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SHARP BOUNDS FOR FRACTIONAL TYPE OPERATORS
WITH Lα,s-HÖRMANDER CONDITIONS

GONZALO H. IBAÑEZ-FIRNKORN, MARÍA SILVINA RIVEROS, AND RAÚL E. VIDAL

Abstract. We provide the sharp bound for a fractional type operator given
by a kernel satisfying the Lα,s-Hörmander condition and certain fractional
size condition, 0 < α < n and 1 < s ≤ ∞. In order to prove this result we use
a new appropriate sparse domination. Examples of these operators include the
fractional rough operators. For the case s = ∞ we recover the sharp bound
of the fractional integral, Iα, proved by Lacey et al. [J. Functional Anal. 259
(2010), no. 5, 1073–1097].

1. Introduction and main results

Let 0 < α < n. The fractional integral operator Iα on Rn is defined by

Iαf(x) :=
∫
Rn

f(y)
|x− y|n−α

dy.

This operator is bounded from Lp(dx) into Lq(dx) provided that 1 < p < n
α and

1
q = 1

p −
α
n (see [29] for this result).

In the study of weighted estimates for the fractional integral operator, the class
of weights considered is the Ap,q introduced by Muckenhoupt and Wheeden [23].
Recall that w is a weight if it is a non-negative locally integrable function. Given
1 < p < q <∞, the weight w is in the class Ap,q if

[w]Ap,q := sup
Q

(
1
|Q|

∫
Q

wq
)(

1
|Q|

∫
Q

w−p
′
)q/p′

<∞.

If w ∈ Ap,q, then wq ∈ A1+q/p′ with [wq]1+q/p′ = [w]Ap,q , and w−p
′ ∈ A1+p′/q

with [w−p′ ]1+p′/q = [w]p
′/q
Ap,q

, where As denotes the classical Muckenhoupt class of
weights. Observe that w ∈ Ap,p is equivalent to wp ∈ Ap. The class A∞ = ∪p≥1Ap,
and the statement w ∈ A∞,∞ is equivalent to w−1 ∈ A1.

There have been several works devoted to the study of quantitative weighted esti-
mates; in other words, papers where the authors study how these estimates depend
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on the weight constant [w]Ap or [w]Ap,q . The estimate for the Hardy–Littlewood
maximal function was studied by Buckley [4] and for the maximal fractional opera-
tor by Pradolini and Salinas [27]. Buckley’s result attracted renewed attention as a
result of the work of Astala, Iwaniec and Saksman [2] on the theory of quasiregular
mappings. They proved sharp regularity results for solutions to the Beltrami equa-
tion, assuming that the operator norm of the Beurling–Ahlfors transform grows
linearly in terms of the Ap constant for p ≥ 2. This linear growth was proved by
Petermichl and Volberg [26]. This result opened up the possibility of considering
some other operators. Petermichl [24, 25] proved the corresponding results for the
Hilbert transform and the Riesz transforms. The A2 theorem, namely the linear
dependence on the A2 constant for Calderón–Zygmund integral operators, proved
by Hytönen [12], can be considered the most representative in this line. In the
case of the fractional integral operator, the sharp dependence of the Ap,q constants
was obtained by Lacey, Moen, Pérez and Torres [16]. The precise statement is the
following.

Theorem 1.1 ([16]). Let 0 < α < n, 1 < p < n
α and 1

q = 1
p −

α
n . If w ∈ Ap,q, then

‖Iαf‖Lq(wq) ≤ cn,α[w]
(1−αn ) max

{
1, p
′
q

}
Ap,q

‖f‖Lp(wp),

and the estimate is sharp in the sense that the inequality does not hold if we replace
the exponent of the Ap,q constant by a smaller one.

The Calderón–Zygmund integral operators can be generalized by taking other
regularity conditions of the kernel, for example the Lr′ -Hörmander condition. This
integral operators are controlled in the Lp-norm sense by the maximal operator Mr,
defined by Lr-average. For more details see, for example, [21, 22]. The operator Iα
can be generalized in an analogous way by adding an assumption of boundedness,
as in [15], or adding some fractional size condition, as in [3].

Now we give the definitions of the fractional size and Hörmander conditions.
First we introduce some notation. We set

‖f‖s,B =
(

1
|B|

∫
B

|f |s
)1/s

,

where B is a ball. Observe that in these averages the balls B can be replaced by
cubes Q. The notation |x| ∼ t means t < |x| ≤ 2t, and we write

‖f‖s,|x|∼t = ‖fχ|x|∼t‖s,B(0,2t).

Let 0 < α < n and 1 ≤ s ≤ ∞. The function g is said to satisfy the fractional
size condition Sα,s if there exists a constant C > 0 such that

‖g‖s,|x|∼t ≤ Ctα−n.
We say that g ∈ Sα,∞ if g satisfies the previous condition with ‖ · ‖L∞,|x|∼t in place
of ‖ · ‖s,|x|∼t. For s = 1, we write Sα,s = Sα. Observe that if g ∈ Sα, then there
exists a constant c > 0 such that∫

|x|∼t
|g(x)| dx ≤ ctα.
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The function h satisfies the Lα,s-Hörmander condition (h ∈ Hα,s) if there exist
cs > 1 and Cs > 0 such that, for all x and R > cs|x|,

∞∑
m=1

(2mR)n−α‖h(· − x)− h(·)‖s,|y|∼2mR ≤ Cs.

We say that h ∈ Hα,∞ if h satisfies the previous condition with ‖ · ‖L∞,|x|∼2mR in
place of ‖ · ‖s,|x|∼2mR. For α = 0, we write H0,s = Hs, the classical Ls-Hörmander
condition.

In this paper we consider the following fractional operator. Let 0 < α < n,
1 ≤ r < ∞, and let r′ be the conjugated exponent of r. Let Kα be a measurable
function defined away from 0, such that Kα ∈ Sα,r′ ∩Hα,r′ . For any f ∈ L∞c (dx),
we consider the operator

Tαf(x) =
∫
Kα(x− y)f(y) dy. (1.1)

Observe that we do not assume that the operator is bounded.
If Kα(x) = |x|α−n, then Tα = Iα (the fractional integral operator) and Kα ∈

Sα,∞ ∩Hα,∞.

Remark 1.2. Let 1 < r < p < n/α and 1
q = 1

p−
α
n . If f ∈ L∞c (dx) and wr ∈ A p

r ,
q
r
,

then Tαf ∈ Lq(wq). This remark is a particular case of Lemma 5.1 in [14].

Remark 1.3. This type of operators also appears in several works, for example [3,
8, 11].

Remark 1.4. It can be considered that Tα is not of convolution type. In this case,
we need the corresponding Hörmander and size condition in both variables. In this
paper, we only consider the convolution type operator, and the general case follows
in an analogous way, with the obvious changes.

An interesting example of a kernel is the following. Let us consider L = −∆+V
the Schrödinger operator on Rn, n ≥ 3, where V satisfies a reverse Hölder condition
RHq, with n

2 < q < n, and let K be the kernel associated to the Riesz transform
L−1/2∇. It can be proved that K ∈ S0,r′ ∩Hr′ for some 1 < r′ < ∞, see details
in [5, 10, 20]. We define Kα(x, y) = |x − y|αK(x, y); then by [3, Proposition 4.1],
Kα ∈ Sα,r′ ∩Hα,r′ .

For 0 ≤ α < n, 1 ≤ r < ∞ and f ∈ L1
loc(dx), the maximal operator Mα,r is

defined by
Mα,rf(x) = sup

B3x
|B|α/n‖f‖r,B ,

where the supremum is taken over all the balls B containing x.
A more general case of this type of operator has been studied by Kurtz [15].

The author defines the following class of kernel, K(r, α). Let 0 < α < n and
n

n−α ≤ r <∞. We say h ∈ K(r, α) if the following conditions are met:
(1) There is a non-decreasing function S on (0, 1) such that

‖(h(· − x)− h(·))χ|·|∼R‖r ≤ S
(
|x|
|R|

)
Rα−

n
r′ , |x| < R

2 .
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(2) The convolution operator T , Tf = h ∗ f , is bounded from Lr
′ into Lq,

where 1
q = 1

r′ −
α
n .

(3) Finally,
∞∑
j=1

S(2−j) <∞.

Theorem 1.5 ([15]). Let 0 < α < n and 1 ≤ r < n/α. Let Kα ∈ K(r′, α) and
suppose Tα is bounded from Lr(dx) into Lq(dx) for 1

q = 1
r −

α
n . Then there exists

a constant C > 0 such that, for f ∈ Lrloc(dx),
M ](Tαf)(x) ≤ CMα,rf(x),

where M ] is the classical sharp maximal function.

Theorem 1.6 ([15]). Let 0 < α < n and 1 ≤ r < n/α. Let Kα ∈ K(r′, α) and
suppose Tα is bounded from Ls(dx) into Lq(dx) for all (s, q) with 1

q = 1
s −

α
n and

n/(n− α) < s < r′. If r < p < n/α, 1
q = 1

p −
α
n and wr ∈ A p

r ,
q
r

, then there exists
a constant Cw > 0, independent of f but depending on w, such that

‖Tαf‖Lq(wq) ≤ Cw‖f‖Lp(wp). (1.2)

Remark 1.7. It is easy to see that if Kα ∈ K(r′, α), then Kα ∈ Hα,r′ and the
operator Tαf = Kα ∗ f is bounded from Lr(dx) into Lq(dx) for 1

q = 1
r −

α
n .

More recently, in [3] the authors proved a version of Theorem 1.5 without as-
suming that the operator is bounded.

Theorem 1.8 ([3]). Let 0 < α < n and 1 < r <∞. Let Tα be defined as in (1.1)
and let Kα ∈ Sα,r′ ∩Hα,r′ . Then there exists C > 0 such that, for f ∈ L∞c ,

M ](Tαf)(x) ≤ CMα,rf(x),
where M ] is the classical sharp maximal function.

Remark 1.9. This result is stated in a different way in [3]. The authors consider
the operator M ]

δ (Tαf) = M ](|Tαf |δ)
1
δ , where 0 < δ < 1. For the case 0 < α < n,

we observe that the proof holds with no changes for δ = 1, so we can write M ]

instead of M ]
δ .

From this result and the good-λ technique, we get the following proposition.

Proposition 1.10. Let 0 < α < n and 1 ≤ r < n/α. Let T be defined as in (1.1)
and let Kα ∈ Sα,r′ ∩Hα,r′ . Then there exists a constant Cw > 0, depending on w,
such that, for f ∈ L∞c (dx) and wr ∈ A1, n

n−αr
,

sup
λ>0

λrw
rn

n−αr {x ∈ Rn : |(Tαf)(x)| > λ}
n−αr
n ≤ Cw

∫
|f |rwr.

The idea of the proof is the same as the one given in [28, Theorem 3.6], so we
omit it.

From this result we know that if wr ∈ A p
r ,
q
r
, then Tα is bounded from Lp(wp)

into Lq(wq), and the dependence of the w constant was known only in the case
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Tα = Iα, Theorem 1.1. The main result in this paper is the dependence of the
constant [wr]A p

r
,
q
r

in the inequality (1.2) for a class of operators given by a kernel
Kα less regular than the one on Iα. These kernels satisfy a Lα,r

′ -Hörmander
condition. The result is the following:

Theorem 1.11. Let 0 < α < n and let Tα be defined as in (1.1). Let 1 ≤ r < p <
n/α, 1/q = 1/p− α/n. Suppose Kα ∈ Sα,r′ ∩Hα,r′ . If wr ∈ A p

r ,
q
r

, then

‖Tαf‖Lq(wq) ≤ cn[wr]
max
{

1−αn ,
(p/r)′
q (1−αrn )

}
A p
r
,
q
r

‖f‖Lp(wp).

This estimate is sharp in the following sense:

Proposition 1.12. Let 0 < α < n, 1 ≤ r < p < n/α and 1/q = 1/p − α/n. Let
Kα ∈ Sα,r′ ∩Hα,r′ and let Tα be defined as in (1.1). If there exists an increasing
function Φ : [1,∞)→ (0,∞) such that

‖Tα‖Lp(wp)→Lq(wq) . Φ
(

[wr]A p
r
,
q
r

)
for all wr ∈ A p

r ,
q
r

, then

Φ(t) & tmax
{

1−αn ,
(p/r)′
q (1−αrn )

}
.

Remark 1.13. In the case of the fractional integral operator Iα, r′ =∞, we obtain
the same sharp bound as in [16].

Remark 1.14. For the singular integral operator with kernel k ∈ Hr′ (α = 0),
Li [20] gave the sparse domination. Following the same proof of Proposition 1.12
in Section 5, one can obtain the sharpness in this case.

The paper continues as follows: in the next section we present some particular
operators as applications of these results. In Section 3 we give the sparse domina-
tion for Tα. In Section 4 we obtain the Lp(wp)-Lq(wq) boundedness of the sparse
operator with the dependence of the [wr]A p

r
,
q
r

constant. Finally, in Section 5 we
give some examples to prove that the dependency of the constant given in Section 4
is optimal.

Throughout this paper, c and C will denote positive constants, not the same at
each occurrence.

2. Applications

In this section, we give more examples of our results.

• Fractional rough operator:
Let Ω be a function defined on Sn−1. We consider its extension to

Rn \ {0}, which is defined as Ω(x) = Ω(x/|x|). Thus Ω is a homogeneous
function of degree 0. For 1 ≤ s ≤ ∞, the Ls-modulus of continuity of Ω is
defined as

ω̄s(t) = sup
|y|<t
‖Ω(·+ y)− Ω(·)‖s,Sn−1 .
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Let 0 < α < n, r′ > n
n−α and Ω ∈ Lr′(Sn−1) such that

∫ 1
0 ω̄r′(t)

dt
t <∞.

Let
Kα(x) = Ω(x/|x|)

|x|n−α

and Tαf(x) = Kα ∗ f(x). It is proved in [3] that Kα ∈ Hα,r′ ∩ Sα,r′ . Since
r′ > n

n−α , its conjugate exponent r < n/α. Thus applying the main result,
Theorem 1.11, we obtain that, for 1 < r < p < n/α and 1/q = 1/p− α/n,

‖Tαf‖Lq(wq) ≤ cn[wr]
max
{

1−αn ,
(p/r)′
q (1−αrn )

}
A p
r
,
q
r

‖f‖Lp(wp).

• Other kernels:
Let 0 < α < 1, β > 0, 1 < r < p < 1/α and 1

q = 1
p − α. For r′ the

conjugated exponent of r, let us consider

k(t) =
(

1
t log(e/t)1+β

)1/r′

χ(0,1)(t).

As shown in [14, 22], k ∈ Hr′ ∩ S0,r′ . Now, let

Kα(t) = |t+ 4|αk(|t+ 4|);

by [3, Proposition 4.1], Kα ∈ Hα,r′ ∩ Sα,r′ . Finally, let Tαf = Kα ∗ f .
Applying the main result, Theorem 1.11, we obtain, for 1 < r < p < 1/α
and 1/q = 1/p− α,

‖Tαf‖Lq(wq) ≤ cn[wr]
max
{

1−α, (p/r)′
q (1−αr)

}
A p
r
,
q
r

‖f‖Lp(wp).

For more details of the sharpness, see Subsection 5.2.

3. Sparse domination for Tα

In this section we present a sparse domination result for the operator Tα. Let
us recall some well-known results.

A kernel K is said to belong to HDini if

|K(x)| ≤ CK
|x|n

and
|K(x− y)−K(x′ − y)| ≤ ω

(
|x− x′|
|x− y|

)
1

|x− y|n

for |x − y| > 2|x − x′|. The function ω : [0, 1] → [0,∞) is continuous, increasing,
submultiplicative with ω(0) = 0 and satisfies the Dini condition∫ 1

0
ω(t)dt

t
<∞.

Observe that

HDini ⊂ H∞ ⊂ Hr ⊂ Hs ⊂ H1, 1 < s < r <∞.
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In the case that T is a Calderón–Zygmund operator with K ∈ HDini, the sparse
domination was proved in [17]; for its commutators, in [19]; and for the vector-
valued case, in [6]. The sparse domination for K ∈ Hr was considered in [20]
and, for K satisfying a Young type Hörmander condition, it was considered in [13].
Finally, for the case of Iα, the sparse domination was studied in [1]. It is possible to
obtain a pointwise sparse domination that covers the general fractional operators
that we are considering.

To state our result of sparse domination, we recall some definitions.
Given a cube Q ∈ Rn, we denote by D(Q) the family of all dyadic cubes with

respect to Q, that is, the cube obtained subdividing repeatedly Q and each of its
descendants into 2n subcubes of the same side lengths.

Given a dyadic family D we say that a family S ⊂ D is an η-sparse family, with
0 < η < 1, if, for every Q ∈ S , there exists a measurable set EQ ⊂ Q such that
η|Q| ≤ |EQ| and the family {EQ}Q∈S are pairwise disjoint.

Theorem 3.1. Let 0 < α < n, 1 ≤ r < ∞, and let Tα be defined as in (1.1).
Suppose Kα ∈ Sα,r′ ∩Hα,r′ . For any f ∈ L∞c (Rn), there exist 3n sparse families
such that, for a.e. x ∈ Rn,

|Tαf(x)| ≤ c
3n∑
j=1

∑
Q∈Sj

|Q|α/n‖f‖r,QχQ(x) =: c
3n∑
j=1
Aαr,Sj

f(x).

The grand maximal truncated operator MTα is defined by
MTαf(x) = sup

Q3x
ess sup
ξ∈Q

|Tα(fχRn\3Q)(ξ)|,

where the supremum is taken over all the cubes Q ⊂ Rn containing x. For the proof
of the preceding theorem we need to show thatMTα maps Lr(dx) into L

rn
n−αr ,∞(dx).

Also we need the following definitions:
• For a cube Q0 ⊂ Rn, a local version of MTα is defined as follows:

MTα,Q0f(x) = sup
x∈Q⊂Q0

ess sup
ξ∈Q

|Tα(fχ3Q0\3Q)(ξ)|.

• Let Kα ∈ Sα,r′ ∩Hα,r′ . We define

T̃αf(x) =
∫
|Kα(x− y)|f(y) dy.

Observe that if Kα ∈ Sα,r′ ∩Hα,r′ , then |Kα| ∈ Sα,r′ ∩Hα,r′ and Proposi-
tion 1.10 holds for T̃α.

Lemma 3.2. Let 0 < α < n, 1 ≤ r < ∞, Kα ∈ Sα,r′ ∩Hα,r′ and let Q0 ⊂ Rn be
a cube. Let Tα be defined as in (1.1) and f ∈ L∞c (Rn). Then,

(1) for a.e. x ∈ Q0,
|Tα(fχ3Q0)(x)| ≤MTα,Q0f(x);

(2) for all x ∈ Rn,
MTα(f)(x) .Mα,rf(x) + T̃α(|f |)(x).
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From the last estimate and Proposition 1.10 it follows that MTα is bounded from
Lr(dx) into L

rn
n−αr ,∞(dx).

Proof. (1) Let Q(x, s) be a cube centered at x with side length s such that Q(x, s) ⊂
Q0; then

|Tα(fχ3Q0)(x)| ≤ |Tα(fχ3Q(x,s))(x)|+ |Tα(fχ3Q0\3Q(x,s))(x)|.

For the first term, let us consider B(x,R) with R = 3
√
ns; then 3Q(x, s) ⊂ B(x,R).

As Kα ∈ Sα,r′ , we have

|Tα(fχ3Q(x,s))(x)|

≤
∫
B(x,R)

|Kα(x− y)||f(y)| dy

=
∞∑
m=0

|B(x, 2−mR)|
|B(x, 2−mR)|

∫
B(x,2−mR)

χB(x,2−mR)\B(x,2−m−1R)|Kα(x− y)||f(y)| dy

≤
∞∑
m=0
|B(x, 2−mR)|‖Kα‖r′,|x|∼2−m−1R‖f‖r,B(x,2−mR)

≤ cMr(f)(x)
∞∑
m=0

(2−mR)n(2−mR)α−n

= cMr(f)(x)Rα
∞∑
m=0

(2−m)α = cMr(f)(x)Rα.

Then,
|Tα(fχ3Q0)(x)| ≤ cnsαMrf(x) +MTα,Q0f(x).

Observe that by hypothesis Mrf < ∞; then, letting s → 0, we obtain the desired
estimate.

(2) Let x ∈ Rn and let Q be a cube containing x. Let Bx be a ball with radius
R such that 3Q ⊂ Bx. For every ξ ∈ Q, we have

|Tα(fχRn\3Q)(ξ)| ≤ |Tα(fχRn\Bx)(ξ)− Tα(fχRn\Bx)(x)|
+ |Tα(fχBx\3Q)(ξ)|+ |Tα(fχRn\Bx)(x)|

. |Tα(fχRn\Bx)(ξ)− Tα(fχRn\Bx)(x)|
+ |Tα(fχBx\3Q)(ξ)|+ T̃α(|f |)(x).

For the first term, as Kα ∈ Hα,r′ , we get

|Tα(fχRn\Bx)(ξ)− Tα(fχRn\Bx)(x)|

≤
∫
Rn\Bx

|Kα(ξ − y)−Kα(x− y)||f(y)| dy

=
∞∑
m=1

|2mBx|
|2mBx|

∫
2m+1Bx\2mBx

|Kα(ξ − y)−Kα(x− y)||f(y)| dy
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≤
∞∑
m=1

(2mR)n‖Kα(ξ − ·)−Kα(x− ·)‖r′,|y|∼2mR‖f‖r,2m+1Bx

≤
∞∑
m=1

(2mR)n−α‖Kα(ξ − ·)−Kα(x− ·)‖r′,|y|∼2mRMα,rf(x)

≤ crMα,rf(x).

For the second term, observe that there exists l ∈ N such that B(x, 2−lR) ⊂ 3Q;
then, as Kα ∈ Sα,r′ , we obtain

|Tα(fχBx\3Q)(ξ)| ≤
∫
Bx\3Q

|Kα(x− y)||f(y)| dy

≤
l−1∑
m=0

∫
B(x,2−mR)\B(x,2−m−1R)

|Kα(x− y)||f(y)| dy

≤
l−1∑
m=0
|B(x, 2−mR)|‖Kα‖r′,|x|∼2−m−1R‖f‖r,B(x,2−mR)

≤ c
l−1∑
m=0

(2−mR)n(2−mR)α−n‖f‖r,B(x,2−mR)

≤ cMα,rf(x).

Finally, we get

|Tα(fχRn\3Q)(ξ)| .Mα,rf(x) + T̃α(|f |)(x). �

The following lemma is the so-called 3n dyadic lattices trick. This result was
established in [18] and affirms the following:

Lemma 3.3 ([18]). Given a dyadic family D there exist 3n dyadic families Dj such
that

{3Q : Q ∈ D} =
3n⋃
j=1
Dj ,

and, for every cube Q ∈ D, we can find a cube RQ in each Dj such that Q ⊂ RQ
and 3lQ = lRQ .

Proof of Theorem 3.1. We claim that, for any cubeQ0 ∈ Rn, there exists a 1
2 -sparse

family F ⊂ D(Q0) such that, for a.e. x ∈ Q0,

|Tα(fχ3Q0)(x)| .
∑
Q∈F

|3Q|α/n‖f‖r,3QχQ(x). (3.1)

Suppose that we have already proved the claim (3.1). Let us take a partition of Rn
by cubes Qj such that supp(f) ⊂ 3Qj for each j. We can do it as follows. We start
with a cube Q0 such that supp(f) ⊂ Q0 and cover 3Q0 \ Q0 by 3n − 1 congruent
cubes Qj , with each of them satisfying Q0 ⊂ 3Qj . We do the same for 9Q0 \ 3Q0
and so on. The union of all those cubes will satisfy the desired properties.
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We apply the claim (3.1) to each cube Qj . Then we have that since supp(f) ⊂
3Qj the following estimate holds for a.e. x ∈ Qj :

|Tαf(x)|χQj (x) = |Tα(fχ3Qj )(x)| .
∑
Q∈Fj

|3Q|α/n‖f‖r,3QχQ(x),

where each Fj ⊂ D(Qj) is a 1
2 -sparse family. Taking F =

⋃
j Fj , we have that F

is a 1
2 -sparse family and, for a.e. x ∈ Rn,

|Tαf(x)| .
∑
Q∈F
|3Q|α/n‖f‖r,3QχQ(x).

From Lemma 3.3 it follows that there exist 3n dyadic families such that, for
every cube Q of Rn, there is a cube RQ ∈ Dj for some j for which 3Q ⊂ RQ and
|RQ| ≤ 3n|3Q|. Setting

Sj = {RQ ∈ Dj : Q ∈ F},
and since F is 1

2 -sparse, we obtain that for each family Sj is 1
2.9n -sparse. Then we

have that

|Tαf(x)| .
3n∑
j=1

∑
Q∈Sj

|Q|α/n‖f‖r,QχQ(x).

Proof of claim (3.1). To prove the claim it suffices to show the following recursive
estimate: there exists a countable family {Pj}j of pairwise disjoint cubes in D(Q0)
such that

∑
j Pj ≤

1
2 |Q0| and

|Tα(fχ3Q0)(x)|χQ0(x) ≤ c|3Q0|α/n‖f‖r,3Q0χQ0(x) +
∑
j

|Tα(fχ3Pj )(x)|χPj (x)

(3.2)
for a.e. x ∈ Q0. Iterating this estimate we obtain (3.1) with F being the union
of all the families {P kj } where {P 0

j } = {Q0}, {P 1
j } = {Pj} and the {P kj } are the

cubes obtained at the k-th stage of the iterative process. It is also clear that F is
a 1

2 -sparse family. Indeed, for each P kj , it suffices to choose

EPk
j

= P kj \
⋃
j

P k+1
j .

Let us prove the recursive estimate (3.2). Observe that, for any family {Pj} ⊂
D(Q0) of disjoint cubes, we have

|Tα(fχ3Q0)(x)|χQ0(x)

≤ |Tα(fχ3Q0)(x)|χQ0\∪jPj (x) +
∑
j

|Tα(fχ3Q0)(x)|χPj (x)

≤ |Tα(fχ3Q0)(x)|χQ0\∪jPj (x) +
∑
j

|Tα(fχ3Q0\3Pj )(x)|χPj (x)

+
∑
j

|Tα(fχ3Pj )(x)|χPj (x)
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for a.e. x ∈ Rn. So it suffices to show that we can choose a countable family {Pj}j
of pairwise disjoint cubes in D(Q0) such that

∑
j Pj ≤

1
2 |Q0| and, for a.e. x ∈ Q0,

we have

|Tα(fχ3Q0)(x)|χQ0\∪jPj (x) +
∑
j

|Tα(fχ3Q0\3Pj )(x)|χPj (x)

. |3Q0|α/n‖f‖r,3Q0χQ0(x). (3.3)

Now we define the following set:

E = {x ∈ Q0 : MTα,Q0f(x) > βnc|3Q0|α/n‖f‖r,3Q0}.

By Lemma 3.2 we can choose βn such that |E| ≤ 1
2n+2 |Q0|.

We apply the Calderón–Zygmund decomposition to the function χE on Q0 at
height λ = 1

2n+1 . Then, there exists a family {Pj} ⊂ D(Q0) of pairwise disjoint
cubes such that {

x ∈ Q0 : χE(x) > 1
2n+1

}
=
⋃
j

Pj .

From this it follows that |E \ ∪jPj | = 0,∑
j

|Pj | ≤ 2n+1|E| ≤ 1
2 |Q0|,

and
1

2n+1 ≤
|Pj ∩ E|
|Pj |

≤ 1
2 ,

from which we obtain |Pj ∩ Ec| > 0.
Since Pj∩Ec 6= ∅, we have MTα,Q0(f)(x) ≤ βnc|3Q0|α/n‖f‖r,3Q0 for some x ∈ Pj

and this implies that

ess sup
ξ∈Pj

|Tα(fχ3Q0\3Pj )(ξ)| ≤ βnc|3Q0|α/n‖f‖r,3Q0 ,

which allows us to control the second term in (3.3).
By (1) in Lemma 3.2, for a.e. x ∈ Q0, we have

|Tα(fχ3Q0)(x)|χQ0\∪jPj (x) ≤MTα,Q0f(x)χQ0\∪jPj (x).

Since |E \ ∪jPj | = 0 and by the definition of E, we obtain, for a.e. x ∈ Q0 \ ∪jPj ,

MTα,Q0(f)(x) ≤ βnc|3Q0|α/n‖f‖r,3Q0 .

Then, for a.e. x ∈ Q0 \ ∪jPj , we get

|Tα(fχ3Q0)(x)| ≤ βnc|3Q0|α/n‖f‖r,3Q0 .

Thus we obtain the estimate in (3.3). �
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4. Sharp bounds for norm inequality

Since the sparse domination is a pointwise estimate, it suffices to prove Theo-
rem 1.11 and Proposition 1.12 for the sparse operator Aαr,S for any sparse family S .

Theorem 4.1. Let 0 ≤ α < n, 1 ≤ r < p < n/α and 1/q = 1/p − α/n. If
wr ∈ A p

r ,
q
r

, then

‖Aαr,S f‖Lq(wq) ≤ cn[wr]
max
{

1−αn ,
(p/r)′
q (1−αrn )

}
Ap/r,q/r

‖f‖Lp(wp).

This estimate is sharp in the following sense:
If there exists an increasing function Φ : [1,∞)→ (0,∞) such that

‖Aαr,S ‖Lp(wp)→Lq(wq) . Φ
(

[wr]A p
r
,
q
r

)
for all wr ∈ A p

r ,
q
r

, then

Φ(t) & tmax
{

1−αn ,
(p/r)′
q (1−αrn )

}
.

Remark 4.2. The first approximation of this type for the fractional integral op-
erator, using the sparse technique, appears in [7]. In this paper the author does
not prove the sharpness of the constant. In the case r = 1, the appropriate sparse
operator for the fractional integral operator Iα, we obtain the same sharp bound
as in [1]. If α = 0, we get the same sharp bound as in [17].

We consider the following sparse operator defined in [9], for S a sparse family,
0 < s <∞ and 0 < β ≤ 1:

Ãβs,S g(x) =

∑
Q∈S

(
|Q|−β

∫
Q

g

)s
χQ(x)

1/s

.

Theorem 4.3 ([9]). Let 1 ≤ r < p ≤ q < ∞, and 0 < β ≤ 1. Let us consider the
weights u, σ ∈ A∞. The sparse operator Ãβs,S (·σ) maps Lp(σ)→ Lq(u) if and only
if the two-weight Aβp,q-characteristic

[u, σ]Aβp,q(S ) := sup
Q∈S

|Q|−βu(Q)1/qσ(Q)1/p′

is finite, and in this case,

1 ≤
‖Ãβs,S (·σ)‖Lp(σ)→Lq(u)

[u, σ]Aβp,q(S )
. [σ]1/qA∞

+ [u]
1
s−

1
p

A∞
.

Proof of Theorem 4.1. Let σ = w−(p/r)′r. Observe that

Aαr,S (f) =
(
Ã

1−α/n
1/r,S (fr)

)1/r
.
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Then,∥∥Aαr,S (f)
∥∥r
Lq(wq) =

∥∥∥Ã1−α/n
1/r,S (fr)

∥∥∥
Lq/r(wq)

=
∥∥∥Ã1−α/n

1/r,S (frσ−1σ)
∥∥∥
Lq/r(wq)

. [wq, σ]
A

1−α/n
p
r
,
q
r

(S )

(
[σ]r/qA∞

+ [wq]r−
r
p

A∞

)
‖frσ−1‖Lp/r(σ).

Now observe that
[wq, σ]

A
1−α/n
p
r
,
q
r

(S ) ≤ [wr]r/qAp/r,q/r

and
‖frσ−1‖Lp/r(σ) = ‖f‖rLp(wp).

Since

[σ]A1+(p/r)′r/q = [wr](p/r)
′r/q

Ap/r,q/r
and [wq]A1+ q

r(p/r)′
= [wr]Ap/r,q/r ,

we have

‖Aαr,S (f)‖Lq(wq) . [wr]1/qAp/r,q/r

(
[σ]r/qA∞

+ [wq]r−
r
p

A∞

)1/r
‖f‖Lp(wp)

≤ [wr]1/qAp/r,q/r

(
[wr](p/r)

′(r/q)2

Ap/r,q/r
+ [wr]

r
p′

Ap/r,q/r

)1/r
‖f‖Lp(wp)

≤ [wr]
1/q+max{(p/r)′r/q2, 1

p′ }
Ap/r,q/r

‖f‖Lp(wp)

≤ [wr]max{(1−αrn )(p/r)′/q,1−α/n}
Ap/r,q/r

‖f‖Lp(wp),

where the last inequality holds since (1 + (p/r)′r/q) =
(
1 − αr

n

)
(p/r)′ and 1/q +

1/p′ = 1− α/n. �

5. Examples

5.1. Sparse operator Aαr,S . In this subsection, we prove the sharpness of Theo-
rem 4.1.

Proof. Let A = Aαr,S be the sparse operator. Let 0 < ε < 1. If

wε(x) = |x|
n−ε

r(p/r)′ and f(x) = |x|
ε−n
r χB(0,1),

then
[wrε ]A p

r
,
q
r

' ε−
q

r(p/r)′ and ‖fwε‖Lp ' ε−1/p.

Let {Qk} be the cube of center 0 and length 2−k and observe that B(0, 1) ⊂ Q0.
This family {Qk} is a 1

2 -sparse family with EQk = Qk \Qk+1.
Now, if x ∈ EQk , k ∈ N, then we have that

Af(x) ≥ |Qk|α/n−1/r
(∫

Qk

|y|ε−n
)1/r

& (2−kn)α/n−1/r
(

2−kε

ε

)1/r

& ε−1/r|x|α−n/r+ε/r.
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Therefore, ∫
Afqwqε ≥

∞∑
k=1

∫
EQk

Afqwqε

& ε−q/r
∫
B(0, 1

2 )
|x|q(α−n/r+ε/r)+q

n−ε
r(p/r)′ dx

' ε−q/r−1

since q(α/n− 1/r + ε/r) + q n−ε
r(p/r)′ ≤ εq/p− n. Then

ε
− 1
r(p/r)′−1/q . ε−1/r−1/q+1/p . ‖A‖Lp(wpε )→Lq(wqε) . Φ

(
ε
− q

r(p/r)′
)
.

Now, taking t = ε
− q

r(p/r)′ , we obtain

Φ(t) & t(p/r)
′1/q(1−αr/n).

Let 0 < ε < 1. If

wε(x) = |x|
ε−n
q and f(x) = |x|

ε−n
r χB(0,1),

then
[wrε ]A p

r
,
q
r

' ε−1 and ‖fwε‖Lp . ε−1/p.

Since 1/r + 1/q = 1/r − α/n+ 1/p ≥ 1/p,∫
fpwpε =

∫
B(0,1)

|x|
ε−n
r p+ ε−n

q p =
∫
B(0,1)

|x|p(ε(1/r+1/q)−n(1/r+1/q))

≤
∫
B(0,1)

|x|p(ε(1/r+1/q)−n/p) ' ε−1.

Now, if x ∈ Q0,

Af(x) ≥ |Q0|α/n−1/r
(∫

Q0

|y|ε−n
)1/r

&

(
1
ε

)1/r
' ε−1/r & ε−1.

Since B(0, 1) ⊂ Q0, we get∫
Afqwqε & ε

−q
∫
B(0,1)

|x|ε−n dx & ε−q−1;

then,
ε−1−1/q . ‖Af‖Lq(wqε) . Φ(ε−1)‖f‖Lp(wpε ) . Φ(ε−1)ε−1/p.

Now, if we take t = ε−1, then

t1−α/n . Φ(t). �
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5.2. An operator Tα. In this subsection, we give an example of an operator to
prove the sharpness of the Proposition 1.12.

Proof of Proposition 1.9. Let 0 < α < 1, β > max{0, q/r′ − 1}, 1 < r < p < 1/α,
1
q = 1

p − α and 1
r + 1

r′ = 1. Let us consider

k(t) =
(

1
t log(e/t)1+β

)1/r′

χ(0,1)(t).

As shown in [14, 22], we know that k ∈ Hr′ ∩ Sr′ . Now, let

Kα(t) = |t+ 4|αk(|t+ 4|);

by [3, Proposition 4.1], Kα ∈ Hα,r′ ∩ Sα,r′ . Let us consider Tαf = Kα ∗ f .
Observe that there exists 0 < t0 < 1 such that k is decreasing in (0, t0).
Let 0 < ε < 1. If wε(x) = |x|

1−ε
r(p/r)′ and f(x) = |x+ 4| εr−1χ(−5,−3)(x), then

[wrε ]A p
r
,
q
r

' ε−
q

r(p/r)′ and ‖fwε‖Lp . ε−1/p.

Observe that if |x − y| ≤ 1 and |y| ≤ 1, then |x| ≤ 2 and supp(Tf) ⊂ [−2, 2].
Let x ∈ supp(Tf), |x− y| ≤ 1, and 0 ≤ |y| ≤ |x|/2; then 1

2 |x| ≤ |x− y| ≤
3
2 |x| and

|x− y|α & |x|α.
For |x| ≤ 2

3 t0 ≤ 2, since k is decreasing in (0, t0), we have

Tαf(x) ≥
∫
|y|≤|x|/2

|x− y|α−1/r′
(

1
log(e/|x− y|)

) 1+β
r′

χ(0,1)(|x− y|)|y|
ε
r−1 dy

& |x|αk
(

3
2 |x|

)∫
|y|≤|x|/2

|y| εr−1 dy

& ε−1|x|α+ ε
r k

(
3
2 |x|

)
.

Then, using that log(t) < tε

ε for ε > 0 and t > 1, we get∫
R
|Tf(x)|qwqε(x) dx & ε−q

∫
|x|≤ 2

3 t0

|x|q(α+ ε
r )k

(
3
2 |x|

)q
|x|q
(

1−ε
r(p/r)′

)
dx

= ε−q
∫
|x|≤ 2

3 t0

k

(
3
2 |x|

)q
|x|

q
r−1|x|ε

q
p dx

& ε−q
∫
|x|≤ 2

3 t0

(
|x|ε

ε

) q

r′ (1+β)
|x|

q
r+ε qp−1− q

r′ dx

& ε−q−1
∫
|x|≤ 2

3 t0

|x|
q
r−

q

r′+ε( qr′ (1+β)+ q
p )−1 dx.

The last inequality holds since β > max{0, q/r′ − 1}.
If r ≥ 2,

q

r
− q

r′
= q

(
1
r
− 1
r′

)
≤ 0.
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Then ∫
R
|Tf(x)|qwqε(x) dx & ε−q−1

∫
|x|≤ 2

3 t0

|x|
q
r−

q

r′+ε( qr′ (1+β)+ q
p )−1 dx

& ε−q−1
∫
|x|≤ 2

3 t0

|x|ε(
q

r′ (1+β)+ q
p )−1 dx

& ε−q−2 ≥ ε−q−1.

If r < 2,
q

r
− q

r′
= q

(
1
r
− 1
r′

)
> 0.

Then ∫
R
|Tf(x)|qwqε(x) dx & ε−q−1

∫
|x|≤ 2

3 t0

|x|
q
r−

q

r′+ε( qr′ (1+β)+ q
p )−1 dx

& ε−q−1 t
q
r−

q

r′+ε( qr′ (1+β)+ q
p )

0
q
r −

q
r′ + ε

(
q
r′ (1 + β) + q

p

)
& ε−q−1.

Then, for 1 < r <∞, we obtain∫
R
|Tf(x)|qwqε(x) dx & ε−q−1.

Therefore,
‖Tf‖Lq(wqε) & ε

−1−1/q.

Then,

ε
− 1
r(p/r)′−1/q . ε−1−1/q+1/p . ‖T‖Lp(wpε )→Lq(wqε) . Φ(ε−

q

r(p/r)′ )

and
Φ(t) & t(p/r)

′1/q(1−αr).

Let 0 < ε < 1. If wε(x) = |x|
ε−1
q and f(x) = |x+ 4|ε/r−1χ(−5,−3), then

[wrε ]A p
r
,
q
r

' ε−1 and ‖fwε‖Lp . ε−1/p.

In an analogous way we obtain, for 0 < |x| < 2
3 t0, Tf(x) & ε−1|x|α+ ε

r k
( 3

2 |x|
)

and

‖Tf‖Lq(wqε) & ε
−1−1/q.

Hence
t1−α/n . Φ(t). �
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