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a b s t r a c t

Endosulfan (ES) is an organochlorine pesticide widely used in agriculture despite its high toxicity to-
wards non-target organisms such as fish. It has been demonstrated that ES can cause negative effects on
aquatic animals, including disruption of hormonal systems. However, the alterations produced by this
pesticide on the reproductive axis of fish prior to sexual maturity, as well as possible modes of action
have hardly been studied. This study aimed at assessing the effect of waterborne exposure to the pes-
ticide ES on the reproductive axis during sexual differentiation of juveniles of the South American
freshwater cichlid fish Cichlasoma dimerus. No mortality was observed due to ES subchronic exposure (90
days post-fertilization). Exposure to ES did not affect body weight nor morphometric parameters, in-
dicating that larvae nutritional state was not affected. Timing of sexual differentiation, gonadal mor-
phology and sex ratio were likewise not altered by ES. However, ES acted as an endocrine disrupting
chemical in this species as the morphometry of gonadotropin-releasing hormones (GnRH) producing
cells was altered. Exposure to ES altered nuclear area, cell area and nucleus/cytoplasm ratio of GnRH II
neurons, and cell and nuclear area and diameter of GnRH III neurons. Interestingly, in our previous study,
exposure before sex differentiation (30 day exposure) caused no alteration to GnRH II and III, and did
alter GnRH I and FSH cells. These alterations could lead to changes in circulating hormone levels,
especially when fish are exposed for prolonged periods, ultimately impairing reproductive fitness. C.
dimerus juveniles can be an interesting biological model to perform toxicological studies with the intent
to assess early disruption endpoints in the reproductive axis during development.

& 2015 Elsevier Inc. All rights reserved.
1. Introduction

Waterbodies act as reservoir of chemical compounds of do-
mestic, industrial and agricultural use (Anderson et al., 1987;
Boudou and Ribeyre, 1997), including organochlorine pesticides,
considered to be hazardous since they are very persistent and
ubiquitously found in the environment (Donohoe and Curtis, 1996;
Palmer and Palmer, 1995). Due to their potential long term nega-
tive impact, their use in global agriculture has been largely re-
stricted (RAP-AL, 2008; United Nations, 2009). One major excep-
tion in recent years has been endosulfan (ES; 6,7,8,9,10,10-
xicología Acuática, Departa-
cultad de Ciencias Exactas y
ersitaria, Pabellón II, 4º piso
hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3benzo-di-
oxathiepin-3-oxide), cyclodiene pesticide vastly used for the con-
trol of insects and mites in crops of high commercial value (RAP-
AL, 2008). Following its classification as a Persistent Organic Pol-
lutant (POP) by the Stockholm Convention on POPs in 2010, ES use
is in the process of being phased out worldwide (POPRC, 2010).
However, this insecticide, introduced in Argentina in the 50s, can
be detected in agricultural soils, sediments and surface waters of
lakes and river basins, given its intense agricultural use over the
last few years in rotational crops throughout the country (CASAFE,
2009), particularly on soy crops. Commercial formulations of ES
consist of a mixture of two isomers, alpha and beta in a 70:30
ratio. ES alpha is more toxic than ES beta for fish and aquatic in-
vertebrates. The mixture exhibits an intermediate toxicity (Wan
et al., 2005). Environmental ES concentrations in Argentina range
from 0.1 to 10.8 μg/kg dry weight in soils, and 0.38 μg/L ES α and
0.7 μg/L ES β in several river surface waters (Arias et al., 2010;
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Baudino et al., 2003; González et al., 2009; Jergentz et al., 2005; Lo
Nostro et al., 2008; Miglioranza et al., 2004; Peluso et al., 2011);
even though according to Argentinean laws, ES freshwater surface
water concentrations must not exceed 0.02 μg/L for either isomer
(Law No 24.051 under the Regulatory Decree No 831/93, 1993).

In fish, ES can act as neurotoxic producing irritability, aggres-
siveness, hyperactivity and seizures (Carlson et al., 1998; Salvo
et al., 2008; Swarup et al., 1981), through neurodegeneration in
different brain regions, necrosis and gliosis (Giusi et al., 2005;
Sarma et al., 2010). In a previous study, we found that sexually
undifferentiated larvae of the Perciform fish Cichlasoma dimerus
exposed to 0.1 μg/L ES for 30 days showed altered gonadotropin
releasing hormone I (GnRH I) and beta follicle-stimulating hor-
mone (βFSH) brain/pituitary content as evidenced by lower and
higher nucleus/cytoplasm area ratios respectively (Piazza et al.,
2011). In vertebrates, brain GnRHs, regulate synthesis and release
of gonadotropins (GtHs) from the pituitary (Cerdá-Reverter and
Canosa, 2009; Okuzawa and Kobayashi, 1999). Of the three dif-
ferent forms of GnRH expressed in Perciformes (Pandolfi et al.,
2005; White and Fernald, 1993), GnRH I exhibits a primary hy-
pophysiotropic role, with abundant fibers present in the anterior
pituitary, showing a strong correlation between GnRH I expression
in the brain and gonadal activity (Senthilkumaran et al., 1999). In
addition to other reported roles such as melatonin release from
the pineal gland (Servili et al., 2010), fish GnRH II has also been
shown to induce GtHs release (Chang et al., 2009), although no
fibers extending to the pituitary have been evidenced in C. dimerus
(Pandolfi et al., 2005). The third form, GnRH III is involved in
regulating reproductive behavior in both males and females
(Ogawa et al., 2006; Ramakrishnan and Wayne, 2009; Tubert et al.,
2012).

Pituitary GtHs, FSH and luteinizing hormone (LH), play a critical
role in the control and regulation of gonadal development, ga-
metogenesis and gonadal steroidogenesis in teleosts (Devlin and
Nagahama, 2002; Yaron et al., 2003). Reduced GtH neurosecretory
activity can lead to delayed sex differentiation, and reduced fe-
cundity; all reported effects of ES action under sub-lethal exposure
(ranged from 0.01 to 1.4 μg/L) in fish (Balasubramani and Pandian,
2008; Gormley and Teather, 2003; Shukla and Pandey, 1986). Al-
terations in germ cell distribution and deviation to female sex
proportion have also been reported as sub-lethal effects of the
pesticide on larvae (Teather et al., 2005; Willey and Krone, 2001).
However, on our previous study on sexually undifferentiated lar-
vae, alterations caused by ES at the hypothalamus and pituitary
did not affect the onset of gonadal differentiation at the studied
stage of development, 30 days post fertilization (dpf) (Piazza et al.,
2011).

Therefore, the aim of the present research study was to ex-
amine if a three month sub-lethal exposure to ES, can also affect
morphometric parameters and anatomical localization of GnRHs
and/or GtHs cell populations, as well as sex proportion, i.e. sexu-
ally differentiated juveniles at 90 dpf, in C. dimerus (Teleostei,
Perciformes), a cichlid fish relevant to South American riverine
ecosystems, whose sex differentiation and time of appearance of
GnRH and GtHs expressing cells and fibers have been already
studied in normal conditions in laboratory reared larvae (Meijide
et al., 2005; Pandolfi et al. 2002, 2005).
2. Materials and methods

2.1. Animals

Adult C. dimerus were captured in two sites on Esteros del
Riachuelo, Corrientes, Argentina (27°35′S, 58°45′O). After transfer
to laboratory facilities, animals were held in 200 L aquaria with a
layer of gravel on the bottom, in filtered tap water at 2671 °C, pH
7.3, and a 14 h:10 h photoperiod. Fish were allowed to acclimate
for two weeks and were fed daily with a pelleted commercial diet
(Tetras food sticks, Germany). Newly hatched larvae (2 days post-
fertilization (dpf)) of 270.5 mm (total length) were collected from
fresh spawns obtained from breeding couples established within
the aquaria. When larvae started to swim (8 dpf), they were fed
with Artemia sp. nauplii twice a day during the first 20 days and
with ground flake food thereafter. Guidelines on the care and use
of fish in research and testing from the Canadian Council on Ani-
mal Care (CCAC, 2005) and local regulations of our faculty were
followed.

2.2. Sublethal chronic assays

Exposure concentrations of ES (94.99% purity, using a stereo-
isomer mixture of α:β 70:30), of 0.03 and 0.1 μg/L were selected
based on the previously obtained 96-h acute toxicity test (0.3 μg/L
for larvae at 10 dpf; Piazza et al., 2011) and prepared from a
0.01 mg ES/mL acetone stock solution added to filtered tap water
(final solvent concentration of 0.001%). New stock solution was
prepared before every media renewal. Actual ES concentrations
were measured in water samples 15 min after renewal by gas
chromatograph-electron capture detector (US Environmental
Protection Agency SW846 M8081A, 1996), resulting in 0.02 (for
nominal 0.03) and 0.08 (for nominal 0.1) μg/L.

Although no ES was detected in different streams of the me-
sopotamic region (including Corrientes province), in order to avoid
a possible maternal transfer of contaminants or epigenetic effect,
all larvae clutches were distributed between all experimental
conditions – control, solvent and ES – so that if present this factors
would be equal between all treatments to control litter effect.
Then, larvae of 2 dpf were exposed to ES by way of immersion
under semistatic conditions. Each concentration was tested four
times with 10 individuals per test group in 2.5 L glass tanks.
Control treatments (with and without vehicle) were also per-
formed in duplicate. Acetone was added to the control vehicle test
group in an amount equal to that present in the highest con-
centration of ES employed. Media was renewed every 48 h, taking
into account ES degradation (60% remaining at 50 h) and mortality
of larvae caused by stress of manipulation.

Larvae mortality and gross anatomic abnormalities (lordosis,
scoliosis, body swelling, depigmentation) were observed and re-
corded throughout the experiment.

After the 88-day exposure period (90 dpf), larvae were
weighed, their standard length was measured, and they were
killed by decapitation under anesthesia (Fish Calmers, Jungle Lab.,
USA). Condition factor (K¼(Weight/Length3)n100) was also
calculated.

2.3. Tissue fixation

Following Piazza et al. (2011), head and trunks were fixed in
Bouin's solution for 24 h at 4 °C, then dehydrated and embedded
in Paraplasts (Fisherbrand, USA). Heads were transversally sec-
tioned at 10 μm for immunohistochemical techniques, and trunks
were transversally sectioned at 7 μm and stained with hematox-
ilin-eosin for sex determination.

2.4. Single-label immunohistochemistry

Sections were deparaffinized in xylene, rehydrated through a
series of graded ethanols to phosphate-buffered saline (0.05 M
PBS, pH 7.4) and treated for 5 min with 3% H2O2 at room tem-
perature (RT) for endoperoxidase blocking. All sections were then
treated for 30 min with PBS containing 5% non-fat dry milk at RT,
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incubated in a closed moist chamber with their specific primary
antiserum overnight at 4 °C – anti-sbGAP for GnRH I, anti-cIIGAP
for GnRH II and anti-sGAP for GnRH III 1:600 (Dicentrarchus labrax,
donated by Dr. J. A. Muñóz Cueto, Universidad de Cádiz, Spain);
anti-βFSH 1:1000, anti- βLH 1:2000 (Fundulus heteroclitus, do-
nated by Dr. A. Shimizu, NRIFS, Fisheries Research Agency, Japan),
washed in PBS, and finally incubated for 45 min with their com-
plementary secondary biotinylated antibody (Vector, USA) at RT.
Amplification of the signal for GnRH detection was carried out
using a tyramide based-signal amplification kit (CSA-Peroxidase
kit, Dako, USA) following the manufacturer's instructions. For
βFSH and βLH, amplification of the signal was achieved by in-
cubation with peroxidase-conjugated streptavidin (Dako, USA)
diluted 1:500 for 1 h. In all cases, peroxidase activity was visua-
lized with 0.1% 3,3′-diaminobenzidine in TRIS buffer (pH 7.6) and
0.03% H2O2. Sections were lightly counterstained with hematox-
ylin, mounted, examined with a NIKON Microphot FX microscope,
and digitally photographed (Coolpix 5400, Nikon). Settings (light
intensity, opening of the condenser, etc.) of the microscope and
the camera were maintained constant.

In order to ensure the correct topographic localization of the
different GnRH cell types and their projections, brain atlases of
Dicentrarchus labrax (Cerdá-Reverter et al., 2001a, 2001b) and
Haplochromis (Astatotilapia) burtoni (Fernald and Shelton, 1985)
were used as guidance, as well as the previously described brain
anatomy, and GnRH, βFSH and βLH immunoreactive (ir-) cells lo-
calization in adults of C. dimerus by Pandolfi et al. (2005, 2006).
Also, as stained cells are located within confined brain regions, all
slides with ir-cells were considered for measurements.

2.5. Antisera

The specificity of antisera in C. dimerus has already been pre-
viously established by pre-adsorption tests with their respective
antigens and by Western blot analysis in our lab (see Piazza et al.,
2011). To avoid false positives some slices were incubated with PBS
instead of either the primary or secondary antibody.

2.6. Epitope unmasking

In the case of βFSH, pituitary sections were treated for epitope
unmasking after endoperoxidase blocking in order to enhance
antigen immunoreactivity (Shimizu et al., 2003). Sections were
placed in an epitope unmasking solution (Target Unmasking Fluid,
Sanbio, Netherlands) for 10 min at 90 °C, cooled at RT and finally
washed in distilled water.

2.7. Morphometrical analysis of GnRH, βFSH and βLH producing
cells

Nuclear and cytoplasmic two-dimensional area (μm2) and
mean diameter (μm), as well as optical density of the im-
munostain were measured in ir-cells. Given that, at this stage of
development it is difficult to find isolated cells with clearly dis-
cernible cytoplasm and nuclear perimeters in the plane of the
section for each fish, since cells mostly form clusters, on average
Table 1
Larvae mortality (%), total body weight (mg), standard length (mm) and condition facto
differences were observed between any of the parameters (ANOVA, p40.5).

Treatment Mortality (%) Total body weight7SEM (mg)

Control 50 77.876.4
Vehicle 66 78.175.2
0.03 μg/L 70 76.275.4
0.1 μg/L 68 71.374.4
10 random ir-cells were considered. All parameters were analyzed
using an image processing program (Image pro-pluss 4.5 soft-
ware, Media Cybernetics). All cells were measured in the same
brain regions for all fish. For optical density, background density
was subtracted from each value to reduce variability in the results.
The parameters considered in this study have already been sa-
tisfactorily used in other studies for this and other species (Parhar
et al., 2001; Shimizu et al., 2008; Piazza et al., 2011). Morpho-
metric parameters were considered substitute indicators of cel-
lular activity (Costa and Paula, 2006; Filippa and Mohamed, 2010;
Morandini et al., 2014) as size of larvae precludes measuring
plasma levels.

2.8. Statistical analysis

Mortality, body weight and size results were statistically ana-
lyzed using factorial analysis of variance (ANOVA). Morphome-
trical parameters were analyzed with a two way nested ANOVA
design. When data did not meet the ANOVA assumptions
(homogeneity of variance, normality), they were log transformed
prior to analysis. Non-parametric analysis (Kruskal–Wallis test)
was applied when data could not be assumed to be normally
distributed. When significant differences were found Tukey's post-
hoc analysis (parametric) or Dunn's test (non-parametric) were
performed (STATISTICA 8.0; StatSoft, Inc.). To analyze sex ratio, a
Chi square test was performed to a 50:50 proportion. Values were
considered significantly different if po0.05. In all instances data
are presented as mean7S.E.M.
3. Results

3.1. Mortality

Larvae survival (mortality) was not affected by ES exposure,
however those animals exposed to either ES concentration or to
acetone showed a tendency towards higher mortality values than
control fish (ANOVA, p¼0.22; Table 1).

3.2. Body size and weight

No external anatomical abnormalities were observed at the end
of the experiment. Weight, standard length and condition factor
did not differ between control and exposed larvae at the end of the
experiments (ANOVA, p¼0.3; Table 1). No significant differences
were found between sexes for any of the aforementioned para-
meters (ANOVA, p¼0.9).

3.3. Sex ratio

Sex of 90 dpf juveniles was determined under a stereoscopic
microscope. Ovaries and testes were easily distinguishable from
each other and showed no macroscopic or microscopic alterations
(not shown). Sex was confirmed by histology. Sex ratio did not
differ from 50:50 (female:male) between treatments being 51:49
for control, 45:55 for vehicle, 46:54 for 0.03 μg/L and 45:55 for
r (mg/mm3) at the end of the experiment in the different treatments. No statistical

Standard length7SEM (mm) Condition factor7SEM (mg/mm3)

1270.4 4.270.9
1270.2 4.771.3

11.470.4 4.370.6
11.870.4 4.171.4



Table 2
Values of cellular area (CA), mean cellular diameter (MCD), nuclear area (NA) and mean nuclear diameter (MND) of the different cell types in 90 dpf juveniles from control
treatments. Numbers indicate mean7SEM. n Significant differences between sexes (2 way nested ANOVA 2F, po0.05; Tukey test, po0.0003).

Cell type CA (μm2) MCD (μm) NA (μm2) MND (μm)
dpf 90 90 90 90 90 90 90 90

Sex ♀ ♂ ♀ ♂ ♀ ♂ ♀ ♂

GnRH I 2072 1871.5 570.2 570.2 570.5 470.3 370.2 270.1
GnRH II 258716 284720 1870.6 2071 11076 13879 1270.4 1471
GnRH III 254719 15378n 1870.9 1370.4n 8676 4874n 1070.4 870.3n

βFSH 4173 4472 770.3 870.2 1871 1871 470.2 570.2
βLH 6674 6973 970.3 970.3 2772 2973 670.2 670.3
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0.1 μg/L (Chi-Square test, p40.05).

3.4. Morphometrical analysis

3.4.1. GnRH I ir-neurons (salmon GnRH)
GnRH I ir-neurons were scattered along the ventral portion of

the telencephalon through the pre-optic area (POA). These neu-
rons were located separate from each other and were the smallest
within the group of GnRH producing neurons (mean cellular area
from control larvae of 2072 μm2 and 1871.5 μm2 for females
and males respectively; Table 2; Fig. 1A–c). There was a significant
difference between sexes for all parameter analyzed. Even though,
ES and acetone differed from control animals for most parameters
evaluated (2 way nested ANOVA, po0.05; Tukey test po0.05) no
differences were observed between ES treatments and acetone
(Fig. 2).

3.5. GnRH II Ir-neurons (chicken II GnRH)

GnRH II ir-neurons were big sized cells located in the midbrain
tegmentum (mean cell area: 258716 μm2 and 284720 μm2, fe-
males and males respectively, Table 2). These cells were frequently
found in pairs, near to the ventricular ependyma and to blood
vessels usually located in that region (Fig. 1D–F). Three month
exposure to 0.1 μg/L ES caused lower nuclear area than acetone
exposure (2 way nested ANOVA, po0.03; Tukey test, p¼0.01)
(Fig. 2B). Mean nuclear diameter showed the same pattern, though
no significant differences were observed (Fig. 2E). Cell area was
increased upon exposure to 0.03 μg/L ES (Fig. 2A). Nucleus/cyto-
plasm area ratio was smaller in animals exposed to either ES
concentration with respect to vehicle (Fig. 2C). No differences were
observed for optical density (Fig. 2F). As no difference was ob-
served between sexes, data were plotted together for all
parameters.

3.6. GnRH III Ir-neurons (seabream GnRH)

GnRH III ir-neurons were found in the ventral forebrain on the
caudal olfactory bulb, mostly clustered together (Fig. 1G–I). These
neurons had a mean cell area of 254719 μm2 and 15378 μm2 for
females and males respectively, showing significant differences
between sexes (2 way nested ANOVA, po0.05; Tukey test,
po0.0003, Table 2). Animals exposed to 0.03 μg/L ES showed the
highest cell and nuclear area and diameter (2 way nested ANOVA,
po0.008; Tukey test, po0.0008), while those exposed to 0.1 μg/L
showed the lowest values in the same parameters (2 way nested
ANOVA, po0.008; Tukey test, po0.05) (Fig. 2A, B, D, E). No dif-
ferences were observed for the remaining parameters (Fig. 2C, F)
or between sexes (data plotted together).

3.7. βFSH ir-CELls

βFSH ir-cells were found forming clusters in the proximal pars
distalis (PPD) and along the external border of the pars intermedia
(PI) of the pituitary (mean cell area of 4173 μm2 and 4472 μm2,
for females and males respectively; Fig. 3A–C; Table 2). As there
was a significant difference between sexes for nuclear area and
mean nuclear diameter, they were plotted by sex. Though not
statistically different from vehicle, juveniles at 90 dpf exposed to
0.1 μg/L ES showed a higher cell area than those exposed
to 0.03 μg/L ES (2 way nested ANOVA, po0.006; Fig. 4A). No
differences were observed for any of the remaining parameters
(Fig. 4B–F).

3.8. βLH ir-cells

Cells showing immunoreactivity for βLH were located in the
ventral, central and marginal regions of the PPD in the pituitary
(mean cell area of 6674 μm2 for females and 6973 μm2 for
males; Fig. 3D–F; Table 2). No differences were observed between
experimental conditions for cell area and mean diameter, nuclear
area and mean diameter, or nucleus/cytoplasm area ratio (Fig. 4A–
E). Mean cytoplasmic optical density in cells of fish exposed to
0.03 μg/L ES increased when compared to 0.1 μg/L ES (2 way
nested ANOVA, po0.02; Tukey test, po0.002; Fig. 4F). No differ-
ences between sexes were observed for any other parameter (data
plotted together).
4. Discussion

Response to pollutants exposure in fish depends on the life
cycle, habitat, food, biology of each species, among other factors.
Embryos and larvae are the most sensitive stages within the tel-
eost life cycle. A high natural mortality before reaching the juve-
nile stage – around 90% – due to high predation and/or food
shortage is usual in most egg spawning species. Mortality rates
diminish as larvae grow; however, when exposed to contaminants,
motility and sensory abilities can be altered resulting in increased
mortality and serious consequences at the population level (Al-
varez, 2005; von Westernhagen, 1988). Neither ES nor the solvent
acetone significantly altered mortality of C. dimerus larvae, either
at 30 dpf (Piazza et al., 2011) or 90 dpf (present study) at the same
concentrations.

Non-water soluble chemicals are dependent on vehicle solvents
in order to allow dissolution. Lipophilic compounds such as ES
require organic solvents to enable their dispersion in water, so
commercial formulations use a mixture of emulsifiers, carriers and
additives. Coformulants improve the agricultural usability of pes-
ticides, allowing better dispersion, distribution, penetration and
persistence on crops. However, they may have toxic effects of their
own on non-target animals, either through direct or indirect,
specific or non-specific mechanisms (Hutchinson et al., 2006;
Maes et al., 2012). In the case of acetone, it is capable of inducing
heat shock protein production in Danio rerio embryos and thus
accelerates hatching and decreases heart rate (Hallare et al., 2006).



Fig. 1. Topographic light-microscope photograph of different brain cross sections of
Cichlasoma dimerus 90 dpf juveniles, (A) brain preoptic area (POA), (D) midbrain
tegmentum (MB), (G) nucleus olfacto retinalis (NOR). Neuron detail from females and
males respectively: (B), (C) GnRH I ir-neurons. (E), (F) GnRH II ir-neurons, (H),
(I) GnRH III ir-neurons. ot: optic tectum. Scale bares: (A), (D) and (G): 500 μm, (B),
(C), (D), (E), (H) and (I): 1000X.
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Larvae of Salvelinus namaycush exposed to this solvent, exhibited
higher growth rates than fish kept in compound-free water (Mac
and Seelye, 1981). In our previous study, acetone affected FSH and
GnRH I cell populations, however exposure did not affect other
brain cell populations, larvae survival, or growth (Piazza et al.,
2011). Acetone was once again used in this study so that data from
the previous study (exposure for 30 days) and this one (exposure
for 90 days) could be readily compared. Additionally, as the use of
a solvent is necessary for the preparation of ES solutions, acetone
was chosen as it showed lower toxicity to early developmental
stages than other solvents (Maes et al., 2012). An effect of acetone
exposure to GnRH I-producing neurons was observed in this study,
which could mask the effects of ES. Its use for endocrine disruptive
studies should consider this action.

Gormley and Teather (2003) observed reduced length in Or-
yzias latipes larvae exposed to ES for one week when larvae were
exposed before hatching; however, after a 4-week exposure or
when larvae where exposed after hatching no difference in length
was found between control and exposed fish. Beyger (2009) did
not found altered growth for ES-exposed Jordanella floridae larvae,
in agreement with our results for C. dimerus larvae, where growth
was unaffected by ES. Furthermore, K values of exposed larvae
reflected a good nutritional status.

Successful reproduction depends on individuals having gone
through normal gonadogenesis, a complex process involving cel-
lular and histological differentiation that starts during early on-
togeny. Environmental toxicants may affect the endocrine control
of gonad development in larvae. Embryos of D. rerio exposed to
low concentrations of ES showed altered primordial germ cells
distribution along the antero-posterior axis (Willey and Krone,
2001). Reduction in the number of spermatogonia and spermatids,
loss of Sertoli cells and thickening of the seminiferous tubules in
males of the same species, resulting in delayed sexual maturity
and fertilizing capacity, was also reported following ES exposure
(Balasubramani and Pandian, 2008). In C. dimerus, Da Cuña et al.
(2011, 2013) reported that adult males exposed to subchronic
environmentally relevant concentrations of ES showed testis dis-
orders. For early life stages, results of the present study showed
that, under the experimental conditions tested, ES did not cause
morphological and/or histological gonadal alterations in juveniles.

Several authors have reported that ES has an estrogenic effect
in vitro, although it has low affinity for the estrogen receptor (Gale
et al., 2004; Petit et al., 1997; Wozniak et al., 2005). It has also been
described as an androgen antagonist and a weak inhibitor of ar-
omatase in mammalian cells (Andersen et al., 2002). In D. rerio
exposed to low concentrations of ES in a pulsatile fashion, sex ratio
was skewed towards males (Balasubramani and Pandian, 2008),
whereas higher concentrations shifted sex proportion towards
females and undifferentiated juveniles. In contrast to these re-
ports, the gonads of ES-exposed C. dimerus differentiated normally
into females or males, without an imbalance in sex ratios, as de-
scribed for this species by Meijide et al. (2005), suggesting that ES
does not alter gonadal morphology or sex ratio at the concentra-
tions and exposure period tested in this species. It would prove of
interest to study if exposure of newly fertilized eggs and/or use of
commercial formulations rather than the active ingredient alone,
could result in a different outcome regarding sex ratio.

Chemicals substances that are capable of mimicking sex ster-
oids can also alter the hypothalamic–pituitary–gonadal axis of
vertebrates, since these hormones regulate gonadotropin synth-
esis and secretion through feedback mechanisms. Subchronic ex-
posure of Oreochromis mossambicus to ES caused gonadotrophs
and thyrotrophs with vacuolated or granular cytoplasm, cell en-
largement and, in some cases, nuclear damage (Shukla and Pan-
dey, 1986). On the contrary, and similarly to our previous results in
30-day old larvae (Piazza et al., 2011), 90-day exposure to ES did
not cause C. dimerus brain tissue damage, nor any anomaly in the
anatomic localization or time of appearance of GtHs or GnRHs cell
populations.

In contrast to our previous study where FSH cells showed an
increased in size when larvae were exposed for 30 days to 0.1 μg/L
ES (Piazza et al., 2011), limited sensitivity of FSH cells was found
upon 90 days ES exposure in this study. Pesticide exposure did not
alter any of the morphometric parameters measured, save for a



Fig. 2. (A) cellular area, (B) nuclear area, (C) nucleus/cytoplasm area ratio, (D) mean cellular diameter, (E) mean nuclear diameter, (F) mean cytoplasmic optical density of
GnRH I, II, III ir-neurons of 90 dpf juveniles. When no significant differences were found between males and females, data for both sexes was plotted together. Bars show
mean7SEM. Numbers indicate sample size for each group. (n) Significant difference between treatments and vehicle. (#) Significant difference between treatments. Values
were considered significantly different when po0.05 (2 way nested ANOVA, Tukey's test).
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difference in cell area between both ES concentrations tested. Si-
milarly, morphometric parameters of LH-producing cells were not
affected by pesticide exposure, except for a slight increase in op-
tical density, possibly due to hormone accumulation. LH plays an
important role in gonadal maturation in fish (Zohar et al., 2010), so
long-term exposure to ES during this period could diminish the
reproductive fitness. Even though results indicate that gonado-
trophs are not sensitive to the presence of the pesticide after
prolonged exposure, confounding effects due to the solvent cannot
be excluded.

Regarding GnRH, in our previous study, C. dimerus larvae ex-
posed for 30 days to 0.1 μg/L of ES showed that GnRH I ir-neurons
decreased their nucleus/cytoplasm ratio, attributed to a reduced
nuclear size, suggesting diminished cell activity (Piazza et al.,
2011). Ibrahim et al. (1986) observed that cell size correlated with
hormone serum levels suggesting increased hormone synthesis



Fig. 3. Topographic light-microscope photograph of different brain cross sections at pituitay level of 90 dpf juveniles. (A) Pituitary rostral pars distalis and pars intermedia
showing βFSH ir-cell location. (D) Pituitary proximal pars distalis showing βLH ir-cell location. Cell detail of female and male respectively: (B) and (C) βFSH ir-cells. (E) and (F)
βLH ir-cell. HT: hypothalamus, P: pituitary; T: telencephalon. Scale bars: (A): 500 μm, (D) 250 μm, (B), (C), (E) and (F): 1000X.
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and/or secretion. Also, in C. dimerus, nuclear area of steroidogenic
adrenal cells positively correlated with cortisol plasma levels
(Morandini et al., 2014).

Previous studies in adults of this species state that innervation
of the pituitary by GnRH I is associated with increased plasma
concentration of FSH at the onset of ovarian differentiation (42
dpf) (Pandolfi et al., 2002). Therefore, the effects on morphometry
of FSH cells after 30-day exposure to ES would reflect a direct
effect of the pesticide on gonadotrophs rather than an effect
mediated by GnRH (Piazza et al., 2011). After 90-day exposure both
direct and indirect effects of ES could affect FSH-producing cells, as
innervations are well established at this later stage; however no
effects were evident neither on GnRH I neurons nor FSH cells.
While GnRH I acts as a gonadotropin releasing factor, the wide

distribution and large number of neurons corresponding to GnRH
II and III in fish brain indicate that these neuropeptides serve
important functions, many still unclear (Lethimonier et al., 2004).
Immunoreactive fibers and receptors for these two neuronal po-
pulations are close to brain sensory areas, implying a modulatory
role for both neuropeptides (Chen and Fernald, 2006; Forlano
et al., 2000; Kawai et al., 2009; Maruska and Fernald, 2010; Millar,
2003; Soga et al., 2005). GnRH II has been linked to modulation of
sexual stimuli, communication between individuals and/or mod-
ulation of pineal function and melatonin secretion (Maruska and



Fig. 4. (A) Cellular area, (B) nuclear area, (C) nucleus/cytoplasm area ratio, (D) mean cellular diameter, (E) mean nuclear diameter, (F) mean cytoplasmic optical density of
βFSH and βLH ir-cells in 90 dpf juveniles. When no significant differences were found between males and females, data for both sexes was plotted together. Bars show
mean7SEM. Numbers indicate sample size for each group. (n) significant difference between treatments and vehicle. (#) significant difference between treatments. Values
were considered significantly different when po0.05 (2 way nested ANOVA, Tukey's test).
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Tricas, 2007; Servili et al., 2010), while GnRH III appears to reg-
ulate reproductive behavior in adults (Keller-Costa et al., 2015;
Tubert et al., 2012; Uchida et al., 2005).

In our previous study, GnRH II and III were insensitive to the
pesticide after 30 days of exposure, since ES did not affect mor-
phometric parameters or optical density of either neuronal type
(Piazza et al., 2011). In contrast, following a 3-month exposure
period, both cell types were affected by ES. Impaired neuronal
growth could result in reduced neuropeptide synthesis and
therefore altered social behavior of individuals through modula-
tion of sensory systems – visual, auditory and olfactory (Canosa
et al., 2008; Servili et al., 2010), known functions of GnRH systems
in fish (Eisthen et al., 2000; Maruska and Tricas, 2011; Stell et al.,
1987). Given the neuroendocrine role in the reproductive cycle of
both hormones, through decreased activity of GnRH II, as sug-
gested by the decreased nucleus/cytoplasm ratio for both ES
concentrations, and GnRH III, as seen by the lower nuclear and
cellular area with the highest ES concentration tested, sexual be-
havior such as mate choice, courtship, nest building and number of
eggs laid could be affected, with detrimental effects on the num-
ber of individuals in future generations. These results indicate that
GnRH II and III neurons are sensitive to the presence of ES when
exposed for a prolonged period of time. Interestingly, GnRH I and
FSH were the cell types affected when exposure was shorter,
ending before sexual differentiation.

Taken together both studies, it is observed that cell types can
respond differently depending on the exposure time. Alteration of
the reproductive axis in larvae via these effects can lead to im-
paired sexual development and/or future reproductive success.
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