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Upper bounds for the violation of the Weak Equivalence Principle (WEP) by the fundamental interactions
have been given before. We now recompute the limits on the parameters measuring the strength of the
violation with the whole set of high accuracy Eötvös experiments. Besides, limits on spatial variation of
the fundamental constants α, sin2 θW and v , the vacuum expectation value of the Higgs field, are found
in a model independent way. Limits on other parameters in the gauge sector are also found from the
structure of the Standard Model.
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1. Introduction

The Standard Model of fundamental interactions (SM) together
with General Relativity (GR) provide a consistent description of
all known local low energy phenomena (i.e. low compared to the
Grand Unified Theory (GUT) energy scale) in good agreement with
the experiment. These theories depend on a set of parameters
called the “fundamental constants”, which are supposed to be uni-
versal parameters; i.e.: time, position and reference frame invariant
[1,2].

The Equivalence Principle (EP) is the physical basis of gravita-
tional theory [3]. There are several versions of the EP [4]. The Weak
Equivalence Principle (WEP) (also called Universality of Free Fall
(UFF)) states that the trajectory of a freely falling test body is in-
dependent of its internal structure and composition. The Einstein
Equivalence Principle (EEP) enhances the previous version impos-
ing the equivalence between a local inertial reference frame and
a freely falling one. The unrestricted validity of this very strong
statement (Strong Equivalence Principle) implies that General Rel-
ativity is the unique theory of the gravitational field [5]. Thus,
experimental tests of its validity probe deeply into the structure
of gravitation.

The traditional model for describing a WEP breakdown is to
assume that an anomalous acceleration of body A, defined as
δaA = aA − g is due to a difference between its inertial mass mI

A
and its passive gravitational mass mP

A , i.e. the coupling constant of
A to the gravitational field. It is usual to parametrize δmA in the
form [4]
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δmA = mP
A − mI

A =
∑

K

ΓK
E K

c2
, (1)

where E K are the different contributions to the binding energy
of A, and ΓK are dimensionless parameters quantifying the break-
down of UFF. These parameters can be estimated from Eötvös ex-
periments (cf. Section 2).

Most of the old published estimates have only taken into ac-
count the binding energy contribution to the nucleus mass, which
is generally dominant. However, the contribution of the binding
energies of nucleons is important for several problems and should
be included, as it has been done in Ref. [6]. This generalization of
the classical model (1) will be used in a forthcoming analysis (cf.
Eq. (7)).

One of the consequences of the Equivalence Principle is that
the fundamental constants must be universal parameters, because
any dependence on time, position or reference frame would break
the equivalence with an inertial frame [7,8]. The particular case of
space dependence of dimensionless constants has been treated in
those references and with weaker hypotheses (essentially energy
conservation) in Ref. [9].

In short, the binding energies E K of bodies such as nuclei are
functions of the fundamental constants, and each gives a contri-
bution E K

c2 to the mass. If the fundamental constants are space
dependent, so is the mass of the body. In those conditions, the
Lagrangian of a body in a gravitational field takes the form

L = −
∫

m(α)
√

gμνuμuν ds. (2)

In the nonrelativistic limit one finds an anomalous acceleration

δa = −
∑

j

c2

m

∂m

∂α j
∇α j, (3)
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Table 1
Results of the Eötvös experiment.

Body Body Source (η ± σ) × 1011 Ref.

Al Au Sun 1.3 ± 1.5 [16]
Al Pt Sun 0.03 ± 0.04 [17]
Cu W Sun 0.6 ± 2.0 [18]
Be Al Earth −0.02 ± 0.28 [19]
Be Cu Earth −0.19 ± 0.25 [19]
Si/Al Cu Sun 0.51 ± 0.67 [19]
Moon-Like Earth-Like Sun 0.005 ± 0.089 [20]
Be Ti Earth 0.003 ± 0.018 [21]
Be Al Earth −0.015 ± 0.015 [22]
Be Ti Sun −0.031 ± 0.045 [22]
Be Al Sun 0.0 ± 0.042 [22]

where j runs over the set of fundamental constants. This anoma-
lous acceleration is composition-dependent and its existence can
be tested through Eötvös experiments (Section 2).

Recently, the detection of a spatial variation of the fine struc-
ture constant has been reported [10–12] with a gradient amplitude
(3.6 ± 0.6) × 10−6 Gpc−1 at a ∼ 6σ level. This tantalizing result
suggests that local variation of α should be tested via local exper-
iments. And the Eötvös experiment (Section 2) offers an excellent
tool for that. Indeed, Dent [13] has made such an analysis (see
also, [2,14]).

The purpose of this Letter is to analyze the space variation of
the fundamental constants in the SM, using the available Eötvös
experiment results (cf. Table 1). We shall limit ourselves to the
Gauge sector of the Standard Model, with the exception of the
vacuum expectation value of the Higgs field. The organization is
as follows: Section 2 summarizes the main characteristics and re-
sults of the Eötvös experiments, and describes the models we shall
use for our analysis. Section 3 delineates our implementation of
the structural characteristics of the test bodies such as binding en-
ergies and constitutive relations in the Standard Model. Section 4
shows our results and in Section 5 we state our conclusions.

2. A primer on Eötvös experiments

The Eötvös experiment [15], one of the most sensitive tests of
the Equivalence Principle, measures the difference of acceleration
between two masses A, B in the same gravitational field. It con-
sists in suspending a pair of bodies from the arms of a torsion
balance in a homogeneous gravitational field. It is easy to show
that a differential acceleration would produce a torque [5,4]

T = LW η(A, B), (4)

where L and W are the lever arm of the torsion balance and
the gravitational force on the body respectively, and η(A, B) is
the Eötvös parameter. The torsion balance is rotated with a well-
defined angular velocity ω with respect to the external gravita-
tional field and only signals with the corresponding period are
analyzed in order to clean the result of spurious systematic effects.
Additionally, it would be possible to find any “privileged direction”
defined by a gradient in the masses if a nonzero result were found.

The main result of the Eötvös experiment is the Eötvös param-
eter η(A, B), defined as follows: If g is the local acceleration of
gravity,

η(A, B) = (aA − aB) ·n

|g| , (5)

where aA,B are the accelerations of the bodies in the gravitational
field and n a suitably chosen unit vector. Since the Equivalence
Principle implies that aA = aB = g , a non-null η signals its break-
down. The beautiful design of the experiment cancels many causes

of error and during the twentieth century several orders of magni-
tude in accuracy have been improved. Table 1 displays the results
of several high accuracy Eötvös experiments.

Eq. (4) depends crucially on the homogeneity of the gravita-
tional field g and great efforts have been made to design the
torsion balance so that its small inhomogeneities are canceled. Be-
sides, due to the design, the Eötvös experiment is sensitive only to
the horizontal component of the gravitational field. Thus, only the
deviation of the Earth gravitational field g⊥ or the solar gravita-
tional field g� are used in the experiments. The references cited
in Table 1 include many details on the design of the experiment
and the analysis of experimental data.

Let

M(A, Z) = mp Z + mn N + me Z − B(Z , A)

c2
(6)

be the atomic mass of a body of mass number A, atomic num-
ber Z , neutron number N = (A − Z) and binding energy B(Z , A).
The difference between inertial and passive gravitational mass of
the above body will be [6]

δM = δmp Z + δmn N + δme Z − δ
B(Z , A)

c2

= δ(mp + mn + me)

2
A + δQ

(N − Z)

2
− δ

B(Z , A)

c2
, (7)

where

Q = mn − mp − me (8)

is the decay energy of the neutron. The relative mass difference
will be

δM

M
� δ(mp + mn + me)

2mp
+ N − Z

2A

δQ

mp
− δ

B(Z , A)

Ampc2
, (9)

an expression which includes both the nuclear binding energy
B(Z , A) and the contribution of the particle rest masses δmk . This
model is equivalent to work with constant masses for the nucleons
is some suitable system of units.

With model (9) (which generalizes model (1)), the Eötvös pa-
rameter reads

η(X, Y ) = δmX

mX
− δmY

mY
=

∑
K

ΓK

(
Ê K

Mc2

∣∣∣∣
X

− Ê K

Mc2

∣∣∣∣
Y

)
, (10)

where

Ê K

Mc2
= N − Z

2A

δQ K

mp
− δ

B(Z , A)K

Ampc2
, (11)

includes the contribution of each form of energy to the binding
energies of neutron and proton. A set of experiments with bodies
of different compositions permits in principle the measurement of
the ΓK parameters.

Finally, we shall parametrize Ê K
Mc2 either in the generalized

“classical” form (10) for a test of the Equivalence Principle, or in
the form (3) for testing the position dependence of the fundamen-
tal constants. In the last case, the Eötvös parameter will read, after
some algebra,

η(A, B) = c2

g

∑
j

∂ ln M(A)

M(B)

∂ ln
α j
Λ j

n ·∇ ln
α j

Λ j
(12)

where Λ j are suitable normalization constants.
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3. Binding energies and fundamental constants

The main ingredients for our analysis are the binding energies
E K and their dependence on the fundamental constants. We shall
discuss separately nuclear binding energies and neutron–proton
mass differences.

3.1. Nuclear binding energies

The largest contribution to the binding energy of an atom
comes from the nuclear binding, which has been discussed for
a long time. The simplest approach is to use the semi-empirical
mass formula [23,24] complemented with the estimate of the weak
interactions contribution to the binding energy [25,26]. There are
simple analytic approximations for the strong, Coulomb and weak
contributions to the binding energy B , namely

E S

Mc2
= aV − aS A−1/3 − aA

(N − Z)2

A2
, (13a)

EC

Mc2
= 3e2

5r0

Z(Z − 1)

A4/3
, (13b)

EW

Mc2
= GG F 2−2/3 V −1

{
N Z

[(
3α2

β − 1
) − 4

(
1

2
− 2 ∗ sin2 θW

)]

+ N2

2
+ Z 2

2

(
4 sin4 θW − 2 sin2 θW + 1

)}
. (13c)

In the above equations r0 A1/3 is the nuclear radius, V = 4π
3 Ar3

0
the nuclear volume and N = A − Z the neutron number. αβ is the
G A/G V ratio for neutron decay, and G F and θW are the Fermi con-
stant and the Weinberg angle respectively. G is an enhancement
factor of the weak interactions due to the strong ones [26]. Be-
sides, the “strong constants” aV , aS , aA as well as mp , mn are all
proportional to ΛQCD in the chiral limit.

These analytic expressions, which are reasonably accurate, dis-
play the dependence of the nuclear binding energies on the funda-
mental constants.

3.2. Neutron–proton mass difference

The other contribution to the mass is the neutron–proton mass
difference which contributes to the neutron decay energy Q .

Model independent contribution of the strong, electromagnetic
and weak forces to the neutron–proton mass difference �M can
be computed with the Cottingham formula [27] and its generaliza-
tions for the strong [28] and weak [6] interactions. Their calculated
values are:

�M

M

∣∣∣∣
S
= 2.22 × 10−3,

�M

M

∣∣∣∣
E

= −0.83 × 10−3,

�M

M

∣∣∣∣
W

= −5.0 × 10−9. (14)

However, the explicit dependence on the fundamental constants
is not obvious. A careful analysis of the respective expressions
shows that the electromagnetic contribution is proportional to α
and the weak one to G F . Besides, the weak contribution has a de-
pendence on sin2 θW , which must be numerically computed with
Ref. [6] method. The result is

sin2 θW

M

∂�M

∂ sin2 θW
� 2.0 × 10−8. (15)

Finally, an important result is that the “strong” contribution to
�M is not proportional to ΛQCD near the chiral limit but to the
u − d quarks mass difference, a result that can be derived in an
elementary way from Chiral Perturbation Theory [29] and that is
quantitatively confirmed in lattice calculations (see, for instance,
[30]).

Since quark and electron masses are proportional to the vac-
uum expectation value of the Higgs field v , mi = yi v , so is Q .
The available Eötvös experiments are not enough to separate the
Yukawa coupling parameters and v . So in this Letter we limit our-
selves to the analysis of the gauge sector plus the single Higgs
sector parameter v . With this limitation, we find the following ex-
pression for Q as a function of the fundamental constants α, v
and sin2 θW :

δQ

M
= δα

α

�M

M

∣∣∣∣
E

+ δv

v

Q

M
+ sin2 θW

M

∂�M

∂ sin2 θW

δ sin2 θW

sin2 θW
. (16)

If for each of the fundamental constants αi we replace

δαi = ∇αi · δr (17)

we obtain the contribution of Q to the Eötvös parameter.

3.3. Constitutive relations

In this subsection we shall use the fine structure constant α,
the vacuum expectation value of the Higgs field v and the squared
sine of Weinberg’s angle θW as our basic variables. Other funda-
mental constants from the gauge sector are related to our basic
constants in the form

α = α1 sin2 θW , tan2 θW = α2

α1
, G F = 1√

8v2
, (18a)

M2
W = α1

2
v2, M2

Z = M2
W

cos2 θW
, α3 = β−1

ln μ2

Λ2
QCD

. (18b)

The last equation shows that in QCD system of units, α3 is au-
tomatically constant.

3.4. Scaling and systems of units

The need of working with nondimensional quantities when
studying the variation of fundamental constants it has been dis-
cussed in many papers (see, for instance, [1,2]) since a suitable
choice of units may cancel its variation. Many measurements, how-
ever, are carried out on dimensional quantities and its analysis
must be done starting with these data. This problem may be solved
either by transforming the dimensional quantities to a standard
system of units [31] or transforming these dimensional quantities
into dimensionless ones through division by a suitably chosen con-
stant.

One of the beauties of the Eötvös experiment is that it has
a “natural” way of defining η as nondimensional parameter, and
Eq. (10) is already in dimensionless form. Besides, since the
anomalous acceleration (3) can be written as

δa = −
∑

j

c2

m

∂m

∂α j
∇ lnα j . (19)

Any normalization constant will not contribute to the differential
acceleration.

In this Letter we shall use “QCD units”: that is, we assume that

∇ΛQCD = 0. (20)
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Table 2
Test of the Equivalence Principle.

Param. Γ ± σ(Γ ) Correlations Up. bound

ΓS (−1.3 ± 1.6) × 10−10 1.00 0.98 0.84 5 × 10−10

ΓC (−3.0 ± 4.0) × 10−10 0.98 1.00 0.87 1.2 × 10−9

ΓW (−2.7 ± 8.6) × 10−4 0.85 0.87 1.00 2.6 × 10−3

ΓC (1.5 ± 6.7) × 10−11 1.00 0.00 2 × 10−10

ΓW (2.2 ± 2.0) × 10−4 0.00 1.00 6 × 10−4

In the nuclear binding energies the dependence of the strong
binding energy on the (u,d, s) quark masses can be neglected. This
implies that ΓS = 0 since we are working near the chiral limit.

However, above approach is not always correct. Indeed, the log-
arithmic derivatives of the binding energy parameters aV , aS , aA

with respect to the quark masses could be large in some cases.
Refs. [32–34] make a detailed analysis on the subject. In our case,
the only important contribution from the quark masses is in the
“strong” contribution to the p − n mass difference.

4. Results

We have performed the above sketched calculations both to
test the Equivalence Principle and the existence of gradients of
the fundamental constants in the Standard Model. A weighted least
squares procedure was applied to the values of η in Table 1, the
conditional equation being given by either Eq. (10) or in the form
corresponding to spatial variation (12).

4.1. Test of the Equivalence Principle

Table 2 shows our results for the test of the Equivalence Prin-
ciple. We have used the expressions (13) with the contributions
(14) from the neutron–proton mass difference. The first three lines
of the table show the result assuming that the three interactions
break the Equivalence Principle. The last two lines assume that the
strong contribution satisfies the Equivalence Principle (ΓS = 0). An
enhancement factor G = 8 for the Weak Interactions has been as-
sumed [6]. Our results are similar to those of Ref. [6], but the new
bounds are smaller due to the inclusion of higher accuracy results
[20–22].

The large correlations in the first three lines suggest that either
the breakdown of the Equivalence Principle should be analyzed
simultaneously or that a constraint such as (ΓS = 0) should be im-
posed and in this case only violation parameters relative to the
strong interactions will be found.

4.2. Spatial variation of fundamental constants

Turning to the spatial variation problem, it is convenient to
work with the nondimensional quantity [14]

Θ j = c2

g�
|∇α j|
α j

, (21)

which is the “natural” nondimensional parameter for this problem.
As explained before, we use as basic variables α, v and sin2 θW .
Again, the values of the Θ parameters were found by least squares
adjustment and upper bounds were obtained as 3σ values. The re-
sults of the adjustment are displayed in Table 3 in the same format
as the one in Table 2.

Logarithmic differentiation of the Standard Model relations in
(18), after normalization by division by suitable powers of ΛQCD,
yields a system of linear equations for the gradients of the pa-
rameters from which the upper bounds of Table 4 are found. The
quantities

Table 3
Bounds on the space variation of fundamental constants: Basic variables.

Param. Γ ± σ(Γ ) Correlations Up. bound

Θα (0.5 ± 1.6) × 10−10 1.00 0.74 0.71 4.8 × 10−10

Θv (−0.5 ± 2.5) × 10−8 0.74 1.00 0.99 1.1 × 10−7

Θsin2 θW
(0.1 ± 1.1) × 10−2 0.71 0.99 1.00 3.3 × 10−2

Table 4
Bounds on the space variation of fundamental constants: Gauge sector.

j Θ j � j pc j Θ j � j pc

α 4.8 × 10−10 1.1 × 1012 v 7.5 × 10−8 6.6 × 109

sin2 θW 3.4 × 10−2 1.4 × 104 α1 3.4 × 10−2 1.4 × 104

α2 1.0 × 10−2 4.8 × 104 G F 1.5 × 10−7 3.4 × 109

M2
W 3.4 × 10−2 1.4 × 104 M2

Z 2.4 × 10−2 2.0 × 104

� j = α j

|∇α j| (22)

define distance scales where the spatial variation of a given funda-
mental constant becomes important.

The results summarized in Tables 2 to 4 are the main results of
this Letter.

5. Conclusion

The results stated in Sections 2 and 4 show that no violation of
the Equivalence Principle is observable in laboratory experiments
down to the 10−13 level. The classical model decomposition of the
Eötvös parameter (10) shows that the contributions of the funda-
mental interactions to such a violation are extremely small.

On the other hand, the order of magnitude of the upper bounds
for the gradients of the fundamental constants are very variable,
from ∼ 10−12 pc−1 for α to ∼ 10−4 pc−1 for α2. These extremely
small gradients of galactic or cosmological scale, are the best avail-
able bounds on the spatial variation of fundamental constants.

The results of this Letter are in a certain sense complementary
to those of Ref. [13] where the analysis was focused mainly on the
Higgs sector of the Standard Model and on the sensitivity to the
Newtonian potential. See also Ref. [2] for a more complete analysis
of that sector.

Our upper bounds, however, are too big for an independent test
of the reported cosmological gradient of α. Our smallest bound is
obtained assuming that only α has a sensible variation

|∇α j|
α j

< 2 × 10−4 Gpc−1, (23)

and it is about 60 times greater than the detected one. This is not
far from the needed sensitivity and the proposed MICROSCOPE
[35] or STEP [36] experiments, whose accuracy is about a thou-
sand times greater should be able to detect it.
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