Inhibition of the gastric H,K-ATPase by potassium competitive acid blockers

Cerf N^a, Faraj S^a, Valsecchi W^a, Rossi R^a, Montes M^a

a - Cátedra de Fisicoquímica Biológica-Departamento de Química Biológica, Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) UBA-CONICET.

The gastric H,K-ATPase is a membrane protein found in the parietal cells of the stomach, where it couples H⁺ extrusion to the uptake of K⁺, leading to the acidification of gastric juice (1). Acid-related diseases are an important public health issue where the mainstay of treatment has been the suppression of H,K-ATPase activity. As K⁺ plays a vital role in this catalytic cycle, for the dephosphorylation of the H,K-ATPase and the subsequent conformational changes, acid secretion can be inhibited by agents that are competitive with respect to K⁺ binding. This argument led in the past decades to the development of a new class of acid suppressants, known as potassium competitive acid blockers (P-CABs). Since a systematic investigation of enzyme-inhibition mechanisms has become a fruitful way to

design and test new drugs, the effects of P-CABs-type inhibitors have been extensively studied analyzing how the apparent Michaelis and Menten parameters are affected (2). Working with the non-compartmentalized enzyme preparation, we analyzed the interactions between K⁺, the H,K-ATPase, and two different inhibitors under steady state conditions. Our results from ATPase activity as a function of K⁺ concentration was described by a rational function where the maximal exponent on [K⁺] is 2. Data show that K⁺, as a product, can inhibit the reaction steps that involve its release, which implies that ATPase activity would not obey the Michaelis-Menten equation. This can lead to mistakes when analysing the results according to variations in V_{max} and K_M. Here we propose a minimal model to describe

the binding of K^+ to different enzyme conformations and the inhibition by P-CABs compounds allowing a more realistic evaluation of their effects.

References

(1) M. Ljungstrom, and S. Mardh (1985) The Journal of Biol. Chem., 260, 9, 5440.
(2) O. Vagin, S. Denevich, K. Munson, and G. Sachs (2002) Biochemistry, 41, 12755.

Acknowldegments

This work was supported by Agencia Nacional de Promoción Científica y Tecnológica [PICT 2012-2018, 1053], Consejo Nacional de Investigaciones Científicas y Técnicas [PIP 11220150100250CO], and Universidad de Buenos Aires [UBACyT 2014-2017, 20020130100302BA].