detection of a space variation of α in Bekenstein’s

model, considering the fluctuations of magnetic fields in quantum systems.

The rest of the paper is structured as follows: in Sec. 2 we make a short summary

of the main results on Bekenstein’s model related to our problem; Sec. 3 deals with

the motion of a composite nonrelativistic body in external gravitational plus dilaton

fields, to find an expression for its anomalous acceleration; in Sec. 4 we discuss the

magnetostatic energy of matter in a quantum system and in Sec. 5 we state our

results and conclusions. Appendix A is devoted to a simple proof of Eq. (19), and

Appendix B to an explanation of how the electrical contribution to “Bekenstein’s

field” can be canceled in the small fields approximation.

2. A Survey of Bekenstein Model

Bekenstein’s proposal4,5 was to modify Maxwell’s electromagnetic theory introduc-

ing a field ε to describe α variation. A unique form of the theory (up to a parameter)

was found from the following hypotheses:

(i) The theory should reduce to Maxwell’s for a constant α.

(ii) α variation must be dynamical (i.e., generated by a field ψ = ln ε).

(iii) The dynamics of the field is derived from a variational principle.

(iv) The theory must be causal, gauge and time-reversal invariant.

(v) The smallest length in the theory should be the Planck length `P .

The latter statement should be dropped if the theory is considered a low-energy

limit of some TOEs, since these introduce other fundamental length scales. Indeed,

there is a second length scale in string theory, the “string tension parameter”; so

it is possible to constraint any length with a “new” length scale which is smaller

than `P .
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The application of the above hypothesis leads to a unique form of the action

S = Sem + Sψ + Smat + SG , (1)

where

Sem = − 1

16π

∫
e−2ψfµνfµν

√−gd4x (2a)

is the modified Maxwell action [fµν ≡ aν,µ− aµ,ν = (eψAν),µ− (eψAµ),ν = eψFµν ];

Sψ =
−~c

2`2B

∫
(∂µψ)

2√−gd4x (2b)

is the ψ field action and Smat and SG are the matter and Einstein actions, and `B
is Bekenstein’s fundamental length scale. The local value of the electric charge is

e(xµ) = e0e
ψ(xµ) α(xµ) = e2ψ(x

µ)α0 , (3)

where e0 and α0 are reference values of these magnitudes.

The general equations of motions for these fields are

(e−ψFµν),ν = 4πjµ , (4a)

jµ ≡ e0cv
µ δ

3(x− z(τ))

γ
√−g , (4b)

�ψ =
`2B
~c

(
∂σ

∂ψ
− FµνFµν

8π

)
, (4c)

σ =
∑

mc2γ−1(−g)−1/2δ3[x− z(τ)] , (4d)

the latter quantity being the rest mass energy density.

A word of advice is due: in his papers4,5 Bekenstein uses an ensemble of classical

particles to represent matter. This is not a good model of matter wherever quantum

phenomena are important, neither at high energy scales nor small distances scales,

since fermions have a “natural length scale”, namely the Compton wavelength of

the particle λC = ~/mc. One must be wary of jumping to conclusions in these

regimes (see also Ref. 25).

From the above equations of motion, Bekenstein5 derives several affirmations

which he used in other papers such as Ref. 26.

Cancellation statement

For an electrostatic field equation (4c) can be written in the form

∇ · (e−2ψE) = 4πρ , (5a)

∇2ψ = 4πκ2
[
∂σ

∂ψ
+ e−2ψE

2

4π

]
, (5b)

κ2 =
`2B
4π~c

. (5c)
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In the source term for ψ the first term cancels almost exactly the second and the

asymptotic value of ψ is almost exactly suppressed.

WEP for electric charges

The equation of motion of a system of charges in an electric field, in the limit of

very small velocities, reduces to

M Z̈ = QE , (6)

where M and Q are the total mass and charge of the system, respectively. Thus,

there is no WEP violation.

The above results use the classical point charges model of matter. On the other

hand, the equation of motion for ψ for a static system of magnetic dipoles is

∇2ψ = −4πκ2e−2ψB
2

4π
, (7)

and there is no cancellation of sources. From an estimate of the field intensities

in the Solar System, Bekenstein states that no observable WEP violation can be

detected in laboratory experiments. This latter result is also based on the classical

point charges model of matter.

3. Motion of a Composite Body in the ψ Field

Let us now find the Lagrangian of a body composed of point-like charges, such

as an atom or an atomic nucleus. We shall work in the nonrelativistic limit for

the charges, but we shall keep for the moment the full expression for the elec-

tromagnetic field. We shall treat the system as classical and later on quantize it

in a simple way. The techniques we use are a lightweight version of those used

in the THεµ formalism.11,27 We assume that there are external dilaton ψ and

Newtonian gravitational φN fields acting over the body, but we shall neglect the

self-fields generated. With these approximations and using Bekenstein’s notation

(c−1E ≡ {f01, f02, f03}, B ≡ {f23, f31, f12}), the Lagrangian of the system takes

the form

L = −Mtot[ψ]c
2

+
∑

l

[
1

2
mlv

2
l −mlφN (xl)−

1

c2
aµ(xl)j

µ(xl)

]

−
∫
e−2ψ(E2 −B2)dV

16π
. (8)

To eliminate the electromagnetic fields we use the equations of motion (4a)

together with the Lorentz gauge condition to obtain

jµef = eψjµ +
c

2π
ψ,νf

µν . (9)
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These equations can be solved using retarded potentials

a0(x, t) =

∫
ρef(tret)

R
dV ′, ai(x, t) =

1

c

∫
jef(tret)

R
dV ′, R = |x− x′| , (10)

whose slow-motion approximations are

a0 =

∫
ρef
R
dV ′, ai =

1

c

∫
jef
R
dV ′, B =

1

c

∫
jef×R

R3
dV . (11)

In these equations we shall neglect the contribution of ψ,ν since they are

much smaller than the usual current contribution. After some transformations the

Lagrangian can be written as

L = −Mtot[ψ]c
2

+
∑

l

[
1

2
mlv

2
l −mlφN (xl)

]
− 1

2

∫
e2ψ

ρc(x)ρc(x
′)

R
dV dV ′

+
1

2c2

∫
e2ψ

j(x) · j(x′)

R
dV dV ′ (12)

where we have replaced sums over pair of particles or currents with integrals.

For a macroscopic solid body we shall be interested in the motion of the center of

mass. The separation of this motion is easily achieved with the usual substitutions

and developing the slowly varying external fields φN and ψ:

RCM =

∑
lmlxl
Mtot

, VCM =
∑

l

vl , (13)

xl = RCM + x′
l, vl = VCM + v′

l , (14)

φN (x) ' φN (RCM) +O(x′
2
), ψ(x) ' ψ(RCM) +O(x′

2
) ; (15)

and besides

Mtot[ψ]c
2 'Mtot[0] +

∂Mc2

∂ψ
ψ(RCM) +O(ψ2) . (16)

Substitution of the above Lagrangian leads to

L = −Mtot

[
c2 − V 2

CM

2
− φN (RCM)

]

+2ψ(RCM)Em + · · · . (17)

The electrostatic contribution cancels with the mass dependence on ψ, according

to Bekenstein statement (see Appendix B.1), and the neglected terms are of either

tidal order, negligible in laboratory tests of WEP, or of higher order in ψ.

The above Lagrangian shows that a body immersed in external gravitational

and Bekenstein fields will suffer an acceleration

R̈CM = a = g+ 2
Em
M

∇ψ|CM . (18)
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The latter term is the anomalous acceleration generated by the Bekenstein field.

The acceleration difference (Eq. (18)) is tested in Eötvös experiments.

4. Magnetic Energy of Matter

In a quantum model of matter, magnetic fields originate in not only in the stationary

electric currents that charged particle originate and their static magnetic moments

but also in quantum fluctuations of the number density. These contributions to the

magnetic energy have been computed in Refs. 11, 28 from a minimal nuclear shell

model. The matrix elements of the current operator can be related to the strength

of the dipole resonance, with the result (for more details see Appendix A.1)

Em =

∫
d3x

B2

8π
' 1

2c2

∫
d3xd3x′

j(x) · j(x′)

|x− x′| ' 3

20π

Ê

R(A)~c

∫
σdE , (19)

where R(A) is the nuclear radius, Ê is the giant dipole mean absorption energy,

and
∫
σdE its integrated strength function. These quantities have the following

approximate representation

R(A) = 1.2 A
1

3 fm, Ê ∼ 25 MeV,

∫
σdE ' 1.6A MeV fm2 . (20)

Since the magnetic energy density is concentrated near atomic nuclei, it can be

represented in the form

em(x) =
∑

a

Eamδ(x− xa) '
∑

b

Ebmnb(x) , (21)

where index b runs over different nuclear species. Define

ζbm =
Ebm
Mbc2

(22)

as the fractional contribution of the magnetic energy to rest mass. Then

em(x) = ζ̄m(x)ρ(x)c2 , (23)

where ρ(x) is the local mass density and

ζ̄m(x) =

∑
b ζbρb(x)

ρ(x)
(24)

is the local mass-weighted average of ζm.

With expression (23) we can write Eq. (7) in the form

∇2ψ = −8πκ2c2e−2ψζ̄mρ . (25)

For small ψ we can find a solution for an arbitrary distribution of sources

ψ = 8πκ2c2
1

r

∫ r

0

x2ζ̄m(x)ρ(x)dx , (26)
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whose asymptotic behavior can be expressed in terms of the Newtonian gravita-

tional potential

ψ � 8πκ2

GM
φN (r)

∫ ∞

0

x2ζ̄m(x)ρ(x)dx = 2

(
`B
`P

)2

ζ̃m
φN (r)

c2
, (27)

where ζ̃m is the mass-averaged value of ζm and we have introduced the Planck

length `P .

5. Results and Conclusion

From Eq. (27) we obtain for the differential acceleration of a pair A,B of different

bodies

η(A,B) =
aA − aB

g
= 4

(
`B
`P

)2

ζS(ζA − ζB) = Cf

(
`B
`P

)2

, (28)

where ζS , ζA, and ζB are the magnetic energy fractions of the source, body A, and

body B, respectively.

ζI =
EI
MIc2

. (29)

Table 1 shows the results of the most accurate versions of the Eötvös experiment.

A simple least squares fit with the statistical model y = Cfx
2 yields

(
`B
`P

)2

= 0.0003± 0.0006 (30)

from which we get the “3σ” upper bound

(
`B
`P

)2

< 0.002,
`B
`P

< 0.05 . (31)

This last equation encodes the main result of this paper: strict upper bounds

can be set from Eötvös experiments on the Bekenstein parameter `B/`P even if

the electrostatic field does not generate ψ field. These bounds are much larger than

the ones that would result if electrostatic energy density would generate ψ field

intensity. This calculation was carried in the 1982 paper of Bekenstein4 and has

been repeated several times (e.g., Refs. 20, 29 and 30) with the result
(
`B
`P

)

el

< 8.7× 10−3 , (32)

one order of magnitude smaller than Eq. (31).

It is interesting to compare our result Eq. (31) with the results obtained from

an analysis of all evidence from time variation of the fine-structure constant α.30

In that paper, an effective value of ζ = 10−4 was used, following the suggestion of

Ref. 6 and a 1σ bound on (`B/`P )
2 < 0.003 was found. From the estimate of ζH in
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Table 1. Results of Eötvös experiments. The columns show

the composition of the bodies, the source, the coefficient of
(`B/`P )2 in Eq. (28), the measured value of η, and its 1σ error.

A B Source 1011Cf 1011η(A,B) Ref.

Al Au Sun 17.5 1.0± 1.5 14
Al Pt Sun 17.5 0.03± 0.045 15
Cu W Sun 8.8 0.0± 2.0 16
Be Al Earth 6.8 −0.02± 0.23 17
Be Cu Earth 10.4 −0.19± 0.25 17
Be Al Sun 16.1 0.40± 0.98 17
Be Cu Sun 24.6 −0.51± 0.61 17

Si/Al Cu Sun 8.8 0.51± 0.67 17
EC MM Sun −7.6 0.001 ± 0.032 18

Be Ti Earth 6.9 0.004 ± 0.018 19

Ref. 5 we compute an effective value of ζU = 2.7× 10−5ΩB ' 1.4× 10−6 and so we

find a 3σ upper bound

`B
`P

< 0.8 (33)

one order of magnitude larger than in Eq. (31).

In conclusion, we have shown that very strict bound can be put on the Beken-

stein model parameter `B/`P from the quantum fluctuations of the magnetic fields

of matter. From Eq. (31) one should discard the Bekenstein model, but since it can

be obtained as a low-energy limit of string models, the latter conclusion should be

taken with a grain of salt.
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Appendix A

A.1. Proof of Eq. (19)

Reference 28 does not give a proof of Eq. (19). The following proof is based on their

methods.

Let us write the total magnetic energy of the nucleus in the form

Em
1

2c2

∑

α

∫
dxdx′ 〈0|j(x)|α〉 · 〈α|j(x′)|0〉

|x− x′| , (A.1)

where α runs over a complete set of eigenstates of the nuclear Hamiltonian H . The

current operator is defined as

j(x) =
∑

a

δ(x − xa)ea
pa
ma

, (A.2)
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where the sum runs over all particles in the system. Neglecting the momentum

dependence of the nuclear potential, we can write

pa
ma

=
i

~
[xa, H ] .

Substitution of the above in Eq. (A.2) yields the result

〈0|j(x)|α〉 = i

~

∑

a

δ(x− xa)(E0 − Eα)〈0|eaxa|α〉

=
i

~

∑

a

δ (x− xa) (E0 − Eα)d0α , (A.3)

with d(x) the polarization (dipole density) operator.

If we assume a constant density within the nucleus, the dipole density can be

represented as

d0α =
d0α
VN

x̂ ,

where VN = 4π
3 R

3
N is the nuclear volume, and so

〈0|j(x)|α〉 · 〈α|j(x)|0〉 ' |d0α|2
~2

E2
0α

V 2
N

cos θ , (A.4)

where θ is the angle between x̂ and x̂′. Thus, the magnetic energy can be expressed

approximately as

Em '
∑

aE
2
0α|d0α|2

2~2c2

∫
dxdx′ cos θ

|x−x
′|

V 2
N

. (A.5)

The last factor is equal to 3
5RN

. The first one can be computed from the con-

nection between the strength function and the photoabsorption cross section

σ0α =
4π

~c
Eα0|dα0|2 . (A.6)

From this, we easily get

∑

a

E2
α0|dα0|2 =

~c

4π

∫
Eσ(E)dE∫
σ(E)dE

·
∫
σ(E)dE = Ē

∫
σ(E)dE , (A.7)

where Ē ∼ 25 MeV is the mean absorption energy, roughly independent of A.

The cross section satisfies the Thomas–Reiche–Kuhn sum rule
∫
σ(E)dE = (1 + x)

2π2e2~

mc

NZ

A
' (1 + x) 15 MeV mbarn A , (A.8)

where x ∼ 0.2 takes into account exchange and velocity dependence of nuclear

interactions. Combining Eqs. (A.5), (A.7), and (A.8) we obtain Eqs. (19) and (20).
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Appendix B

B.1. The Uniqueness of the Solution for Electrostatic Systems

Using the approximations κ|Φ| � 1, E ≈ −∇Φ, e2ψ ≈ 1 + κ2Φ2 in Eq. (5b) (as

Bekenstein did in his paper5),

∂σ

∂ψ
= −ρ0

κ
tanκΦ ≈ ρ0

κ
κΦ , (B.1)

and

1

4π
e−2ψE2 → 1

4πν

∫

ν

d3x[(∇Φ)2 − κ2Φ2(∇Φ)2] (B.2)

= ρ0Φ− 1

4πν

[ ∮

∂ν

Φ(∇Φ) · ds+ κ2
∫

ν

d3xΦ2(∇Φ)2
]
, (B.3)

where ν is the volume of the distribution. So,

∇2ψ = −4πκ2
[

1

4πν

∮

∂ν

Φ(∇Φ) · ds+ κ2

4πν

∫

ν

d3xΦ2(∇Φ)2
]
. (B.4)

The first term on the right side of the above equation can be neglected because

it is a boundary term. Then the ψ generated is,

ψ(r) ≈ 4πνκ2
∫
ρbnp(r

′)

|r − r′| d
3r′ , (B.5)

ρb ≈ − 1

4πν
κ2

∫

ν

Φ2(∇Φ)2d3x , (B.6)

where np is the density of number of particles. Since this field should be dimen-

sionless, it is multiplied and divided by m3 (m is the mass of the distribution).

Being EG = Gm2

R the gravitational energy of the quantum system and writing κ as

a function of the lengths `B and `P=
√

~G
c3 ,

ψ(r) ≈ − C̃ζ
2
C`

4
B

c2`4P

(
EG
mc2

)∫

ν

ρm(r′)G

|r − r′| d
3r′ , (B.7)

where
∫
ν
ρm(r′)G
|r−r′| d

3r′ is the Newtonian potential of the system and C̃ ≈ 10−1 is

an adimensional constant. Then, ( EG

mc2 ) ∼ 10−39A2/3 and ζc = ( Ec

mc2 ) ∼ 10−3 (EC
is the Coulombian energy of the quantum system). The most important result is

that ψ satisfies the Principle of Maximum for elliptic equations, so the solution is

unique. Besides, it is very small to produce observable effects. This issue will be

explained in detail in our next paper coming soon.
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