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In this work, we explored convergent evidence supporting the fronto-striatal model of
obsessive-compulsive disorder (FSMOCD) and the contribution of event-related potential
(ERP) studies to this model. First, we considered minor modifications to the FSMOCD
model based on neuroimaging and neuropsychological data. We noted the brain areas
most affected in this disorder -anterior cingulate cortex (ACC), basal ganglia (BG), and
orbito-frontal cortex (OFC) and their related cognitive functions, such as monitoring
and inhibition. Then, we assessed the ERPs that are directly related to the FSMOCD,
including the error-related negativity (ERN), N200, and P600. Several OCD studies present
enhanced ERN and N2 responses during conflict tasks as well as an enhanced P600 during
working memory (WM) tasks. Evidence from ERP studies (especially regarding ERN and
N200 amplitude enhancement), neuroimaging and neuropsychological findings suggests
abnormal activity in the OFC, ACC, and BG in OCD patients. Moreover, additional findings
from these analyses suggest dorsolateral prefrontal and parietal cortex involvement,
which might be related to executive function (EF) deficits. Thus, these convergent results
suggest the existence of a self-monitoring imbalance involving inhibitory deficits and
executive dysfunctions. OCD patients present an impaired ability to monitor, control,
and inhibit intrusive thoughts, urges, feelings, and behaviors. In the current model, this
imbalance is triggered by an excitatory role of the BG (associated with cognitive or motor
actions without volitional control) and inhibitory activity of the OFC as well as excessive
monitoring of the ACC to block excitatory impulses. This imbalance would interact with
the reduced activation of the parietal-DLPC network, leading to executive dysfunction. ERP
research may provide further insight regarding the temporal dynamics of action monitoring
and executive functioning in OCD.
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INTRODUCTION
Obsessive-compulsive disorder (OCD) affects approximately
50 million people worldwide (Sasson et al., 1997). According
to the World Health Organization, OCD was estimated to be
the 11th leading cause of non-fatal burden in the world in
1990 (Nestadt et al., 1998). It is characterized by the occurrence
of obsessions (persistent and intrusive thoughts), compulsions
(ritualistic behaviors aimed at reducing anxiety produced by
obsession), or both (Franklin and Foa, 2011). The most com-
mon symptoms are symmetry/ordering, contamination/cleaning,
checking behaviors, obsessions, and hoarding. OCD symptoms
significantly reduce patients’ quality of life (Fontenelle et al.,
2010) and interfere with their routines and social life. OCD
is a financial burden to both the individual and the health
care system (Taylor, 2011). Although, several pharmacologi-
cal and cognitive-behavioral treatments are currently available,

a significant percentage of patients do not respond to them
(Franklin and Foa, 2011). This failure underscores the lim-
ited understanding regarding the neurobiological mechanisms of
OCD and highlights the need for further research.

Both psychodynamic (Freud, 1955) and cognitive-behavioral
models (Salkovskis, 1999) have explained the disease using psy-
chological hypotheses. More recently, neurocognitive studies
have utilized different models to understand the brain networks
involved. Despite some inconsistencies among neuropsychologi-
cal and neuroimaging results (Friedlander and Desrocher, 2006;
Maia et al., 2008; Clark et al., 2009), several findings have linked
cognitive deficits to dysfunction in specific brain areas (Greisberg
and McKay, 2003; Kuelz et al., 2004).

OCD functional imaging studies suggest abnormal metabolic
activity in the orbitofrontal cortex (OFC), anterior cingulate
cortex (ACC), and basal ganglia (BG) during rest or symptom
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provocation (Baxter et al., 1987; Breiter et al., 1996; Saxena et al.,
1998; Kwon et al., 2003a). The OFC and ACC are intimately
connected to the BG via cortico-basal ganglia-thalamo- corti-
cal loops (Alexander et al., 1986; Mega and Cummings, 2001;
Middleton and Strick, 2001). Based on this and other evidence,
a model that implicates disturbed fronto-striatal brain systems
in the pathogenesis of the disorder has been developed, referred
to as the fronto-striatal model of obsessive-compulsive disorder
(FSMOCD) (Baxter et al., 1987; Saxena et al., 1998; Mataix-Cols
et al., 2004; Huey et al., 2008; Maia et al., 2008; Menzies et al.,
2008; Chamberlain and Menzies, 2009; Clark et al., 2009; Simon
et al., 2010; Freyer et al., 2011; Kuhn et al., 2011). Early ver-
sions of the FSMOCD were obtained from the cortico-striatal
model which Alexander proposed in the 1980s. Nevertheless,
the current literature refers to an extended and interconnected
FSMOCD (Haber and Knutson, 2010; Milad and Rauch, 2012;
Robbins et al., 2012). Specifically, the circuit connecting the OFC,
the ventromedial caudate nucleus, additional substructures of the
BG, and the thalamus, presents an imbalance of feedback loops
(Kathmann et al., 2005). It has been suggested that each of these
circuits play a relatively specific functional role based on the con-
nections within each circuit to other frontal cortex areas (Menzies
et al., 2008).

The circuits involved in the extended FSMOCD are modulated
by dopaminergic, serotoninergic, noradrenergic, and choliner-
gic neurotransmitters (Dalley et al., 2008; Krebs et al., 2012).
Given this frontal-basal connection and its modulation by neu-
rotransmitters, fronto-striatal circuits appear to be essential for
behavioral regulation (Menzies et al., 2008; Freyer et al., 2011).
Indeed, the OFC is thought to be involved in motivational behav-
ior, monitoring, and decision making. The ACC monitors actions
and thoughts involving the detection of error and cognitive con-
flicts, and participates in reward processing [in OCD patients,
ACC cingulotomy has been shown to reduce the symptomatology
(Dougherty et al., 2002)]. Finally, the BG are involved in implicit
learning, habit acquisition and action thresholds, and present an
abnormal volume and activation in OCD (Graybiel and Rauch,
2000). Moreover, compulsivity has been proposed to reflect aber-
rant dysregulation of stimulus-response habit learning (Robbins
et al., 2012).

Other models have proposed different areas to be altered
during neuroimaging assessment of OCD, (Huey et al., 2008).
The dorsolateral prefrontal cortex (DLPFC) is thought to be
directly connected with the FSMOCD through the dorsolateral
prefronto-striatal loop (Menzies et al., 2008). The DLPC and
parietal cortex have been associated with executive function (EF)
deficits [especially working memory (WM), Milad and Rauch,
2012]. Moreover, the DLPFC is reported to be involved in decision
making, playing a coordinated role with the monitoring system
(the ACC and the fronto-striatal circuit, Heekeren et al., 2008).
In this work, we focus on the extended FSMOCD and related
DLPC/parietal networks. Finally, we discuss the potential roles of
other circuits (the ACC-amygdalo-cortical circuitry, the temporal
lobes and other areas, such as the insula).

Numerous OCD reviews have focused on neuroanatomical
models or on the fronto-striatal networks and their connections.
Conversely, no single review has highlighted the importance of

event-related potentials (ERPs) studies assessing action monitor-
ing, inhibition, and other related executive functions, such as
WM. The purpose of this review is to integrate the ERP find-
ings (summarized in Table 1) with the extended FSMOCD. We
first summarize the basis of the FSMOCD and its relationship
with OCD cognitive deficits and neuroimaging results. Then,
we analyze the possible connection between these findings and
ERP results. Finally, we examine the convergence of these dis-
coveries and methodologies, and discuss future directions of
research.

NEUROPSYCHOLOGY OF OCD
The OCD neuropsychological profile can be characterized by
deficits in two domains: planning (Greisberg and McKay, 2003)
and the inhibition of motor/cognitive intrusive or inappropri-
ate behaviors (Chamberlain et al., 2005). Both of these alter-
ations and the reported impairments in memory, attention and
visuospatial abilities suggest problems in executive functions
(Martinot et al., 1990; Savage et al., 1999; Deckersbach et al., 2000;
Savage and Rauch, 2000; Kim et al., 2002; Van Der Wee et al.,
2003; Kuelz et al., 2004).

RESPONSE INHIBITION AND SET SHIFTING
OCD cognitive deficits include failure to inhibit or shift atten-
tion from intrusive thoughts or motor activities toward more
pleasant ones (Chamberlain et al., 2005). In the Go/No Go task
(see reviews Chamberlain et al., 2005; Chamberlain and Menzies,
2009) OCD patients make more commission errors (Bannon
et al., 2002; Aycicegi et al., 2003; Milad and Rauch, 2012), show-
ing that they tend to exhibit inappropriate motor responses to
non-target stimuli.

To examine set-shifting abilities in OCD, a number of investi-
gations have employed the Wisconsin Card Sorting Test (WCST;
Berg, 1948), the Object Alternation Test (OAT; Freedman, 1990)
and/or the Delayed Alternation Test (DAT; Freedman and Oscar-
Berman, 1986). Although some studies have reported impaired
performance of OCD patients in the WCST (Boone et al., 1991;
Hymas et al., 1991; Lucey et al., 1997a; Okasha et al., 2000), most
investigations suggest that OCD subjects’ results are similar to
those of healthy controls (Zielinski et al., 1991; Abbruzzese et al.,
1995a,b, 1997; Gross-Isseroff et al., 1996; Deckersbach et al., 2000;
Moritz et al., 2001a,b, 2002). However, investigations using the
OAT and DAT have found marked deficits in these patients com-
pared to controls (Abbruzzese et al., 1995a, 1997; Gross-Isseroff
et al., 1996; Cavedini et al., 1998; Moritz et al., 2001b; Spitznagel
and Suhr, 2002). The last two tests have been suggested to be
sensitive to OFC damage (Freedman et al., 1998), and increased
activity of the OFC during the performance of these tasks has
been reported (Zald et al., 2002). In contrast, the WCST does
not engage one specific brain area but involves a distributed neu-
ral network (Posner and Petersen, 1990; Fernandez-Duque and
Posner, 2001; Barcelo, 2003).

In summary, OCD patients present deficits in the inhibition
processes and show impaired attention shifting during some neu-
ropsychological tasks. Based on these deficits, Chamberlain et al.
(2005) proposed that people with OCD may exhibit impairments
in (1) cognitive inhibition, and (2) behavioral inhibition. This
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FIGURE 1 | Results from a quantitative voxel-level meta-analysis of fMRI

studies reporting case-control differences associated with OCD across a

range of paradigms. The panels depict areas where activation was greater in
OCD patients than in healthy controls (p < 0.05). The R and L markers denote

the side of the brain, and the numbers denote the z dimension of each slice in
MNI space. The activation of these areas is consistent with the areas involved in
the FSMOCD described in the present review. Reproduced with authorization
from Neuroscience and Biobehavioral Reviews (Menzies et al., 2008).

is a conceptual distinction that can be useful for understanding
patient behavior.

PLANNING CAPACITY
Impaired planning capacity has been reported in OCD patients
(Cavedini et al., 2001; Nielen and Den Boer, 2003; Van Den
Heuvel et al., 2005) and subclinical obsessive-compulsive partici-
pants (Mataix-Cols et al., 1999) (but see Veale et al., 1996; Purcell
et al., 1998 for contradictory results regarding accuracy).

Evidence from the investigation of other cognitive domains
supports the existence of this OCD planning deficit. Memory dys-
function is associated with information organization at encoding
and/or retrieval (Kuelz et al., 2004; Chamberlain et al., 2005).
Impaired recall performance on non-verbal memory tests is due
to the failure to employ appropriate organizational strategies
(Martinot et al., 1990; Savage et al., 1999; Deckersbach et al., 2000;

Savage and Rauch, 2000; Kim et al., 2002; Kuelz et al., 2004).
Verbal memory is not impaired in OCD patients (Christensen
et al., 1992; Martin et al., 1995; Mataix-Cols et al., 1999), except
on tests that require semantically clustering the stimuli and
responses (Savage and Rauch, 2000; Cabrera et al., 2001). OCD
patients perform worse than controls in spatial WM tasks that
are strategy-dependent (Van Der Wee et al., 2003). Finally, the
visuospatial difficulties observed in OCD patients might also be
related to EF deficits (Head et al., 1989; Christensen et al., 1992;
Tallis, 1997a). These results suggest that both memory and visu-
ospatial impairments are, in fact, indexing deficits in other areas,
such as strategy processing, set-shifting and/or processing speed.

SUMMARY OF NEUROPSYCHOLOGICAL FINDINGS
The high variability observed in the neuropsychological profile
can be partially explained by both the cognitive heterogeneity
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involved in OCD (Chamberlain et al., 2005) and possible con-
founding factors [psychotropic medication, symptom severity,
education, and co-morbidity (Kuelz et al., 2004)]. Nevertheless,
the overall neuropsychological evidence suggests that, secondary
to impairments in cognitive strategies; both executive and more
general action-monitoring deficits are present.

NEUROIMAGING FINDINGS IN OCD: THE ROLE OF THE
OFC, ACC, AND BG
Several studies reported increased metabolism and hyperactiv-
ity in several areas in OCD patients, including the BG (Swedo
et al., 1989; Baxter et al., 1992; Molina et al., 1995; Perani et al.,
1995), OFC (Baxter et al., 1988; Molina et al., 1995; Alptekin
et al., 2001), and ACC (Swedo et al., 1989; Molina et al., 1995;
Perani et al., 1995) cortices (see Figure 1). Furthermore, there is
evidence of decreased activation in the DLPFC and parietal cor-
tex during symptom provocation (Maltby et al., 2005; Van Den
Heuvel et al., 2005; Viard et al., 2005; Remijnse et al., 2006).
These brain areas have been associated with OCD neurocognitive
deficits and symptoms as well as with functional connectivity of
the fronto-striatal system. Here, we summarize the main findings
on this topic.

OFC AND BG
BG and OFC hyperactivation constitutes an interconnected
neural circuit that may be involved in obsessions and com-
pulsive actions (Graybiel and Rauch, 2000). Zald and Kim
(1996) described the OFC as an interface area between sensory
association cortices, limbic structures, and subcortical regions
(BG) involved in the control and monitoring of autonomic
and motor effector pathways. Several authors (Tremblay and
Schultz, 1999; Elliott et al., 2000; Tremblay and Schultz, 2000;
Hikosaka and Watanabe, 2004) have suggested that OFC ascribes
and monitors changes in reward value. These OFC functions
(monitoring changes and withholding previously learned actions)
suggest that this region may play an inhibitory role in certain
behaviors.

Another structure related to behavioral regulation and flexibil-
ity is the BG, which interacts closely with the OFC. Graybiel and
Rauch (2000) found that this area influences both motor and cog-
nitive planning in OCD. According to Mercadante et al. (2004),
in OCD patients, the BG does not filter cortical impulses (motor
or cognitive activity) properly, which causes changes in thalamic
activity. Some reports (Saxena et al., 1998, 2001) have proposed
that there is an imbalance between the excitatory role of the BG
and inhibitory overactivity of the OFC. This conflict might lead to
obsessive thoughts and compulsive behaviors. For a more detailed
view on the roles of the OFC and BG in OCD, see Milad and
Rauch (2012); Robbins et al. (2012).

ACC
In OCD patients, the ACC has been found to be hyperactive at
rest, during symptom provocation and during performance of
high-conflict cognitive tasks (Swedo et al., 1989; Machlin et al.,
1991; Perani et al., 1995). This hyperactivity has been suggested
to be associated with an excessive evaluation of performance in
OCD, leading to inappropriate doubting, the need for correction

and consequently, repetitive actions (Ursu et al., 2003; Fitzgerald
et al., 2011).

ACC activation has often been associated with action selec-
tion and performance monitoring (Aouizerate et al., 2004). Some
authors (Van Veen and Carter, 2002a; Ursu et al., 2003) sug-
gest that a more specific function of this region is activation
in response to conflicts occurring between incompatible streams
of information processing (conflict theory). Following conflict
detection, regions of the lateral prefrontal cortex and other areas
associated with attention control are engaged to resolve the con-
flict (Van Veen and Carter, 2002a). As mentioned above, studies
have reported ACC hyperactivation in OCD patients, suggest-
ing that these regions are unusually sensitive to information
conflict.

In OCD patients, ACC hyperactivity might indicate an
overactive conflict response monitoring system. According to
this hypothesis, patients could frequently over-evaluate possible
responses against conflictive situations. This over-evaluation is
in accord with their unimpaired performance in most cogni-
tive tasks, although they take longer than controls to finish or
solve the task. This hypothesis offers a possible explanation for
OCD patients’ constant doubting and repetition, despite accurate
performance (Ursu et al., 2003).

DORSOLATERAL PREFRONTAL AREAS AND PARIETAL CORTEX
Evidence of decreased activation of frontal areas other than the
OFC-BG and ACC has been reported during symptom provo-
cation in OCD patients (Maltby et al., 2005; Van Den Heuvel
et al., 2005; Viard et al., 2005; Remijnse et al., 2006). In par-
ticular, the DLPFC is implicated in executive planning (Menzies
et al., 2008). Van Den Heuvel et al. (2005) observed DLPFC dys-
function together with impaired performance of OCD patients
in the Tower of London Task. These authors suggested that the
decreased responsiveness of the DLPFC is related to cognitive
impairments in spatial attention and WM processes in OCD
(Van Der Wee et al., 2003). Structural studies have also shown a
decreased DLPFC volume in these patients (Martinot et al., 1990;
Lucey et al., 1997b).

The parietal cortex is important for executive tasks involving
functions such as attention, spatial perception, and WM (Cabeza
and Nyberg, 2000; Culham and Kanwisher, 2001). Because execu-
tive functions and WM are domains that are relatively affected in
OCD, it is possible that DLPC/parietal lobe network dysfunction
contributes to OCD cognitive deficits. Posner and Petersen (1990)
suggested that this region operates as part of a posterior attention
system involved in disengaging spatial attention. Furthermore, it
has been reported that activity in this lobe is related to sustain-
ing attention and attention set-shifting (Nagahama et al., 1996;
Le et al., 1998; Hampshire and Owen, 2006). The parietal lobe has
also been implicated in planning (Williams-Gray et al., 2007) and
response inhibition (Rubia et al., 2001; Lepsien and Pollmann,
2002; Horn et al., 2003), which are reported to be impaired
in OCD.

Several studies (Cavada and Goldman-Rakic, 1989; Romanski
et al., 1997; Roberts et al., 2007) have demonstrated connec-
tions between parietal regions and the DLPFC and determined
that both regions contribute to the dorsolateral prefrontal-striatal
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circuit. Thus, OCD patients present dysfunction in both
the orbitofrontal-striatal and dorsolateral prefrontal-striatal
circuits.

SUMMARY OF NEUROIMAGING STUDIES
The studies described above suggest (1) hyperactivation of the
OFC, ACC, and BG involved in the control, monitoring and inhi-
bition of behaviors and thoughts; and (2) decreased activity of the
DLPC/parietal network involved in executive functions (attention
and WM). Thus, an extended FSMOCD involving OFC/ACC/BG
hyperactivation as well as DLPC/parietal deactivation suggests
an intertwining of monitoring/inhibitory control with executive
functions. These abnormalities in different areas might underlie
the variety of OCD symptoms.

ERP STUDIES RELATED TO THE FSMOCD
ERPs constitute a millisecond-by-millisecond record of neural
information processing that can be associated with particular
operations, such as sensory encoding, motor control or higher
cognitive processes (Ibanez et al., 2012b). Thanks to its temporal
resolution, ERP studies can accurately measure brain dynamics
that occur during cognition (Picton et al., 2000). This represents
an advantage over fMRI, which lacks such temporal resolution.
However, the spatial resolution of ERP measurements is limited.
Nevertheless, multichannel recordings allow investigators to esti-
mate the intracerebral locations of cognitive processes (Picton
et al., 2000). Therefore, ERP assessment has become an impor-
tant tool with the potential to be used for studying sensory, motor,
cognitive, and social processes (Ibanez et al., 2006, 2008, 2010a,b,
2011a,b,e, 2012b; Cornejo et al., 2009; Hurtado et al., 2009;
Aravena et al., 2010; San Martin et al., 2010; Dufey et al., 2011;
Ibáñez et al., 2012) and to provide neuropsychiatric biomarkers
(Guerra et al., 2009; Ibanez et al., 2011c,d, 2012a,c; Ibáñez et al.,
2011, 2012). In the following section, we present the ERP compo-
nents that can be most directly related to the extended FSMOCD
(see Table 1).

ERROR-RELATED NEGATIVITY (ERN)
Errors during rapid response tasks are typically followed by a
large ERP component known as error-related negativity (ERN)
(Van Veen and Carter, 2006). This component is a negative
deflection that occurs between 50 and 100 ms after having com-
mitted an error (see Figure 2). Several lines of evidence from
different types of studies (source localization: Dehaene et al.,
1994; Holroyd et al., 1998; Van Veen and Carter, 2002b; magne-
toencephalography: Miltner et al., 2003; intracerebral recordings:
Brazdil et al., 2005; ACC lesions with diminished ERN: Stemmer
et al., 2004) support the idea that ERN is mainly generated in the
ACC. In the above section, we discussed neuroimaging studies
that reported hyperactivity in this area in OCD patients. Most of
these fMRI investigations can be complemented with ERP mea-
surement methods to improve the temporal resolution of their
results.

ERN: the debate about its functional significance
Although subjects with OCD show increased ERN amplitude
compared to control subjects (Gehring et al., 2000; Johannes et al.,

FIGURE 2 | (A) The response-locked ERPs for error and correct trials at
FCz, where ERN was maximal. (B) The response onset occurred at 0 ms,
and negative values are plotted upward. Scalp topography of error-related
brain activity from 0 to 100 ms post-response. Reproduced with
authorization from Clinical Psychology Review (Olvet and Hajcak, 2008).

2001; Hajcak and Simons, 2002; Santesso et al., 2006; Endrass
et al., 2008; Hajcak et al., 2008; Grundler et al., 2009; see also
the ERN meta-analysis in Mathews et al., 2012), there is an exten-
sive discussion about the functional significance of enhanced ERN
amplitudes (Gehring et al., 2000; Johannes et al., 2001; Hajcak and
Simons, 2002; Santesso et al., 2006; Endrass et al., 2008; Hajcak
et al., 2008; Grundler et al., 2009). One of these theories sug-
gests that ERN reflects a process that compares a representation
of an intended response to a representation of the actual response
(Falkenstein et al., 1991; Scheffers et al., 1996). Investigations that
tested this hypothesis found that subjects exhibit larger ERNs
when the error response and the correct response are more dis-
similar (Bernstein et al., 1995; Falkenstein et al., 1995; Scheffers
et al., 1996). However, other authors who support a different the-
ory of ERN (conflict theory) argue that they have found many
instances of ACC activation during correct trials. These results are
in disagreement with the first hypothesis because ERN amplitude
increased should be seen only for incorrect responses.
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According to conflict theory (Van Veen and Carter, 2006), the
ACC monitors the presence of conflict between two incompati-
ble information-processing streams. From this point of view, ERN
reflects the conflict between the fast erroneous responses and the
slower correct ones (Botvinick et al., 1999; Van Veen and Carter,
2002b).

In error trials, conflict immediately follows an erroneous
response. During interface tasks, conflict precedes the actual
response in correct high-conflict trials (Van Veen and Carter,
2002b). These trials are frequently characterized by a small but
rapid activation of the incorrect response and a slower activation
of the correct one (Kopp et al., 1996b). Thus, during correct trials,
the conflict between the initial incorrect activation and the over-
riding correct response takes place before the correct response
(Van Veen and Carter, 2006). In conclusion, the “conflict theory”
suggests that conflict occurs prior to the response in correct, high-
conflict trials but follows the response in error trials (Van Veen
and Carter, 2002b).

A third theory regarding the functional significance of ERN
was presented by Holroyd and Coles and is known as “reinforce-
ment learning theory” (Holroyd and Coles, 2002). The authors
propose that behavior is monitored by a basal ganglia-based
“adaptive critic” that determines whether events are better or
worse than expected and signals this with a phasic increase or
a decrease in ACC dopaminergic activity (Van Veen and Carter,
2006). Therefore, the function of this brain area is selection
between different cognitive processes competing for access to the
motor system. To fine-tune the ACC for more appropriate selec-
tion in future trials, the inhibitory influence of the dopaminergic
innervations in the ACC is briefly disrupted, and it is assumed
that this generates ERN. These authors based their findings on
an ERP component that somewhat resembles ERN and appears
to be elicited by error feedback stimuli and stimuli indicating
loss or punishment (e.g., San Martin et al., 2010). Reward-based
learning modifies both components; in a task in which partic-
ipants had to learn the correct stimulus-response mapping by
processing feedback stimuli, both components were observed to
behave more or less as predicted (Holroyd and Coles, 2002).
However, there is no sufficient evidence to support the assump-
tion that this component has the same functional significance as
the response-linked ERN.

Despite the theoretical discrepancies, all of these theories relate
ERN to different aspects of monitoring behavior. There are con-
vergent results showing an ERN increased amplitude in OCD
patients. The evidence that supports ERN as an index of monitor-
ing behavior, together with the enhancement of this component
in OCD, might suggest that these patients exhibit subtly altered
cognitive monitoring processes. These putative alterations have
received different explanations. In the first theory, which sug-
gests that ERN reflects the comparison between representations of
an intended response and representations of the actual response,
OCD subjects might present a hyperactive error monitoring sys-
tem that induces a comparator dysfunction (Gehring et al., 2000).
This hyperactivity could explain the tendency of patients to feel
that something is wrong when the situation seems satisfactory
to an outside observer. This dysfunction might cause seemingly
correct repetitive actions to elicit error signals. However, “conflict

theory” suggests that ERN amplitude increase, in both incorrect
and high-conflict correct trials, indicates an overactive conflict
monitoring system in OCD patients (Botvinick et al., 1999; Van
Veen and Carter, 2002b). According to this theory, patients could
be frequently over-evaluating possible conflict responses during
motor and/or cognitive activities. Their overactive conflict mon-
itoring system causes them to adopt a very cautious approach to
test performance to avoid mistakes. This approach offers a pos-
sible explanation for the patients’ constant doubting and need
for repetitive action, despite correct performance (Ursu et al.,
2003). The last theory (Holroyd and Coles, 2002) posits that
ERN is the result of ACC disinhibition provoked by a dopamine
decrease due to an event that did not turn out as expected. Once
the erroneous action is performed, it is assumed that the sub-
ject must avoid making the same mistake again. Therefore, in
OCD, ERN could be higher because subjects not only perceive
the error but also present compulsory behaviors and excessive
monitoring to avoid mistakes. Moreover, psychopharmacological
investigations have demonstrated possible effects of medication
in OCD, given that psychotropic drugs alter ERN (Ridderinkhof
et al., 2002; De Bruijn et al., 2004; Zirnheld et al., 2004; Riba et al.,
2005a,b).

A different point of view: error significance
Endrass et al. (2010) examined whether overactive performance
monitoring in OCD patients is adjusted based on error signifi-
cance and hypothesized that these patients are less able to monitor
and correct their performance. In this study, the author found
that healthy subjects’ performance monitoring is strengthened
under conditions with a higher error relevance or salience. This
finding is supported by research detecting ERN enhancement
when accuracy is emphasized over speed (Gehring et al., 1993;
Falkenstein et al., 2000), when errors are associated with a high
monetary risk or when errors are committed during social evalua-
tion (Hajcak et al., 2005). To evaluate whether OCD patients show
the same sensitivity to error relevance, Endrass et al. (2010) used a
flanker task to compare patients and controls under two different
conditions, one of which was neutral, while the other involved
punishment feedback (in which error relevance is higher). The
author reported three important results: (1) in the neutral con-
dition, patients presented greater ERN amplitude than controls
in both correct and incorrect trials; (2) there were no signifi-
cant differences between groups under the punishment condition;
and (3) controls showed amplitude enhancement between neutral
and punishment conditions, whereas OCD patients did not show
variations.

These results replicated earlier findings and support the inter-
pretation that the ERN is sensitive to the motivational significance
of errors (Hajcak et al., 2005). Additionally, the evidence that
OCD patients demonstrated only overactive performance mon-
itoring (vs. controls) in situations with a lower error significance
and not in the punishment condition suggests that they are not as
sensitive as normal subjects to error significance.

Furthermore, when OCD patients had reached maximum
monitoring activity in the neutral condition due to a ceiling effect,
they were unable to further increase monitoring activity (Endrass
et al., 2010). This observation should explain some inconsistent
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results from probabilistic learning tasks (Nieuwenhuis et al., 2005;
Grundler et al., 2009). During this type of task, these studies did
not find significant differences in the ERN amplitude between
OCD patients and healthy controls. However, Grundler et al.
(2009) did find larger ERNs in flanker tasks for participants
with increased OCD symptoms. According to this result, Endrass
et al. (2010) suggested that compared to flanker tasks, the error
significance might be higher during probabilistic learning tasks
because subjects have to carefully attend to feedback to learn
and predict correct responses. Therefore, the absence of group
differences between OCD patients and healthy controls in these
highly demanding tasks might be caused by the enhancement of
monitoring activity in controls to a similar level as that in OCD
patients.

ERN as a possible endophenotype for OCD
Endophenotypes are unobservable characteristics that medi-
ate relationships between genes and behavioral phenotypes
(Gottesman and Gould, 2003). The aim in searching for
endophenotypes is to identify neural and information processing
abnormalities that may place individuals at risk for developing
psychopathology (Olvet and Hajcak, 2008).

ERN is considered to be a potential suitable OCD endopheno-
type (Riesel et al., 2011) because it fulfills the criteria described
in the scientific literature (Gottesman and Gould, 2003): (1) it

is associated with OCD in that enhanced ERN amplitudes have
been repeatedly found in patients with this disorder (Gehring
et al., 2000; Johannes et al., 2001; Hajcak and Simons, 2002;
Santesso et al., 2006; Endrass et al., 2008; Hajcak et al., 2008;
Grundler et al., 2009); (2) it is heritable, as a twin study
showed substantial ERN heritability of between 45% and 60%
(Anokhin et al., 2008); (3) ERN amplitude enhancement appears
to be independent of the symptom state in pediatric OCD
patients (Hajcak et al., 2008); and (4) asymptomatic relatives
of OCD patients who were not taking psychotropic medication
showed enhanced ERN amplitudes similar to those of patients,
as reported by an ERP investigation (see Figure 3) (Riesel et al.,
2011).

The results of these studies on ERN and OCD suggest that
enhanced ERN might be a candidate endophenotype for this dis-
order. Nevertheless, these findings are not sufficient to discern
whether an enhanced ERN amplitude is a mediator between genes
and an OCD phenotype or only a risk indicator associated with
some of the same genes as this disorder (Kendler and Neale, 2010).
In addition, endophenotypes might also be influenced by envi-
ronmental risk factors that affect both the endophenotype and
the clinical phenotype (Kendler and Neale, 2010). Further stud-
ies are needed to determine whether this component is exclusively
associated with OCD symptoms or whether it could be related to
different impaired processes.

FIGURE 3 | Grand averages of EEG recordings and the error-related

negativity topography in OCD patients, unaffected first-degree

relatives of OCD patients, and healthy subjects for comparison.

(A) Response-locked grand average waveforms recorded at electrode FCz for
correct and incorrect responses are shown. Responses occurred at 0 ms.

(B) The ERN topography of all three groups is presented. The ERN is
characterized by a fronto-central distribution with a maximum at electrode
FCz. The current source density (latency 66 ms) was computed by Laplace
transformations on grand average waveforms in the three groups. Modified
from American Journal of Psychiatry (Riesel et al., 2011).
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N200
The N200 shows a similar topography and estimated source local-
ization (ACC) as ERN (Van Veen and Carter, 2006). This ERP
component appears between 150–400 ms after stimulus presen-
tation (Ciesielski et al., 2011) and appears to be involved in
situations in which responsive conflict is high (Kopp et al., 1996b;
Liotti et al., 2000; Wang et al., 2000; Nieuwenhuis et al., 2003).
In 2002, Van Veen and Carter (2002b) argued that the post-
stimulus latency window of the N200 indicates that it occurs
prior to the response in correct conflict trials (Yeung et al., 2004).
This idea is consistent with the hypothesis that the N200 reflects
conflict detection, thus suggesting cognitive activity before an
action takes place. Several empirical findings argue for a cogni-
tive conflict control-related N200 component that originates in
the prefrontal dorsal and ACC regions (Gratton et al., 1988; Kopp
et al., 1996a; Heil et al., 2000; Yeung et al., 2004; Van Veen and
Carter, 2006).

In a variety of studies employing different tasks, the frontal-
central N200 has been found to be largest under high conflict
conditions (Kopp et al., 1996b; Van Veen and Carter, 2002a).
An example is the Go/No-Go task, which creates competition
between generating and withholding a response. Many studies
have identified an enhanced N200 component in no-go trials
(Pfefferbaum et al., 1985; Kok, 1986; Eimer, 1993). The view that
an increased N200 amplitude in no-go trials is an electrophysio-
logical correlate of conflict monitoring by the ACC is consistent
with other proposals that the association of the N200 compo-
nent with other tasks (e.g., Eriksen flanker task) is greater during
incongruent trials than congruent trials (Kopp et al., 1996b; Liotti
et al., 2000).

Several studies of somatosensory (Shagass et al., 1984a,b,
1988), auditory (Towey et al., 1990) and visual modalities
(Ciesielski et al., 1981; Beech et al., 1983) have discovered evi-
dence of abnormal ERP features in OCD patients that are
consistent with increased cortical arousal. To analyze the occur-
rence of deviant sensory and cognitive information processing
in OCD patients, Towey et al. (1990, 1993) employed an odd-
ball paradigm. They found that OCD patients showed greater
amplitude negativity than normal controls with respect to N200
activity. Additionally, ERP component modulation has been asso-
ciated with longer latencies: normal controls showed longer N200
latencies during the difficult task compared to the easy one, but
patients did not. These abnormalities have been interpreted as
overfocused attention with frontal lobe region hyperactivation.

As frontal areas are presumably involved in the inhibition
system (Rieger et al., 2003), another hypothetical explanation
of the discordance between abnormally high cortical activa-
tion and faster or more accurate performance in OCD patients
(Ciesielski et al., 2011) may be related to inhibitory control dif-
ficulties. In an attempt to investigate whether the N200 was
associated with abnormal top-down cognitive control, Ciesielski
et al. (2011) performed ERP amplitude measurements in four
clusters of brain regions: the prefrontal, central, temporal, and
fronto-polar regions. To correlate anterior brain N200 com-
ponents with inhibitory attentional control, they applied a
Stroop task requiring effective top–down monitoring and con-
flict evaluation. The most important result of this study was

the particularly abnormal increase of activity observed in the
prefrontal region of OCD patients (see Figure 4). Ciesielski et al.
proposed that high activation of these brain areas could be
a sign of an adaptive state of attentional readiness to sustain
effective top–down inhibitory control in the context of inter-
fering internal and external distractors. An enlarged N200 may
be due to the patients’ effort to maintain attention and normal
performance.

In summary, the N200 is generated in the ACC and other areas
of the prefrontal cortex (Towey et al., 1990, 1993; Nieuwenhuis
et al., 2003; Ciesielski et al., 2011), and its role in action monitor-
ing can be directly related to the FSMOCD. It has been proposed
that the increased N200 amplitude is related to response conflict
monitoring, and this effect is evident in incongruent trials (Kopp
et al., 1996b; Liotti et al., 2000; Yeung et al., 2004). However, sev-
eral findings suggest that higher N200 activity might reflect an
increase in the inhibitory control of prefrontal areas (Ciesielski
et al., 2011). Although there is a long way to go before the N200
can be used as a neurobehavioral tool for cognitive information
processing, there is appealing evidence that the N200 ampli-
tude is enhanced in OCD patients (Towey et al., 1993; Ciesielski
et al., 2011). Nevertheless, further studies should be performed
to investigate the exact role of the N200 in higher cognitive
functions and the possible relationship between top–down atten-
tional control and the performance of OCD patients on difficult
conflict tasks.

P600
The P600 is a positive wave that appears approximately 600 ms
after stimulus presentation. The P600 might be related to WM
because it has been considered as an index or second-pass parsing

FIGURE 4 | Grand mean ERPs of the task epoch reflecting the cortical

response to high-conflict stimuli. The high-conflict N200 showed a higher
amplitude in both groups of subjects. The differences between groups
were significant in the prefrontal, central and temporal scalp locations, but
not in the posterior brain regions. Reproduced with authorization from
Clinical Neurophysiology (Ciesielski et al., 2011).
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process. The P600 involves a wide fronto-basal network. While
P600 estimation sources and fMRI co-recordings have shown
involvement of prefrontal structures (Proverbio et al., 2009;
Kompus et al., 2011; Maillard et al., 2011), fMRI recordings of the
same paradigms eliciting a P600 and ERP studies in lesion sub-
jects have shown involvement of both the frontal cortices and the
BG (Friederici and Kotz, 2003). Compared with healthy controls,
patients with OCD showed significantly higher P600 amplitudes
in the right temporo-parietal area, which has been associated
with obsessive traits (Papageorgiou and Rabavilas, 2003). Another
interesting aspect is the increased latencies discovered in the
centro-parietal area; this prolongation might suggest that OCD
patients perform more slowly across all neuropsychological tests,
which has been attributed to distracting obsessive thoughts dur-
ing testing. These findings are consistent with the hypothesis that
P600 latency increases as a function of the difficulty of response
selection (Falkenstein et al., 1993, 1994). Although additional
studies should be performed, the current results support the
existence of an abnormal second-pass parsing in information pro-
cessing in OCD patients (see Figure 5), which can be observed in
WM tasks that elicit a P600 (Papageorgiou and Rabavilas, 2003;
Kalatzis et al., 2005).

The longer latencies and higher amplitudes of the P600 may
be related to the neuropsychological dysfunction found in OCD
patients regarding working memory, which could be caused
by patients’ inability to suppress intrusive thoughts that pre-
vent them from correct information processing and consequently
result in low performance. These findings connect the P600 to the
FSMOCD due to the fronto-basal network alteration implied in
this model and its connection to information processing deficits
related to working memory dysfunction.

DISCUSSION
This review aimed to integrate evidence from ERP, neuropsycho-
logical and neuroimaging studies on OCD and to analyze the
relationship between these findings and the extended FSMOCD.
To this end, we first described the most consistent neurocogni-
tive deficits related to this disorder that have been reported in the
neuropsychological literature. Next, we analyzed the neuroimag-
ing findings associated with these neurocognitive dysfunctions.
Finally, we focused our attention on individual ERP components
(ERN, N200, and P600) that have been found to be impaired
during electrophysiological investigations of OCD patients.

THE CONTRIBUTION OF ERP RESEARCH AND ITS CONVERGENCE
WITH NEUROPSYCHOLOGY AND NEUROIMAGING STUDIES
OCD presents a highly variable neurocognitive profile regarding
neuropsychological and neuroimaging assessments. This finding
is not unexpected given the heterogeneity of symptoms and high
co-morbidity involved in OCD (Kuelz et al., 2004; Chamberlain
et al., 2005; Menzies et al., 2008). OCD can be better understood
at a system or network level (Menzies et al., 2008). Nevertheless,
ERP research provides systematic and replicated results supported
by different manipulations: OCD presents enhanced ERN and
N200 responses during conflict tasks as well as an enhanced
P600 during WM tasks. These combined results suggest enhanced
ACC/OFC and reduced DLPF/parietal sites. Thus, the extended

version of the FSMOCD including ACC/OFC/BG networks in
connection with DLPC/parietal sites is supported by the ERP
results reviewed here.

According to this convergence (see Figure 6), OCD can be
understood as a model of unbalanced self-monitoring and inhi-
bition. In this model, monitoring and inhibition appear to be
crucially affected, besides executive impairments (especially WM
and planning). Despite the heterogeneous results related to neu-
ropsychological impairments, deficits in inhibition assessed dur-
ing different tasks are the most consistent results (Chamberlain
et al., 2005). Other deficits appear to be secondary to EF impair-
ments, especially altered cognitive strategies (Kuelz et al., 2004)
related to action monitoring. Among the neuroimaging findings,
the most replicated result is overactivation of the OFC/ACC/BG,
reflecting abnormal inhibition and monitoring. In addition, other
areas outside the classic cortico-striatal system appear to be
affected by executive functions and WM (DLPC/Parietal sites).
Finally, ERP research evidenced an overactivated error detection
system and inadequate processing of the motivational signifi-
cance of errors and reward processing, both of which are related
to OFC/ACC/BG interactions. Importantly, the results of ERP
studies (given the modulation of ERN and N200) support the
existence of an early influence of automatic monitoring system,
possibly prior to later executive dysfunctions. The P600 findings
suggest a later imbalance of the fronto-striatal system in connec-
tion with the DLPC/parietal sites (Menzies et al., 2008; Milad and
Rauch, 2012). This convergence of different methods has not been
noted in previous reviews because current ERP research is not
integrated with neuroimaging and neuropsychology outcomes.

Neuroanatomical models of both monitoring (Kopp et al.,
1996b; Liotti et al., 2000; Wang et al., 2000; Nieuwenhuis et al.,
2003; Heekeren et al., 2008; Menzies et al., 2008) and inhibi-
tion (Chamberlain et al., 2005; Haber and Knutson, 2010; Milad
and Rauch, 2012) involved the FSMOCD. OCD patients exhibit
an impaired ability to control, monitor, and inhibit intrusive
thoughts, urges, feelings, and behaviors (Milad and Rauch, 2012).
In fact, it has recently been proposed that there is cross-talk
between the FSMOCD, inhibition/control, and the symptoms of
impulsivity and compulsivity (Robbins et al., 2012). The impaired
cognitive and emotional regulation and control observed in OCD
involves hyperactivation of the ACC, OFC, and BG (Taylor and
Liberzon, 2007). In the present model, this monitoring and inhi-
bition imbalance is explained by the combination of an excitatory
role of the BG (associated with cognitive or motor actions with-
out volitional control) and inhibitory over-activity of the OFC as
well as excessive monitoring of the ACC to withhold BG excita-
tory impulses. This imbalance would interact with the reduced
activation of the parietal-DLPC, leading to executive dysfunction.
Although this model appears to fit better with a dimensional spec-
trum of OCD than a clear psychiatric nosology, this approach
is consistent with recent consideration of OCD as a group of
obsessive-compulsive spectrum disorders (Phillips et al., 2010;
Robbins et al., 2012).

Inhibitory control in OCD impairment
Failures to inhibit automatic cognitive or motor processes are
important characteristics of OCD (Abbruzzese et al., 1995a, 1997;
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FIGURE 5 | Average of P600 waveforms of OCD patients (dotted line)

and controls (solid line). In this experiment, subjects were presented with
a computerized version of the digit span subtest of the Wechsler Adult
Intelligence Scale. A sound was presented, after which subjects were

asked to memorize the following numbers. Afterward, the signal tone was
repeated, and the subjects were asked to recall the numbers. Reproduced
with authorization from Psychiatry Research (Papageorgiou and Rabavilas,
2003).

Gross-Isseroff et al., 1996; Cavedini et al., 1998; Moritz et al.,
2001b; Spitznagel and Suhr, 2002; Aycicegi et al., 2003). It has
been proposed that the role of the OFC area might be inhibitory
control of automatic processes (Tremblay and Schultz, 1999;
Elliott et al., 2000; Tremblay and Schultz, 2000; Hikosaka and

Watanabe, 2004), which are considered to be modulated by the
BG (Zald and Kim, 1996).

Response inhibition has also been assessed in ERP studies
(N200 amplitude enhancement in OCD patients). This higher
N200 amplitude could be a sign of attention readiness to sustain
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FIGURE 6 | Convergent evidence from ERP, neuroimaging and

neuropsychology results: the imbalance between over-monitoring and

inhibitory impairments. (A) The most consistent findings of ERP studies on
OCD suggest the existence of excessive over-monitoring (an enhanced ERN
amplitude), inhibitory impairments (N200 enhancement) and working
memory deficits (P600 enhancement). (B) The neuropsychological results
show both inhibitory impairments (assessed through multiple tasks) and

executive control deficits (planning, working memory and attentional
set-shifting). (C) Neuroimaging convergence. Over-monitoring of the conflict
system (increased activity of ACC/OFC/BG) and executive impairments
(reduced activation of the DLPC-parietal network). (D) Convergent model of
the extended FSMOCD proposing an imbalance between self-monitoring,
executive control, and inhibition, indexed by an overactive ACC/OFC/BG
circuit and impaired DLPFC/parietal-related network.

effective top–down inhibitory control to avoid the interference of
distracters. Thus, convergent evidence highlights a core inhibitory
control impairment in this disorder (Chamberlain et al., 2005;
Haber and Knutson, 2010; Milad and Rauch, 2012). This ten-
dency of OCD patients to fail in controlling automatic behaviors
would facilitate the generation of obsessive thoughts and compul-
sive actions.

Monitoring and control impairments in OCD
A dysfunctional action-monitoring system has also been reported
to be a core process underlying some of the characteristic symp-
toms of OCD (Ursu et al., 2003). Several neuroimaging studies
(Swedo et al., 1989; Machlin et al., 1991; Perani et al., 1995;
Carter et al., 1998; Botvinick et al., 1999; Van Veen and Carter,
2002a) have reported that the ACC area is hyperactivated in OCD
patients. The ERP component directly associated with monitor-
ing this process is the ERN. Although ERP monitoring has a low
spatial resolution, there are several lines of evidence from different
types of studies that support the hypothesis that ERN is mainly
generated in the ACC. Additionally, an increased ERN amplitude
has been reported in OCD patients compared to control subjects.

These results lead to different functional explanations for
ERN and the ACC depending on the different available theo-
ries. Despite the differences between these theories with regard
to the monitoring roles of the ACC and the ERN, other electro-
physiological studies involving the N200 component (Van Veen
and Carter, 2002a; Nieuwenhuis et al., 2003; Yeung et al., 2004)
and neuroimaging (Van Veen and Carter, 2002a; Ursu et al.,
2003) findings provide convergent information that support the

conflict theory. Although some studies have suggested that the
N200 is associated with response inhibition (Ciesielski et al.,
2011), others propose the complementary hypothesis that this
component might be related to the conflict response monitor-
ing system (Van Veen and Carter, 2002a; Nieuwenhuis et al.,
2003; Yeung et al., 2004). This view provides a unifying account
of the N200 components observed in a variety of experimen-
tal tasks, and it is consistent with the evidence that links ACC
activity to evaluative aspects of cognitive control (Carter et al.,
1998; Nieuwenhuis et al., 2003). This abnormal cognitive process
is not reflected in neuropsychological attention tasks, where OCD
patients exhibit the same results as healthy controls (Zielinski
et al., 1991; Hollander et al., 1993; Martin et al., 1993; Aronowitz
et al., 1994; Berthier et al., 1996; Cohen et al., 1996; Savage et al.,
1996; Milliery et al., 2000; Okasha et al., 2000; Moritz et al., 2002).

Agam et al. (2011) reported a contradictory result regard-
ing the role of the ACC in ERN, as they observed activation
of the posterior cingulated cortex using both fMRI and ERN
measures. Nevertheless, this finding appears to be explained by
differences in the experimental manipulations applied. They did
not use a classical error or gambling task (go/no go, flanker, and
Stroop), but rather, used an antisaccade task. This task appears to
be mediated by very different brain areas, such as the thalamus
(Peterburs et al., 2011). Importantly, no study addressing ERN
in OCD using an antisaccade task has been reported. Moreover,
following studies applying simultaneous ERP/fMRI recordings
with classical error paradigms do not replicate the Agam results
(Donamayor et al., 2011; Edwards et al., 2012). Conversely, they
observed strong ACC activation in response to errors in both
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fMRI and ERN. Involvement of the ACC in monitoring is a very
consistent result in both neuroimaging (Bush and Shin, 2006)
and ERP reports (Taylor et al., 2007) using conflict tasks. ACC
lesions produce robust effects on ERN (Stemmer et al., 2004;
Hogan et al., 2006). The same result is obtained using virtual
lesions (TMS) (Rollnik et al., 2004). Intracerebral studies pro-
viding direct intracranial sources confirmed the involvement of
the ACC in ERN (Brazdil et al., 2005; Jung et al., 2010). In
conclusion, neuroimaging, electrophysiological and neuropsy-
chological investigations provide support for the ERN generation
on the ACC.

Executive functions and their relationship with monitoring and
inhibition
Evidence from neuroimaging studies in OCD patients showed
decreased responsiveness of the DLPFC in EF tasks and a
decreased volume of this region. The DLPFC has been associ-
ated with planning abilities (Menzies et al., 2008), WM processes
and set shifting, among other executive functions. The parietal
cortex (Cabeza and Nyberg, 2000; Culham and Kanwisher, 2001)
is also important in higher order cognitive tasks, such as WM
and attention shifting. A study (Papageorgiou and Rabavilas,
2003) comparing OCD patients and healthy controls found that
the amplitude of the P600 component in the right temporo-
parietal area was significantly higher in OCD patients. This
area is believed to contribute to the second-pass parsing pro-
cess related to WM. According to this hypothesis, the longer
latency and higher amplitude of the P600 may be related to the
neuropsychological dysfunction in WM. Several studies (Cavada
and Goldman-Rakic, 1989; Romanski et al., 1997; Roberts et al.,
2007) have demonstrated a connection between parietal regions
and the DLPFC, and both regions contribute to the dorsolateral
prefrontal-striatal circuit. Neuroimaging results showing hypoac-
tivation of this circuit and findings related to the P600 component
provide consistent evidence of impairment in OCD patients with
respect to encoding, organizing, planning, and implementing
effective strategies. In addition to the overactive conflict response
monitoring system, these deficits could be related to doubt and
slowness in this disorder.

Other neuroanatomical models of OCD
Other studies have examined the potential influence of additional
brain structures in the neuropathology of OCD that were not
assessed here. Several researchers support fronto-striato-limbic
models of OCD (Simon et al., 2010; Milad and Rauch, 2012)
that attribute a specific role in mediating the anxiety symp-
toms to the amygdala and associated para-limbic regions. The
amygdala is extensively connected, both anatomically and func-
tionally, to the OFC and ACC (Carmichael and Price, 1995; Rolls,
1999; Cavada et al., 2000) and ascribes an affective function to
the fronto-striatal network (Lawrence et al., 1998; Phillips et al.,
2003). The amygdala also projects strongly to the mediodorsal
nucleus of the thalamus (Amaral et al., 1992), the final relay sta-
tion before the OFC/ACC/BG loops project back to the cortex
(Alexander et al., 1986; Middleton and Strick, 2001), and it is
therefore critically positioned to influence the output of these
loops (Maia et al., 2008). The amygdala plays a crucial role in

mediating normal fear and anxiety (Ledoux, 2000, 2007; Phelps
and Ledoux, 2005) and contributes to anxiety disorders (Rauch
et al., 2003; Bremner, 2004; Miller et al., 2005). Nevertheless, the
role of this region in OCD remains to be elucidated. One recent
study found increased amygdala activation in patients with OCD
during active responses to emotional faces (Cardoner et al., 2011).
Another study reported that although amygdala hyperactivation
was observed in response to symptom-provoking stimuli, such
hyperactivation was unrelated to the OCD symptoms (Simon
et al., 2010). Moreover, studies of amygdala volume in adults
with OCD have yielded inconsistent findings [bilateral reduction:
amygdala (Szeszko et al., 1999) and left increase (Kwon et al.,
2003b)]. Thus, it is important to note that the role of the amygdala
in the pathophysiology of OCD requires further investigation.

Another question that remains is whether the temporal lobe
may also be involved in the pathogenesis of OCD (Maia et al.,
2008; Morein-Zamir et al., 2010). Several studies have reported
anatomical abnormalities in the superior temporal gyrus (Choi
et al., 2006; Shin et al., 2007; Yoo et al., 2008). Recent meta-
analyses have demonstrated anatomical and functional changes
in the medial temporal lobes of OCD patients (Menzies et al.,
2008). One possibility is that the temporal lobe (in particular, the
superior temporal gyrus) is involved in OCD via its connections
with the regions of the striatum that are part of the OFC/ACC/BG
loops (Alexander et al., 1986). Additional research is needed to
test this hypothesis.

Finally, abnormalities in other areas closely related to the
FSMOCD, including the hippocampus and the insula have also
been reported. Voxel-based morphometry studies have high-
lighted abnormalities in the insula (Pujol et al., 2004; Valente
et al., 2005; Yoo et al., 2008), and volume reductions have been
reported in the hippocampus (Kwon et al., 2003b) in adults
with OCD, supporting the existence of widespread abnormalities
across the brain (Menzies et al., 2008). The insula is intercon-
nected with both the OFC and the ACC (Mesulam and Mufson,
1982; Ongur and Price, 2000; Ibanez et al., 2010a; Ibanez and
Manes, 2012; Couto et al., 2012), suggesting that more distributed
large-scale brain systems may be involved in OCD (Menzies et al.,
2008). Further research is required to establish whether the OCD
results regarding the insula and hippocampus can be directly
related to the FSMOCD.

LIMITATIONS AND FURTHER STUDIES
ERP studies have often been applied to paradigms that indirectly
reflect specific cognitive functions in OCD. Several neuroimaging
studies (Breiter et al., 1996; Adler et al., 2000; Mataix-Cols et al.,
2002; Shapira et al., 2003; Nakao et al., 2005) have been carried
out using symptom provocation paradigms that more directly
reflect the physiological reaction to stimuli that provoke certain
symptoms. Although OCD is usually a chronic disorder, anxi-
ety is experienced only when the individual encounters stimuli
that trigger obsessive fears. Future ERP studies should employ
symptom provocation paradigms, which could shed light on
the neurological mechanisms that take place during the specific
moment at which symptoms occur.

Another general limitation is co-morbidity. The discrepan-
cies among different hypotheses could be partially attributable
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to the heterogeneity of this disorder and, more specifically, to
differences between patient subgroups (Tallis, 1997b). Similar
caveats for OCD neuroimaging studies related to methodolog-
ical issues (sample size, multiple corrections, non-selective data
analysis) are a topic for further consideration. Finally, it is worth
noting that most OCD patients have an extensive history of med-
ication use. Even if the global effects of these treatments on
the reported findings remain unclear, there is interesting evi-
dence from neuropharmacological investigations suggesting that
various substances alter ERP components.

CONCLUSIONS
The role of ERP as a methodology that connects OCD symptoma-
tology with the fronto-striatal model has numerous implications.
Perhaps the most important of these implications is the linkage
of ERPs (ERN and N200) with action monitoring and inhibition,
particularly because they are modulated by the ACC, OFC, and
BG, which are intimately linked to OCD.

ERP studies offer several advantages. One of the most relevant
is a temporal resolution that allows a more precise analysis of dif-
ferent stages of cognitive processes during the performance of a
motor or cognitive task. Another advantage is its lower cost com-
pared to other techniques, such as neuroimaging. The integration
of neuropsychological studies, neuroimaging techniques and ERP
findings might become a powerful strategy for obtaining more
precise and complete knowledge of disorders such as OCD. This
integrative approach could also be useful in analyzing the pos-
sible role of conflict monitoring and inhibition (ERN, N200) as
well as executive functions such as WM (P600) as biomarkers or
endophenotypes of this disorder.
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