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The phenomenon of pushing during solidification is modeled for the case of particles producing a

convex interface. The thermal and fluid fields generated by the particle–melt–solid system are

calculated in a decoupled way determining in the first place the shape of the interface and then, the

two main forces acting during pushing; the drag and repulsion forces. The thermal and fluid flow

fields were calculated using finite element methods. Both, the drag and repulsion forces are integrated

at each step and compared until both are equal and the steady state of pushing is reached. The

repulsion force is integrated using the Casimir–Lifshitz–Van der Waals interaction. The model

predicts the equilibrium distance in a steady state of pushing for spherical particles and a convex

solidifying interface. It is shown that the equilibrium separation distance for a convex interface results

in a larger solidification velocity for trapping with respect to an ideal planar interface. The model

results were in good agreement with experimental results for the critical velocity reported in the

literature.

A Introduction

Solidification studies of materials containing particles have

shown an interaction between the particle and the solid–liquid

interface. In some systems it is observed as the segregation of the

particles which is normally attributed to the mechanism of

pushing. The phenomenon of pushing has been investigated

experimentally and by mathematical modeling for many years;1–28

the experiments show that there is a critical velocity at which the

particle cannot be pushed and as a result, the particle is trapped.

The process is complex due to the variety of phenomena involved

during pushing and associated with the fluid and thermal fields

and the nature of the pushing force. In all cases, the physical

problem depends on the properties, nature, and morphology of

the interacting media; the particle, melt and solid; and the external

fields such as gravity, thermal and electromagnetic fields.13–28

For instance, in the case of different thermal conductivities for

the particle and the solidifying material, it has been shown that

the interface adopts planar or curved shapes10 as shown in Fig. 1.

In the pushing mechanism there are two main forces which act

on the particle; the drag and the pushing force which are in

equilibrium, as is shown schematically in Fig. 2. The interaction

could be modelled using only one particle, as shown in Fig. 1

where the deformation of the interface is located only near the

particle. In the pushing mechanism the drag force pushes the

particle onto the solidifying interface and the pushing force is a

repulsive force which is necessary to compensate for the drag. In

the steady state of pushing both forces are in equilibrium and the

particle moves ahead of the interface.

Modeling is a useful tool to understand this complex pheno-

menon and predict the critical velocity.22–31 However, there are

many aspects that are not completely addressed, such as the

effect of a non-planar interface.

The objective of the present investigation is to include in a

model the solidification conditions leading to non-planar

interfaces in order to describe and predict the critical velocity

of the pushing phenomenon. The model has been built in steps of

increasing complexity, which started with more simple condi-

tions producing a planar interface, consisting of a spherical

particle and uniform thermal conductivity for the three

phases.32–36 The results presented here include the effect of the

thermal conductivity on the geometrical configuration of the

particle–melt–solid which results in a non-planar solid–liquid

interface and consequently modifies the conditions for a steady

state of pushing and the value of the critical velocity.
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E-mail: eliana@fceqyn.unam.edu.ar Fig. 1 Thermal fields obtained with the numerical model.
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B Methods

Model description

The physical situation consists of a spherical particle of radius R

immersed in a melt and a solidifying interface moving towards

the particle. There are two fields which are affected by the

presence of the particle: the fluid flow and the thermal field in the

particle vicinity.

The drag force is due to the fluid viscosity and the repulsion

force which has different origins depending on the physical

properties of the materials.13–28

On the other hand, if the thermal conductivities of the particle,

melt and solid are different, the thermal field will affect the shape

of the interface behind the particle.

The model will predict the equilibrium separation distance

between the particle and interface for the steady state of pushing,

and the critical velocity to predict the engulfment.

In order to simplify the calculations in this model the shape of

the interface is given only by the thermal field. The drag force

depends on the interface shape, the distance between the

interface and the particle and the velocity of the fluid. On the

other hand, the pushing force is a function of the interface shape

and the distance between the interface and the particle.

This configuration of the model provides the possibility to

decouple the calculation in three parts as shown in Fig. 3.

First the temperature field is calculated as a function of time

and the interface shape is obtained, this process is repeated for at

least six different separation distances between the particle and

interface and each shape is saved for later use.

Second, the drag force (Fd) on the particle is calculated with

the fluid flow model. The range of interface velocities was 1 6
10210 m s21 to 1024 m s21 which covers the range of velocities

normally present in many solidification processes and where

there may be a steady state of pushing. Third, the repulsion force

(Fr) is calculated using the Casimir–Lifshitz–Van der Waals

model at each position.

The equilibrium point occurs when both forces Fd and Fr are

equal, the corresponding distance is the separation distance for

the steady state of pushing, the coupling is performed as shown

in Fig. 9 in the Results section

The thermal model

The thermal model is decoupled from the fluid flow field; this

simplification is assumed since the heat flow due to conduction is

much higher than both the heat flow due to convection and the

latent heat release.9 The interface shape depends on the particle–

interface separation h(r) and the thermal conductivities of the

particle, melt and solid system. The model includes a solid

spherical particle of radius, R, with a thermal conductivity, kp,

immersed in a melt with thermal conductivity, km. The mesh

employed to discretize the domain is shown in Fig. 4.

Fig. 3 Decoupled model.

Fig. 2 Schematic representation of a steady state of pushing. R =

particle radius; Vint = interface velocity, Fr = repulsive force, Fd = drag

force and h(r) = distance between the particle and interface.

Fig. 4 The axis-symmetrical domain and mesh used for the thermal

model.
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The solidification process is time dependant and is modelled

assuming axial symmetry in an axi-symmetrical domain. A

constant heat flow is imposed on the left and the other boundaries

are assumed to be isolated. The shape and position of the interface

is determined following the isotherm of the solid temperature of

the material. The ratio between the thermal conductivities of

the particle and melt employed in the calculations is kp/km = 0.1.

These values simulate the cases of particles of oxides in a metal

melt, where the ratio is in the range between 0.15 and 0.4 (e.g.:

kAl2O3
/kZn = 0.15 and kTiO2

/kAl = 0.40).

The numerical solutions of the heat conduction equation were

obtained using a finite element method. The domain was

discretized using 50 000 quadrilateral elements with first order

interpolation functions for the temperature field. The resulting

mesh is refined around the particle. The numerical solutions were

obtained using a Newton–Raphson method with a tolerance of

0.01%. The dynamic time dependant part was solved employing

the Crank–Nicholson method with a variable time step adjusted

by the Adams–Bashforth method.37

The fluid flow model

The objective of the fluid flow model is to calculate the drag

force on the particle generated by the relative motion between

the particle and interface. The drag force tends to push the

particle towards the advancing interface. The drag force is

calculated numerically from the velocity field which is obtained

solving the Navier–Stokes equations by a finite element method.

The melt is considered to be a Newtonian fluid in a laminar

flow regime associated with a Reynolds number much less than

one. The flow is assumed to be in a steady state and have axi-

symmetrical symmetry. The boundary conditions imposed are

that there is no slip on the spherical particle surface and in one

side of the domain there is a constant flow velocity compatible

with the interface velocity which simulates the solidification

process.

The mesh employed to discretize the domain is shown in Fig. 5

for the axi-symmetric assumption. The domain was discretized

using 30 000 and 50 000 quadrilateral elements, with second

order interpolation functions for the velocity and first order for

the pressure. The resulting system of equations was solved

employing the Picard method.

The model was run for at least six different positions of the

particle with separation distances from the interface from a

maximum value of 2R and a minimum value of hmin = 1028 m.

This minimum value is assumed to be the minimum film

thickness which can be considered as fluid.7,38–40 A different

mesh was constructed for each separation distance particle–

interface (h). The interface shape at each h was obtained from

the simulation of the thermal field following the melting

temperature isotherm at each time step. At each particle position

the model was run for eleven different interface velocities.

The present model for the drag force was validated comparing

the results obtained for the case of a planar interface with the

values predicted by the modified Stokes equation valid for small

separations between the particle and sink, with very good

agreement. Details of the calculations and the results for a planar

interface are presented elsewhere.30–36

The pushing force model

In the general theory proposed by Chernov et al.,7,9 the pushing

force is a denominated disjoining pressure which is composed of

three main components; the Van der Waals or dispersion force,

the Debye or electrostatic force and the structural component

arising from the ordering of the liquid with respect to the solid

which contributes to an entropy repulsion. In the present

calculations only the first is considered since it is always present

in any particle, melt and solid system. Moreover, its influence in

the pushing process may be strong enough to determine the

pushing and capture process.

The Lifsitz–Van der Waals force is responsible for many

important processes where small particles interact among

themselves, as in the solid–liquid interface, or with other larger

particles, as in chemical flocculation, agglomeration of particles

and small particles interacting with microscopic particles.41

The Van der Waals forces employed in the present calculations

were proposed by Lifshitz and coworkers42–44 which for small

separation distances between a spherical particle and a non-

planar solid interface can be written as shown in eqn (1). This

equation is applied to a system in which the film is not metallic

and the sign of the parameter B3 is negative in order to have

pushing. The value of B3 of 1 6 10221 J is selected since it is in

the lower range of values calculated and proposed in the

literature.9,11,45,46

Fr~2pB3

ðR

0

rdr

h3(r)
(1)

The repulsive, or pushing, force is the Casimir–Lifshitz–Van

der Waals force which is calculated for a spherical particle (1)

where r is the distance from the particle vertical axis, h(r) is the

separation between the interface and the particle; B3 is the

Casimir–Lifshitz–Van der Waals constant which is taken as B3 =

1 6 10221 J. Both forces; the drag and the Casimir–Lifshitz–Van

der Waals forces, are decoupled and therefore calculated

separately at each particle position as the solid–liquid interface

moves. The equilibrium position for the steady state of pushing

is obtained when both forces, Fd and Fr, are equal. This method

is suitable since it has been previously shown that the transient

state is reached almost instantaneously due to the short range of

both forces; the Casimir–Lifshitz–Van der Waals force and the

drag force are of the order of 1/h3.2,3,7,35 In view of this, the
Fig. 5 The axis-symmetrical domain and mesh used for the fluid flow

model, with an enlargement around the particle.
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transient period to the steady state of pushing is neglected. The

integration of eqn (1) is performed numerically by the adaptive

trapezoid method within a scatter of 5%.

Results and discussion

Results of the temperature fields

The calculations for the thermal field are obtained considering a

spherical particle with kp/km = 0.1. The radii used in the

calculations were 1 mm, 10 mm and 50 mm. The solid phases were

modeled as materials with high viscosity 106 times the viscosity

of the melt.

The results show that for separation distances between the

particle and interface above 2R, the melt temperature isotherm

of 933 K is planar and becomes convex as the particle approaches

the interface, as shown in Fig. 6.

Results of the fluid flow fields

The results of the drag force on the particle calculated numerically

from the velocity field in the fluid flow model for a convex

interface and different separations of the particle–interface were

applied assuming a constant viscosity of 1.5 6 1023 Pa s for

the melt and the same density for the particle and melt of

2700 kg m23. The interface is assumed to be a sink with the

equivalent flow required for solidification at a given velocity.

The drag force was calculated for a range of interface velo-

cities, from 10210 m s21 to 1 6 1024 m s21; three particle radii,

50 mm, 10 mm and 1 mm; and six different values of h. The drag

force depends on the particle radius and interface velocity.

The results show that the fluid flow is continuous around the

particle with no separation lines and very regular with a velocity

that increases in the narrow gap between the particle and

interface. A typical field is shown in Fig. 7 for kp/km = 0.1 and a

particle radius of 50 mm. The drag force obtained for the case of

a convex interface is, at least, one order of magnitude smaller

than the corresponding drag force obtained for a planar interface

at the same interface–particle separation, as shown in Fig. 8(a).

Results of the pushing force model

The values of repulsive force calculated using eqn (1) are

independent of interface velocity and their magnitude for the

case of a convex interface are smaller than the corresponding

repulsion force obtained for a planar interface, as shown in

Fig. 8(b).

The values of Fr and Fd calculated with the models are

compared and the intersection between the Fr and the Fd is

located, at this point both are equal and correspond to the steady

state of pushing for that particle radius, interface–particle

distance (h) and interface velocity, as shown in Fig. 9. This

Fig. 6 Interface shape at equivalent times for different particle interface

separations.

Fig. 7 Fluid flow field around the particle. R = 50 mm; Vint = 2.22 6
1026 m s21 and h = 1 6 1026 m.

Fig. 8 (a) Drag force as a function of interface velocity; (b) repulsion

force as a function of interface velocity.
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procedure is used to determine the equilibrium velocity Veq and

the equilibrium distance heq. Repeating this procedure for other

solidification conditions makes it possible to obtain a relation

between the interface velocity and the separation distance for the

steady state of pushing at each particle radius.

The results are shown in Fig. 10 in a log–log graph where it is

observed that for a convex interface the equilibrium separation

distance is non-linear. On the other hand, for a planar interface

the relation is linear. Comparing both lines it is observed that the

line corresponding to the convex interface approaches the line

for the planar interface at very low interface velocities; on the

other hand at larger velocities the equilibrium separation

distance for a given velocity is one order of magnitude higher

than for a planar interface.

In Fig. 10 the critical velocity for pushing (Vc), the highest

velocity at which the particle can be pushed, can be obtained

considering the minimum thickness (hmin) of the fluid melt which

can be considered as such. This minimum thickness is taken as

1028 m, which is about 10 times the atomic separation

distance.1,40–42 Assuming this, the critical velocity for pushing

is obtained as the point where each line intercepts the axis in

Fig. 10. In such cases the critical velocities for a convex interface

and 50 mm particle radius is 2 6 1026 m s21 which when

compared with the critical velocity corresponding to a planar

interface of 2.22 6 1027 m s21 is 10 times slower. This is due,

particularly, to the lower drag force in the case of a convex

interface, which is a consequence of the shape of the solidifying

interface permitting easier access of the melt to the interface.

Similar relations are obtained for smaller particles of 10 mm

and 1 mm, which are shown in Fig. 10, with similar patterns as

for the case of the 50 mm particle. The deviation from linearity,

however, decreases with the particle radius.

For a given solidification velocity, the equilibrium distance

increases as the particle radius decreases indicating that the

critical growth velocity increases as the radius decreases, for both

planar and convex interfaces. For a convex interface the critical

velocities obtained from Fig. 10 are 2 6 1026 m s21, 6 6 1026 m

s21 and 1.65 6 1025 m s21 for particle radii of 50, 10 and 1 mm,

respectively.

The above critical velocities correspond to an alumina particle

in an aluminium melt; however, if the melt is water and the

particle melt thermal conduction ratio is 0.1 the critical velocities

for particles of radii 50, 10 and 1 mm are 2.8 6 1026 m s21, 6.8 6
1026 m s21 and 2.45 6 1025 m s21, respectively. For a planar

interface the corresponding critical velocities are 3.4 6 1027 m s21,

1.645 6 1026 m s21 and 14.7 6 1025 m s21.

In Fig. 11 these values are compared with the experimental

results of the measured critical velocities for a wide variety of

particle sizes, shapes and materials which were reported in the

literature by several authors. It is observed that the planar

interface model fits most of the results with a wide scatter and

the convex model predicts critical velocities which are normally

larger than the experimentally measured ones. On the other

hand, the lower limit of the data is predicted by a concave

interface.36 It indicates that non-planar interfaces have an impor-

tant influence in the model that could explain this deviation of

the ‘‘ideal’’ planar interface.

In the present model only the Lifshitz–Van der Waals force is

considered and in a melt like water the polar forces could be even

stronger than the Lifshitz–Van der Waals force, that is; including

them in a model with a convex interface would result in even

higher critical velocities for pushing. In addition the particle–

interface configuration for an isolated particle such as that

shown in Fig. 6 is highly unlikely since it is an unstable

configuration and the particle may roll over easily. Moreover,

the particles used in the experiments were not spherical in most

Fig. 10 The equilibrium separation distance between the particle and

interface for the steady state of pushing as a function of the interface

velocity for the convex and planar interface. R = 50 mm ,10 mm and 1 mm.

Fig. 11 Critical velocities for pushing in water, comparison between

experiments and model.

Fig. 9 Drag and repulsion force as a function of interface velocity.
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cases. A particle with an irregular shape will tend to face the

largest flat face on the solidifying interface producing much

larger drag forces and consequently lower critical velocities. That

is, there are effects that somehow compensate each other and

modeling including non spherical particles must be performed to

analyze the effect of particle shape.

Summary and conclusions

From the model results presented above of the interaction

between a particle and a solidifying interface, the following

conclusions can be obtained:

1 The drag and the Casimir–Lifshitz–Van der Waals pushing

forces are significantly weaker for a convex interface than for a

flat interface at equilibrium.

2 The equilibrium separation distance between the particle and

interface as a function of the interface velocity for convex and

planar interfaces are similar at very low interface velocities; on the

other hand, at larger velocities the equilibrium separation distance

of the convex interface could be one order of magnitude higher.

3 The equilibrium separation distance for pushing is around

one order of magnitude higher for a planar interface than for a

convex interface.

4 The critical velocity for pushing that may be predicted with

the model for a convex interface is one order of magnitude

higher than for a planar interface at each particle radius.

5 The comparison of predicted and experimental critical

velocities as a function of particle size in water show good

agreement for the case of a flat interface.

6 A steady state of pushing with a convex interface is unlikely

for spherical particles.

List of symbols

B3 Casimir–Lifshitz–Van der Waals constant =

1 6 10221 J

R Particle radius

Fd Drag force

Fr Repulsion force

h Particle–interface separation distance

r Generic radius

kp Thermal conductivity of the particle

km Thermal conductivity of the melt and solid

hmin Minimum particle–interface separation dis-

tance = 1028 m

Vint Interface velocity

Veq Equilibrium velocity for pushing

heq Equilibrium separation distance

Vc Critical velocity for pushing
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