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The sketching problem arises frequently in the conceptual design of mechanisms, especially
in the enumeration process where a large number of topological solutions automatically
generated must be analyzed. This paper presents a new graph layout algorithm to sketch
non-fractionated kinematic chains. A combinatorial algorithm based on the independent loops
of the graph representation of the kinematic chain, is used to find an adequate initial position
of graph vertices with minimal edge crossings; its execution is followed by a force-directed
algorithm based on spring repulsion and electrical attraction, including a new concept of edge-
to-vertex repulsion to improve esthetics and preserve edge crossings. Both algorithms are used
in sequence to generate a representative layout of the graph which optimizes a given quality
measure. Finally, standard rules are followed to convert the graph into the sketch, using new
heuristic correction rules to avoid newly generated edge crossings. Atlases of complex non-
fractionated kinematic chains are used to validate the results. A qualitative comparison with a set
of sketches found in the literature is included, showing the advantages of the proposed algorithm.

© 2013 Elsevier Ltd. All rights reserved.
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1. Introduction

The conceptual design is the earliest stage of linkagemechanisms design where several alternatives are generated and evaluated in
order to fulfill functional, structural and other design requirements [1]. The graph representation of mechanisms and Graph Theory
based algorithms can be used to computationally solve the enumeration of alternatives satisfying topological constraints of a given
problem [2,3,1,4–6]. This enumeration process often leads to a large number of topological solutions, that need to be automatically
displayed to the designer in graphical form.

Themain objective of graph layout is to obtain a representation to ease the visualization and understanding of the graph. This can
be achieved if themain esthetics characteristics of the layout are optimized. Among these characteristics, Purchase [7] established that
the most important ones are: to maximize symmetry, to minimize edge crossings, and to minimize bends. Also, she concluded that
edge crossing avoidance produces the highest impact on human understanding. A second objective, useful for repeated use of the
topological structures [8] and database representation [9], is to develop a deterministic algorithmwhere any randomness is eliminated.
In this way, the same layout is obtained for different executions of the algorithm over a given graph.

Three problems of automated representation in the conceptual design stage ofmechanisms can be identified: (i) drawing of a graph,
(ii) drawing of a kinematic chain, and (iii) drawing of a linkage mechanism including parts to move with few known coordinates (see
practical applications in Refs. [6,10]). The first two problems can currently be solved by adapting any computer tool available from the
computer science field [11–15]; however, the outputs produced by these algorithms are dependent on the initial representation of the
graph, and the esthetics characteristics are not satisfactory when the graphs are non-planar and therefore edge-crossings exist. On the
other hand, these problems have a long tradition in the mechanism field [4], with solutions presenting improvements in automation,
minimization of edge crossings, and esthetics.
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The first sketching algorithms for graphs of kinematic chainswere proposed by Dobrjanskyj & Freudenstein in 1967 [2], introducing
the use of the minimal independent loops of the graph of the kinematic chain to layout the graph, without considering edge crossing
avoidance. Based on this approach, Woo [16] proposed heuristic rules, using the longest loop as the peripheral one, reducing but not
eliminating the edge crossings. In 1984, Olson et al. [17] extended the Woo approach with new rules to use the loops as concentric
circles for locating the joints of the kinematic chains, but still leaving some corrections of link crossings to bemade by hand. In 1989, Yan
&Hwang [18], and thenBelfiore& Pennestri [19], proposed different drawing strategies based on the characteristics of the graphswith a
multilevel approach: they first sketched automatically the contracted kinematic chains from their contracted graphs and then, added
joints and links following rules for minimizing edge crossings; however, their study was limited to kinematic chains with ten links. In
1990, Chieng &Hoeltzel [20] proposed the first automatedmethod based on the exhaustive use of the independent loops of the graphs,
but also including the peripheral loop. This method was limited to planar graphs and was considerably improved later by Mauskar &
Krishnamurthy [21]. They used only theminimal set of independent loops to sketch the kinematic chain, including several graph-based
rules to reduce the number of repeated drawings and introducing some rules for avoidance of link-crossings occurrence; however, their
approach lacked an emphasis on esthetics criteria. In 2003, Mruthyunjaya [4] reviewed the automated sketching methods and
considered Ref. [21] as the most promising candidate for being integrated into a computerized synthesis process. Recently, Ding &
Huang [9] proposed a unique and simplified representation of the graphs of kinematic chainswheremost of the vertices are located on a
peripheral loop; they emphasized repeatability over esthetics. Following Olson et al., Nie et al. [22] presented a loop approach to the
drawing of joints on concentric circles and also described complex algorithms for corrections of branches for improvement of esthetics.
Hsieh et al. [23] extended the work initiated by Yan & Hwang [18] integrating their algorithm into a graphical user interface.

In a previous work [24], the authors presented a preliminary version of a new algorithm for sketching of kinematic chains which
employs a combinatorial algorithm that uses the minimal independent loops to find an initial graph with minimum edge-crossings,
and then uses a force-directed algorithm to improve the esthetics by keeping the number of edge-crossings to aminimum.Also, a new
concept of edge-to-vertex repulsion was proposed and incorporated in the force-directed algorithm to avoid the generation of new
edge-crossings. Recently, in Ref. [25], the complexity of the combinatorial part of the algorithmwas reduced and the formulae for the
edge-to-vertex repulsion forces was improved. In this paper, the conversion from graphs to their associated kinematic chains is
presented alongwith corrections for the avoidance of new link-crossings and further improvements for regularization of edges of the
peripheral loop and appropriate orientation of the whole drawing. The algorithm is deterministic, without any randomness in its
computation steps. Therefore, it is able to find a single representative among all possible layouts.

Several graphs of complex kinematic chains with one to six independent loops are used to illustrate the algorithm, to explain
the methodology and its limitations, and to validate the results.

2. Basic definitions

The following basic definitions introduce the equivalences between graphs and mechanisms [2,1,4].
An undirected graph, denoted as G(V,E), is an algebraic structure composed by a non-empty set of vertices V and a set of undirected

edges E p V × V connecting vertices (hereafter, in the context of this paper, a simple or undirected graph will be called a graph). A
kinematic chain can be represented by a graph where the n bodies are represented by vertices of the graph, and the j joints between
bodies are given by edges connecting the associated vertices. Hereafter, vertices and linkswill be referred to in an homologousway, and
the same consideration is valid for edges and joints. The size of the set of vertices V is therefore denoted by v = n = |V|, and the size of
the set of edges is e = j = |E|.

The adjacency matrix, AG, is one of the possible matrix representations of a graph. It is a n × n square matrix indexed by labels
of vertices, where an entry aij equals 1 if vertices i and j are adjacent, or 0 otherwise.

Two simple graphsG1(V1,E1) and G2(V2,E2) are isomorphic if there exists a bijective (one-to-one and onto) function f from V1 to V2
with the property that u and v are adjacent in G1 if and only if f(u) and f(v) are adjacent in G2, for all u and v in V1. Such a function f is
called an isomorphism.

A path is a sequence of vertices and edges where no edge is traversed more than once. A loop, circuit, or cycle is a path where
only the starting and ending vertices are repeated. The length of the loop is the number of edges, which is equal to the number of
vertices. Euler's equation establishes that a planar graph has L̃ ¼ e−vþ 2 loops, including L independent loops and the peripheral
one, thus L̃ ¼ Lþ 1; hence, there are L = e − v + 1 independent loops (also known as fundamental circuits, loop basis, or cycle
basis). Equivalently, the kinematic chain has μ = j − n + 1 independent loops and its mobility can be computed as M = j − λμ
if all joints are simple (a joint that permits only one degree of relative movement), where λ is the order of the screw system
(λ = 6 for spatial mechanisms, and λ = 3 for planar and spherical mechanisms). It is possible to find one basis of minimal
length loops orminimal independent loops with the following characteristics: (a) any other loop of the graph can be spanned by
sums or linear combination of the loops of the basis, (b) no loop is contained into another loop.

The graph layout problem is to find the best representation of a graph by drawing the vertices in a plane without edge crossings if
the graph is planar, or minimizing edge crossings if it is not planar. A more general definition is: Given the graph G(V,E), find the
positions of the vertices in V, i.e.xi ¼ xi; yið Þ ¼ xi∈R2 vi∈ V ; i ¼ 1;2;…;nj g�

, thatmaximize the quality or esthetic criteria. The positions
of the vertices can be collected in a unique array as X = {x1|x2|…|xn} indexed by vertex identifiers.

The layout of a kinematic chain has a representation of one polygon per link and one vertex per joint. Additional edges can be added
to represent the links inside each polygonwithmore than three joints, but then they are not shown in the final drawing. The graph of a
kinematic chain can be graphically obtainedby shortening the sides of each polygon to zero and by separating the locations of the circles
representing the joints. However, the converse process is not straightforward. Since the number of edges in a graph layout is less than
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the number of edges in the layout of its associated kinematic chain, themore rational starting point is to layout the graph firstly and then
to transform it into a kinematic chain.

3. Graph layout algorithms

In this section, a new graph layout algorithmwhich takes the advantages of both combinatorial and force-directed algorithms,
with the necessary modifications to avoid their drawbacks, is proposed.

3.1. Combinatorial algorithm based on a set of independent loops of the graph

This algorithm is based on the exhaustive drawing of independent loops, and uses concepts proposed by Mauskar &
Krishnamurthy [20,21]. The layout consists on locating the vertices of the first loop over a circle, followed by distributing all successive
loop vertices on arcs joined to the previous drawing: each arc starts from a vertex in common with a previous loop and ends in
another common vertex. The radius of arcs are drawn in increasing size, e.g. doubling the radius of the previous loop (note that, in this
way, minimal chances for edge-crossing are produced). The line connecting the starting and ending points of the arcs divides the
plane in two semiplanes; then, each loop can be drawn in two opposite directions: to the left or to the right of this line.

Given the graph of themechanism in the form of its adjacencymatrix, the steps of the loop-based layout algorithm are summarized
in Algorithm 1. Let us consider, for instance, a graph with three loops with the following basis L = {L1,L2,L3}, where:

L1 ¼ 0;3;2;4f g
L2 ¼ �0;1;6;�2;3

n o

L3 ¼ �0;3;2;6;�1;7;5
n o

:

ð1Þ

The first call to function CIRCLESLAYOUT in Algorithm 1 is made for the ordering P = {0,1,2} and directions values S = {1,1}. This
function, detailed in Algorithm1, performs the following steps. A base circle is drawnusing the loop L1, see Fig. 1(a). Next, two vertices
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Fig. 1. Combinatorial algorithm based on independent loops.
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in commonwith the next loop L2 are searched: vertices 0 and 2 are selected as starting and ending points of the arc. Since vertex 3was
already drawn in the previous loop, it is ignored and the first arc includes the list of vertices {2,6,1,0}, see Fig. 1(b). Then, the loop L2 is
processed. The first two vertices in commonwith the set of the already drawn vertices are vertices 0 and 1, since vertices {3,2,6} were
already included in the layout; the new arc will include vertices 7 and 5, Fig. 1(c). The graph layout is obtained by connecting vertices
of the base circle and those of the successive arcs as shown by the dashed straight lines in Fig. 1.

The computational complexity of this algorithm clearly isO μ!2μ−1
� �

, dominated by the number of permutations and arc directions.
Note that for complex planar graphs, the rectification of arcs into straight lines can produce new edge crossings that were not

present in the layouts drawn using arcs and circles. The layouts generated from a basis ofminimal independent loops can be grouped in
familieswhich start froma circle that represents the initial loop of the basis; then, for eachof them, the arcs are generated depending on
the other loops. However, a given graph can havemore than one basis of minimal independent loops, and each basis can give different
layouts. Therefore, the search of an optimal layout with minimal edge crossings should in fact be performed for the full set of bases
L ¼ L1; L2;…; Lbf g ofminimal independent loops. The final algorithm,which is implemented in Algorithm 4, takes into account this fact
and spans the complete solution space.
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Fig. 2. Example of forces computed in a force-directed algorithm (a); vertex-to-vertex repulsion and attraction force laws [13,24] (b); edge-to-vertex repulsion
force between a vertex vk and an edge eij.
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3.2. Edge-crossing preserving force-directed algorithm

Fruchterman & Reingold [13] proposed to plot a graph based on an associated pseudo physical or mechanical system with
vertices connected by traction springs together with a set of repulsion forces acting between any pair of vertices, see Fig. 2(a). The
algorithm starts from a randomly chosen configuration of the vertices in the work plane and then iteratively moves them evolving
towards a minimal energy configuration.

The force between two vertices vi and vj is a function of their current distance dij and of a proposed ideal length k for all edges.
The Euclidean distance dij between vertices vi and vj is computed from their positions as dij = |Δij|, where Δij = xi − xj. Attraction
forces are applied in the direction of Δij over vj and in the opposite direction over vi. The magnitude of the attraction force is
computed as f̃ a vi; vj

� � ¼ f a dij
� � ¼ Cad

2
ij=k, while the magnitude of the repulsion force is given by f̃ r vi; vj

� � ¼ f r dij
� � ¼ −Crvvk

2
=dij.

The constants Ca and Crvv are the vertex-to-vertex attraction and vertex-to-vertex repulsion coefficients, respectively; hereafter,
we will consider Ca = Crvv = 1. Using these definitions, the equilibrium between forces acting over a pair of vertices vi and vj is
achieved when the distance between them is k, see Fig. 2(b). In order to reduce the O n2

� �
complexity of the repulsion forces,

Fruchterman & Reingold [13] proposed to assume the influence of vertices negligible if they are separated at a certain distance,
see Fig. 2(b); in this way, repulsion forces at each vertex are computed only for vertices inside a given influence zone, for instance,
that limited by a radius r equal to twice the desired length k of the edge.

Starting from non-coincident randomly generated positions of the vertices, the Algo. 3 executes several iterations until a stopping
criteria on the energy E is reached; the energy accumulates the magnitude of forces over the vertices (see Algo. 3-line 32).

The main disadvantage of methods based only on vertex-to-vertex interactions is that edge crossing cannot be avoided because the
energy of the system (or objective function tominimize) does not take into account edge crossings. Besides, the convergence rate of the
algorithm is strongly dependent on the initial state, often randomly generated. To overcome this disadvantage and eliminate the
randomness, an optimal initial state can be computed using a determinist graph layout algorithmwhich minimizes edge crossings, and
then a modified force-directed algorithm which preserves edge crossings can be used to improve the esthetics.

A rational approach to obtain an edge-crossing preserving algorithm is to include edge-to-vertex repulsion forces as shown in
Algo. 3 in lines 22–28. Fig. 2(c) shows a single interaction between an edge and a vertex. The included edge-to-vertex repulsion
force between a vertex vk and an edge eij has a direction nij normal to the edge and is directed towards and applied only to vertex vk
(while no force is applied to the edge). Its magnitude is computed as

f e vk; eij
� �

¼ f̃ e x; yð Þ ¼ g yð Þh xð Þ

and depends on:

(i) The minimal distance y from the vertex to the edge through an hyperbolic function g(y) ≈ Crevk
2/(y + ε) where ε is a

small quantity that avoids division by zero, and the constant Crev is the edge-to-vertex repulsion coefficient; and
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Fig. 3. Loop-based layout (a), followed by a classical force-directed layout (b), and followed by force-directed layout with edge-to-vertex repulsion (c).
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(ii) The projection x of the line joining vj and vi over the edge ejk through a parabolic function h(x) = 1 − [(2x/djk) − 1]2.

In this way, the magnitude of the force is increased in a hyperbolic form with y as the vertex vk is near the edge, and varies in
parabolic form with the distance x to the vertices of the edge, reaching a maximum at the mid-point of the edge and getting null
values on the vertices vi and vj (note that repulsion forces between vertices already exist).

Note that a vertex can be projected over more than one edge and all contributions must be computed to get the final repulsion
force (interactions can be ignored if the distance from the vertex to the edge exceeds a given value). Then, the computational
complexity of the classical force-directed algorithm (see lines 8–20 in Algo. 3) is slightly increased fromO n2

� �
toO n� eð Þ as shown in

Algo. 3 in lines 22–28.
Typical parameters used to update the position of vertices are s = k/100 and t = 0.95. The parameter smodifies the position of a

vertex in the direction of the resultant of its applied forces (see Algo. 3-line 31). An additional parameter b is used to update the
amount s of displacement as an adaptive function of the energy evolution. If the energy increases with the iterations, themagnitude s
is decreased to s × t, and s is increased as s = s/t if the energy is decreased b times. Hu [14] proposed a value of b = 5; this value
worked satisfactorily for all the graphs and kinematic chains generated in this work. There are many other improvements to update
the positions of vertices inspired in physics which take decisions in terms of the energy evolution [14], or in terms of the velocity and
acceleration of the vertices to include damping and inertia to the vertices motion [26]; however, they increase the number of
parameters and the computational cost with marginal improvements on the results. Kamada & Kawai [12] also proposed the use of
numerical analysis to find efficiently the local minima, but this approach is not easy to apply when there are additional constraints to
be computed (e.g., interactions between vertices and other edges or between vertices and a prescribed area).
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3.3. Combined algorithm

In order to obtain a robust algorithm which avoids edge crossings, the two algorithms presented in the previous subsections
are combined and used in sequence in Algorithm 4: the loop-based combinatorial algorithm is firstly executed followed by the
force-directed algorithm based on spring attraction, and vertex-to-vertex and edge-to-vertex repulsion.

The inclusion of the edge-to-vertex repulsion force avoids modifying any initial situation without edges crossings in the final
layout, to one with edges crossings or having more edges crossings than in the original one. For example, the initial situation
given in Fig. 3(a) would be guided to the state shown in Fig. 3(b) if only the vertex-to-vertex repulsion forces were used. By
including the edge-to-vertex repulsion, the graph shown in Fig. 3(a) is guided to the state shown in Fig. 3(c). At the first
iterations, the vertices v4 and v7 are strongly repelled by the edges e01 and e31, respectively.

The loop-based combinatorial algorithm requires to include methods for measuring the quality of the obtained layouts and a
selection criteria to retain the best of them among all the loop combinations used to generate the initial graph. This aspect is rarely
described in the literature and is not trivial. Two measures are here proposed: an integer index Ic accounting for the number of
link crossings, and a continuous index Ie which measures the variance of edge sizes, accounting thus for vertices distribution and
indirectly, for the symmetries. The computation of these indexes have complexitiesO e2

� �
andO eð Þ, respectively. Both indexes, Ic

and Ie, can be arranged in a vector as I = [Ic,Ie], and comparisons can be made by strong precedence to edge crossings. That is,
given I1 and I2, then I1 b I2 either if Ic1 b Ic

2, or if Ic1 = Ic
2 and Ie

1 b Ie
2.

The total computational complexity of the proposed Algorithm 4 is O b� μ!� 2μ−1 � n� e
� �

where μ! × 2μ − 1 is the cost of
the combinatorial algorithm and n × e is the cost of the force directed algorithm which is dependent on the number of vertices n
and on the number of edges e. Note that this cost would be increased if, instead of plotting the graph, the kinematic chain is drawn
directly because it has more edges than the graph (i.e. there are more sides and diagonals of polygonal links than edges in the
associated graph).

4. Conversion from graph to kinematic chain of a mechanism

A method to convert the graph of the mechanism to its kinematic chain representation is now presented. This problem was
called “direct sketching” by Belfiore and Pennestri [19]. The basic procedure for direct sketching of the kinematic chain is merely
geometric: starting from the optimal layout of the graph, (G,X), each joint of the sketch is located on the mid-point of each edge of
the graph; see e.g. Fig. 4(a) and (b). Then, the joints of the sketch are joined by lines: each vertex of the graph is converted into a
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single link (if the vertex degree is 2) or into a polygonal link (if the vertex degree is higher than 2). To obtain regular polygons
representing higher order links, one edge is added for each pair of joints. Once the coordinates of the s joints of the polygon are
assigned, a number s of outer edges are retained in the plot avoiding self-crossings (e.g., a four-sided polygon folded as a bow) and
depicted in the sketches, the other s(s − 3)/2 diagonals are not drawn. Finally, the esthetics is improved as shown in Fig. 4(c).

The number of edge crossings in the graphmust be equal to the number of link crossings in the kinematic chain. However, new
link crossings can be originated in the kinematic chain after the geometric conversion [20,19]. See for example, that the new
crossings originated in the conversion from the graph shown in Fig. 5(a) into the kinematic chain shown in Fig. 5(b).

The first correction algorithm was proposed by Chieng and Hoeltzel [20] for link crossings between binary an ternary links,
where the joints of triangles like the one shown in Fig. 5(b) are moved as shown in Fig. 5(c1) obtaining Fig. 5(d1).

A second way to overcome this problem was proposed by Belfiore and Pennestri [19], where the joints of the kinematic chain
belonging to the convex hull of the graph are moved towards the exterior region over lines perpendicular to the edges of the
graph whereas the other joints are fixed; see the correction for the same example in Fig. 5(c2) obtaining Fig. 5(d2). The same
result is obtained if the joints of the convex hull of the graph are maintained as fixed and the other joints are contracted by scaling
their coordinates from the barycenter of the graph.

These procedures can solve local problems between bodies adjacent to the moved bodies but they are not able to correct all
newly generated link crossings. The correction algorithm adopted here is based on the corrections proposed by Chieng and
Hoetzel [20], generalized for any pair of polygonal links.

a b

c1 d1

1

2

3

c2 d2

1

2

3

4

5

Fig. 5. A kinematic chain (b) obtained through direct sketching conversion from the graph (a) producing new edge crossings; (c) correction actions; (d) corrected,
(e) optimized, and rotated kinematic chain.
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Fig. 4. Direct sketching of the kinematic chain and refinement using a force-directed algorithm.
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4.1. Proposed correction algorithm

The correction algorithm sequentially verifies all possible edge crossings (here, the word edge includes sides and diagonals of
a polygon) between every edge in body Bi and every edge in an adjacent body Bj. If necessary, it moves the joint in common to
avoid edge crossing. Each individual correction may not avoid the crossings of other pair of edges of the same bodies, but at the
end of iterations the process leads to a correction.

Fig. 6(a) shows a pair of overlapped bodies, Bi and Bj, connected by a joint Ja located at position Pa. The arrows in Fig. 6(b) show
that more than one correction can be performed. Fig. 6(b) shows an instance of the algorithm where it is clear that the edge ei

1

does not cross any edge of link Bj; then, the edge ei
2 is checked against every edge ej

k, k = 1,…,6 of link Bj. The edge ei
2 crosses the

edge ej
1, and therefore, the joint Ja is moved as shown in Fig. 6(c) using the following simple geometrical correction step.

The intersection point Pi of the two segments associated to the edges ei and ej, which belong to adjacent bodies Bi and Bj
respectively, is computed. The edge ei has end-points Pa and Pb, where Pa is associated with the common joint Ja, and the edge ej
has end-points Pc and Pd. The point Pa is moved over the segment PaPb to the other side of the intersection. The ratio r ¼ PaPb=PaPi

is computed, and the joint Ja is displaced to a new coordinate

Pnew
a ¼ Pa þ Pb−Pað Þp

where p ¼ r þ � with �≈0:01. In this case, this procedure eliminates the penetration of joint Ja inside body Bj because there are no
further crossings between ei

2 and edges ejk, k = 2,…,6 nor between the remaining edge ei
3 and edges ejk, k = 1,…,6.

Finally, the procedure is repeated with the role of Bj replaced by Bi, thus eliminating the eventual penetration of joint Ja inside
body Bi. In this example no crossing appears between edges with the updated position of joint Ja.

4.2. Final adjustments of the graphs and sketches

Two final adjustments are made on the graphs and sketches.

Polygonal representation of the peripheral loop: The representation of the vertices of the peripheral loop as a regular polygon
provides a more clear understanding of the sketches and eases the validation with other results, compare Fig. 7(a) and (b)
with (f) and (g), respectively; obviously, this conversion is not mandatory. After the relocation of the outer vertices of the
graph (or joints of the sketch) on the polygon, a force-directed algorithmwith the edge-to-vertex repulsion is used to relocate
the inner vertices. Fig. 7(d) and (e) display results obtained without applying this adjustment.
Rotation: Each graph is rotated and supported by the lower horizontal edge to give an additional improvement of the esthetics.
Once the graph is rotated, the sketch is computed and also rotated a minimal angle in order to preserve the visual
correspondence between the homologous vertices and links of the graph and the sketch, respectively.

Fig. 8. Graphical user interface for layout of graphs and mechanisms.
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The methodology gives a clear representation even in the presence of edge/link crossings. For instance, the sketch of the
kinematic chain with a non-planar graph presented by Mauskar & Krishnamurthy ([21], Fig. 12, p.436) is plotted in Fig. 7(a). This
is a 10-links 13-joints non-fractionated 1-DOF linkage. Its associated graph, shown in Fig. 7(b), is homeomorphic to the
non-planar bipartite graph K3,3 shown in Fig. 7(c); by applying Kuratowski's Theorem [27], it can be shown that it is non-planar
and therefore at least one edge-crossing cannot be avoided. The graph K3,3 is the contracted graph (see ([28], Tab. 2, graph V)) of a
family of graphs of kinematic chains obtained by addition of binary links to the edges of the contracted graph, one result is the
graph shown Fig. 7(b).

The sketches shown in Fig. 7(e) and (g) are obtained for this graph, and they are both more clear than the one shown in
Fig. 7(a). The sketch of Fig. 7(g) has the best esthetics and was obtained when vertices of the peripheral loop are distributed on a
regular polygon.

5. Results

In order to test the presented algorithms, a software was written in C++ language and developed under the Qt environment
[29]; see Fig. 8. The reported execution times were measured on a PC Intel® Core i7 950@3.07 GHz 8 GbRAM and exclude the
time needed for the construction of the graphical outputs.

The methodology for graph layout and direct sketching of kinematic chains was applied to several atlases of non-fractionated
kinematic chains of planarmechanisms (λ = 3). In all cases, the following parameterswere used for the force directed algorithm: ideal
edge-size k = 100, initial step s = k/100 = 1, and attraction coefficient Ca = 1 for the graphs, whereas the values k = 50, s = 3, and
Ca = 2 were used for the sketches. The following parameters were common for graphs and sketches: t = 0.95, Crvv = Crev = 1, the
repulsion zones for vertex-to-vertex and edge-to-vertex were limited to 2 k, and a maximum number of 100 iterations were used for
each execution.

5.1. Examples of sketches

The results for an atlas of one-DOF non-fractionated kinematic chains with up to three independent loops [1, App. D] are
shown in Fig. 9 and were computed in 608 ms. The results obtained for an atlas of two-DOF non-fractionated kinematic chains
[1, App. D] are shown in Fig. 10 and were computed in 1.14 s. The computation time of the 4-loop kinematic chain with 8 bases of
minimal independent loops shown in Fig. 7(g) was 0.75 s.

Fig. 9. Atlas of 1-DOF non-fractionated kinematic chains up to 8 links 10 joints.
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The 5-loop graph (with 5 bases) shown in Fig. 8 took 0.99 s. This graph is drawn without edge crossings, but appears with
edge crossings in Fig. 6 of Ref. [30]. The 5-loop graph shown in Fig. 11(g) has 6 bases and took 2.06 s to be computed. A difficult
test is shown in Fig. 11(h); this graph has 6 minimal independent loops and 26 bases, and took 58.06 s to be calculated, with an
average time per basis of 2.23 s.

Because of the computational complexity of the algorithm, the CPU times are dominated by the number of minimal
independent loops multiplied by number of bases as O b� μ!� 2μ−1

� �
. To the authors knowledge, there is no explicit formula to

count the number of bases of minimal independent loops.

5.2. Qualitative comparison with other algorithms

Fig. 7 shows the improvements with respect to the approach by Mauskar & Krishnamurthy ([21], Fig. 12,p.436) through the
complex 10-bar non-fractionated 1-DOF linkage.

Fig. 10. Atlas of 2-DOF non-fractionated kinematic chains up to 9 links 11 joints.
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Some other examples of non-fractionated kinematic chains taken from the literature on automated sketching are compared in
Fig. 11. Each figure was redrawn by hand and arbitrarily labeled for the cases in which the authors do not provide the labels. At
the right of each figure, the sketches automatically generated and automatically labeled by the proposed algorithm are confronted
with:

(a) The first automated sketch of the graph of a 1DOF (10,13) kinematic chain from by Ref. [2], the obtained sketch clearly
shows the planarity of the graph.

(b) A 1DOF (8,10) kinematic chain with all unsymmetrical links from Ref. [18] seems to be qualitatively similar in terms of
regularity of link sizes. These authors presented the atlas of 1DOF non-fractionated kinematic chains in Ref. [18] and the
atlas of 1DOF generalized kinematic chains in Ref. [23] and their method deserves further exploration and research.

(c) Another 1DOF (8,10) kinematic chain from in Ref. [18] where the kinematic chain has all unsymmetrical links, both
algorithms converge to two representations with the same regularity of link sizes.

a b

c d

e f

g h

Fig. 11. Comparison with outputs from other algorithms for automated sketching.
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(d) A 1DOF (10,13) kinematic chain with 5 minimal independent loops (15 bases) from Ref. [20] without link-crossing in both
cases.

(e) A 2DOF (11,14) kinematic chain with 4 minimal independent loops (4 bases) from Ref. [22], where the number of
link-crossing is two in both cases.

(f) A 3DOF (12,15) kinematic chain with 4 minimal independent loops (8 bases) from Ref. [22] without link-crossing in both
cases.

1 2

3 4

5 6

7 8

9 10

Fig. 12. Sketches of the ten first 1-DOF non-fractionated kinematic chains with 6 independent loops synthesized in Ref. [30].
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(g) A 3DOF (14,18) kinematic chain with 5 minimal independent loops (6 bases) from Ref. [19]. Note the avoidance in the
congestion of joints and the improvement in the regularity of link sizes of the presented approach.

(h) A graph of a 1DOF (14,19) kinematic chain with 6 minimal independent loops (26 bases) from the data base provided in
Ding et al. [30]. Note that the number of link-crossings is reduced to a minimum of one, because the graph of this kinematic
chain is homeomorphic to K3,3 by identifying the vertices as partitioned into V1 = {1,3,5} and V2 = {8,4,2}. Although the
graph and a sketch are not directly comparable, the sketch clearly shows that there exists just one link-crossing. Some
more sketches corresponding to the set of 1-DOF non-fractionated kinematic chains with 6 independent loops synthesized
by Ding et al., are plotted in Fig. 12.

We remark finally, that the results are, in all cases, better than the layouts obtained with existent software [15] based on
force-directed concepts.

6. Discussion

The proposed approach has several advantages:

(i) The approach is systematic and can start from any matrix representation of the kinematic chain;
(ii) The parameters of the algorithm are simple to understand and define;
(iii) The addition of loops drawn as circles followed by parts of loops drawn as arcs always enlarges the graph and decreases the

esthetics (which is however improved by the force directed algorithm); it is better than those approaches which put the
vertices on concentric circles increasing the congestion of vertices and their associated number of rules [17,22];

(iv) The algorithm can draw topologies with link-crossings;
(v) The algorithm is parallelizable; a given set of permutations of loops and directions of arcs can be distributed to compute the

combined layouts and quality indexes in different processors;
(vi) The number of heuristic rules is minimal and only employed for the geometric corrections in the conversion from graph to

kinematic chain.

The computational complexity of the presented approach is lower than Ref. [20] and similar to Ref. [21]. No rule to detect loop
relationships are used (exterior, interior, independent, crossed) [20–22]. The algorithmwas tested for kinematic chains with up to
6 minimal independent loops, with reasonable CPU times for practical applications.

No comparison ismadewith respect to the algorithm by Yan &Hwang [18,23], because its computational complexity is difficult to
evaluate and they did not present it. Besides, their method requires to store drawings of contracted graphs and the mapping from
each contracted graph to any kinematic chain derived from it, which also limits its application to a just a set of prewired situations.

7. Conclusions

We have presented a new algorithm for layout of kinematic chains and associated graphs, which is a combination of a
loop-based algorithm and a force-directed algorithm. The loop-based layout algorithm was used to find an initial layout with
minimal edge crossings. A force-directed algorithm based on spring attraction and vertex-to-vertex repulsion, which includes a
new concept of edge-to-vertex repulsion to avoid the generation of new edge crossings, was also presented. The combined
algorithm produced layouts of graphs with good quality in terms of minimization of edge crossings and maximization of esthetic
characteristics. These graphs were converted into sketches of kinematic chains through classical conversion methods, which were
improved with new correction heuristic rules for avoidance of link-crossing creation.

A qualitative comparison with a set of layouts of graphs and kinematic chains generated by algorithms proposed in the
literature was included, showing the advantages of the proposed algorithm. This set of tests can be considered as a benchmark set
for automated sketching algorithms.

Further research will include the extension of the presented algorithm to deal with fractionated kinematic chains.
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