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Abstract This work presents a frictional contact formulation to solve three-dimensional
contact problems with large finite displacements. The kinematic description of the contact-
ing bodies is defined by using a mortar approach. The regularization of the variational fric-
tional contact problem is solved with a mixed dual penalty approach based on an augmented
Lagrangian technique. In this method, the numerical results do not depend on the defini-
tion of any user-defined penalty parameter affecting the normal or tangential component of
forces. The robustness and performance of the proposed algorithm are studied and validated
by solving a series of numerical examples with finite displacements and large slip.

Keywords Friction · Contact mechanics · Mortar method · Augmented Lagrangian

1 Introduction

Contact mechanics refers to the study of the stress and deformation of two bodies that touch
each other [37]. Applications of contact mechanics in engineering problems are diverse, for
example, the design of gears [22], studies of wear or tribology processes [8, 11, 36], appli-
cations in metal forming [19], and many others. The first study of contact mechanics dates
from 1882 with the publication “On the contact of elastic solids” by Heinrich Hertz. The so-
lutions of the Hertzian contact problems are restricted to elastic solids with simple boundary
conditions, which limit their application to real world general problems. Currently, the Finite
Element Method (FEM) is the most popular numerical technique for the analysis of com-
plex problems that involve contact mechanics. Through the years, many researchers have
proposed different approximations and algorithms to calculate, with robustness and accu-
racy, the stress and deformation of the contacting bodies. However, due to the nonlinearity
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of the problem, there is not yet a completely robust contact algorithm suitable for a wide
range of applications, and for this reason contact mechanics is still an active research area.

A widely widespread technique in the framework of the FEM for the description of the
relative displacement between two contacting bodies is the node-to-segment approach where
a node of one body (the master body) is associated with a segment (2D case) or a surface
(3D case) of the other body (the slave body). An extensive list of references with differ-
ent variants and practical applications of this method can be found in the books of Wrig-
gers [68] and Laursen [43]. The main drawback of the node-to-segment approach is that
it is unable to pass the contact patch test [49] and, therefore, displays jumps in the com-
puted contact pressure when the slave nodes slide between non-smooth adjacent segments
or surfaces, producing ill-conditioned matrices and a poor convergence rate [56]. The dou-
ble pass node-to-segment approach satisfies the contact patch test, but it can “lock” due to
the over-restriction introduced in the formulation [56].

Another method proposed to simulate contact mechanics problems is the so-called
segment-to-segment approach where the segment of one body (the master segment) is as-
sociated with a segment of the another body (a slave segment). Most of the segment-to-
segment methods use some kind of intermediate surface or projection surface. The surface-
surface mortar strategy was originally proposed as a domain decomposition method and was
used to solve finite element problems with non-conforming discretizations. An important
characteristic of the mortar method is that it is one pass only, and verifies the contact patch
tests. Therefore, a double pass proposal would be completely unnecessary. Specifically, the
first work that used the mortar method was published by Bernardi et al. [4], where the au-
thors demonstrated the stability properties related with the Babuska–Brezzi conditions [6].
The first proposals of the mortar method used in engineering applications were introduced
in the context of infinitesimal displacements [44]. Then, many authors extended the mortar
approximation to problems with large finite displacements, large sliding or time dependent
problems [12, 13, 17, 28–30, 33–35, 50, 51, 53, 56]. Even though the references [38, 48, 60,
61] are not usually considered as mortar methods, they incorporate all the characteristics to
be classified as mortar [63]. Recently, Temizer [63], De Lorenzis et al. [15] and Kim and
Youn [40] applied the mortar method in the context of isogeometric analysis.

The treatment of the contact restrictions can be addressed by different strategies: by using
a penalty approach, Lagrange multipliers or augmented Lagrangian techniques within many
others. For example, in the works of Puso and Laursen [56] and Yang et al. [69], a mortar
formulation with a penalty method is presented. Puso [53] proposed a mortar method based
on an augmented Lagrangian combined with a double loop Uzawa-type algorithm. Later,
Popp et al. [50] proposed a mortar algorithm where a dual Lagrange multipliers is used, and
recently, Cavalieri and Cardona [10] proposed a frictionless mortar contact algorithm com-
bined with an augmented Lagrangian method. Each one of these proposals has advantages
and disadvantages as described, e.g., in [10, 52].

The complexity of the numerical solutions in contact mechanics is increased when fric-
tion is taken into account. The first mathematical formulation of frictional contact problems
was proposed more than 200 years ago by Coulomb, and then followed by Hertz. Despite
the great efforts made to explain the friction process, until today there is no total consensus
on a global theory that adequately describes this complex phenomenon. In fact, friction is
strongly influenced by the interaction of different tribological properties such as the lubrica-
tion conditions, the plastic deformations and the geometric changes of the contact surfaces,
which increase the difficulty of the analysis.

The global convergence rate of contact algorithms is degraded as a consequence of the
consideration of friction [16]. In most cases, friction is modeled by using the Coulomb law.
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This is an approximated law, which considers only one parameter in the formulation: the
friction coefficient. Although this law is very simple, it allows describing with an acceptable
approximation a wide range of real world applications. In the Coulomb law, the normal force
is independent of friction, and so, a non-symmetric system of equations is obtained [45].

Several works proposed friction contact algorithms combined with mortar methods. For
instance, Puso and Laursen [55] proposed a mortar method with a penalty regularization
within an augmented Lagrangian scheme [39]. The works of Yang et al. [69] and Fischer and
Wriggers [18] presented a penalty method for the regularization of the variational problem
and a mortar approach to describe the contact kinematics. Heintz and Hansbo [32] proposed
a stabilized Lagrange multiplier method based on a global polynomial multiplier for the
finite element solution of nonlinear elastic contact problems with non-matching grids in
2D. In the works of Oliver et al. [47] and Hartmann et al. [27], a computational contact
strategy utilizes a stabilized Lagrange multiplier formulation for the enforcement of the
contact constraints in 2D. Although this method is not a mortar approach, it incorporates a
fictitious intermediate region that connects the potential contact surfaces. In the work of Tur
et al. [66], the correct contact conditions for every slave node in a gap, stick or slip statuses
are evaluated in an internal loop, whereas an external loop is used to solve the nonlinear
equation using Newton’s method. This method has a disadvantage related with the higher
computational cost due to the two nested loops and, a special modification of the classical
Newton solver is required. More recently, Gitterle et al. [25] proposed a two-dimensional
finite deformation frictional contact formulation based on a mortar formulation. In this case,
the enforcement of contact constraints is reached with dual Lagrange multipliers. By using
the so-called dual mortar method [67], it is possible to eliminate the Lagrange multipliers
from the set of linear equations by static condensation. However, the dual method may lack
robustness, e.g., when contact surfaces have large curvatures or when one contacting body
slips over an edge of the other contacting body. A more robust version of this method has
been presented recently by Popp et al. [52].

In the work of De Lorenzis et al. [14], they focus on the application of NURBS-based
isogeometric analysis to Coulomb frictional contact problems between deformable bodies in
the context of large deformations and using the classical return mapping algorithm. A three-
dimensional mortar-based frictional contact treatment in NURBS isogeometric analysis un-
der the finite deformation regime is presented by Temizer et al. [64, 65]. In both works,
a penalty approach supplemented by Uzawa augmentations is implemented for the regular-
ization of the contact constraints.

In this work, an augmented Lagrangian technique combined with a mortar approach is
proposed to solve three dimensional contact friction problems. The method is an extension
of the frictionless mortar method presented by Cavalieri and Cardona [10]. Unlike the works
mentioned above, the exact enforcement of the contact and friction constraints is obtained
by using the augmented Lagrangian method proposed by Alart and Curnier [1]. In agree-
ment with the comments of De Lorenzis et al. [15], this method has remarkable robustness,
yields quadratic convergence, is relatively easy to incorporate into a nonlinear finite ele-
ment code, and contrary to the penalty method, no artificial parameter is introduced for the
regularization of the problem. The system of equations, including the Lagrange multipliers
is linearized and solved by a monolithic Newton–Raphson method. Thus, it is not neces-
sary to implement a three-nested-loops scheme as in the Uzawa type method, avoiding any
modification of a pre-existing Newton solver.

An example with small deformations is presented to validate the proposed algorithm
with a classical frictional benchmark. Then, three examples in the framework of 3D finite
displacements are presented to demonstrate the applicability and robustness of the proposed
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Fig. 1 Two-body contact problem in the framework of large displacements

algorithm. In all cases, the normal and tangential stress solutions are smooth, even with
non-conforming meshes, demonstrating the validity of the formulation.

2 Problem description

Figure 1 depicts the contact problem for finite deformations. The contacting bodies Bα ,
α = 1,2, occupy the open set Ωα ⊂ R

3 in the reference configuration and Ωα
a ⊂ R

3 in the
current configuration. The external surface ∂Ωα in the reference configuration is divided
into three disjoints parts: Γ α

u where the body is fixed, Γ α
σ where the surface traction vector

is acting, and Γ α
c which represents the contact boundary. The same boundaries in the current

configuration are denoted as γ α
u , γ α

σ and γ α
c , respectively.

In the reference configuration, the material points for each solid are denoted by the
position vector Xα ∈ Ωα , while in the current configuration they are given by the vector
xα ∈ Ωα

a . Then, the movement of both bodies is described by the displacement field uα

which is related to the reference and current positions by xα = Xα + uα . The total potential
energy for the contacting bodies Bα is given by

Π = Π c + Π int,ext, (1)

where Π c is the contact potential energy and Π int,ext represents the potential energy of the
external and internal loads. In the case of a hyperelastic material, Π int,ext yields

Π int,ext =
2∑

α=1

[∫

Ωα

(
Wα

(
Cα

) − bα · uα
)
dΩ −

∫

Γ α
N

t̂
α · uα dΓ

]
. (2)

Here, bα is the body force vector in Ωα , t̂
α

is the prescribed traction vector, Wα is the
strain energy density function for a hyperelastic material and Cα = (F α T F α) is the right
Cauchy–Green deformation tensor with F α representing the deformation gradient.
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The simplest representation of Wα is the Saint Venant–Kirchhoff model, from which
the second Piola–Kirchhoff stress tensor Sα and the fourth-order constitutive tensor Dα are
derived by the following relations:

Sα = ∂Wα

∂Eα , Dα = ∂2Wα

∂Eα∂Eα , (3)

where Eα is the Green–Lagrange strain tensor defined as

Eα = 1

2

(
F α T F α − I

)
. (4)

This work puts emphasis on the solution of the contact equations; then, no details about
modeling of solid deformation will be presented. The potential energy due exclusively to
contact is given by

Π c = −
2∑

α=1

∫

γ α
c

t̄c
α · xα dγ, (5)

where t̄c
α is the Cauchy stress vector of the body Bα in the current configuration. Assuming

linear momentum balance at the contact surface, t̄c
1
dγ 1 = −t̄c

2
dγ 2, the contact potential

energy can be simplified as

Π c = −
∫

γ 1
c

t̄c
1 · (x1 − x2

)
dγ. (6)

Instead of using the Cauchy stress vector t̄c
1, a vector field λ = −t̄c

1 is introduced. This
field can be seen as the Lagrange multiplier field that enforces the verification of the con-
straint x1 = x2 at the interface between bodies in contact. The physical interpretation of this
Lagrange multiplier is clear from the equations above: it is the negative surface traction vec-
tor defined on the contact surface γ 1

c which enforces the contact conditions between bodies,
and represents the force produced by body 2 (the mortar) over body 1 (the non mortar body).
Thus, the contact potential energy in Eq. (6) is re-written as

Π c =
∫

γ 1
c

λ · (x1 − x2
)
dγ. (7)

We remark that in this work we are analyzing the static problem. When dealing with a
dynamic problem, some other terms are usually added to account for the local dynamics at
the contact zone, and to damp-out local oscillations. Several proposals exist, such as those
of Flores and Ambrósio [20], Bowling et al. [5] or Förg et al. [21], among many others. This
kind of modifications can also be incorporated in this formulation.

The finite element method is used to discretize the bodies domains. The position fields
xα : γ α

c →R
3, which describe the contact surfaces of each body and the Lagrange multipli-

ers vector field λ : γ 1
c →R

3, can be parameterized as follows [53]:

xα =
nα∑

A=1

Nα
A

(
ξα

)
xα

A, α = 1,2, λ =
n1∑

A=1

N1
A

(
ξ 1)λA, (8)

where xα
A are the nodal coordinates, ξα are the local coordinates, nα is the number of nodes

in γ α
c , and Nα

A : γ α
c → R are the classical shape functions of the FEM discretization. As
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usually named in the literature, γ 1
c and γ 2

c are the non-mortar and mortar surfaces in the
current configuration, respectively. The nodal discrete Lagrange multipliers λA approximate
the Lagrange multipliers field with the same shape functions used to approximate the geom-
etry and the displacements. By using Eqs. (8)1,2 and Eq. (7), the contact potential energy in
the framework of the FEM is expressed as

Π c =
n1∑

A=1

λA ·
(

n1∑

B=1

∫

γ 1
c

N1
A

(
ξ 1)N1

B

(
ξ 1)dγx1

B −
n2∑

C=1

∫

γ 1
c

N1
A

(
ξ 1)N2

C

(
ξ 2)dγx2

C

)
(9)

where the term in parentheses can be interpreted as an average measure of the gap and
transversal relative displacement corresponding to the node A. Therefore,

Π c =
n1∑

A=1

λA · gA, (10)

with

gA =
n1∑

B=1

∫

γ 1
c

N1
A

(
ξ 1)N1

B

(
ξ 1)dγx1

B −
n2∑

C=1

∫

γ 1
c

N1
A

(
ξ 1)N2

C

(
ξ 2)dγx2

C, (11)

namely the generalized gap vector at node A.

3 Friction contact problem

When friction is considered, the generalized gap vector gA and the Lagrange multiplier λA

can be split into the normal components gNA and λNA, and the tangential components gTA

and λTA. The splitting is carried out using the average outward normal vector νA to the
surface γ 1

c at node A. The equations are defined for quasi-static problems where the time
period of analysis [0, T ] is subdivided into time intervals [tn, tn+1] with the corresponding
time step 
t = tn+1 − tn. In this way, the contact potential energy can be divided into normal
and tangential components, yielding

Π c =
n1∑

A=1

[
λNA(tn+1)

× νA(tn) ·
(

n1∑

B=1

n1
AB(tn+1)x

1
B(tn+1) −

n2∑

C=1

n2
AC(tn+1)x

2
C(tn+1)

︸ ︷︷ ︸
gNA

)

+ λTA(tn+1)

· [I − νA(tn) ⊗ νA(tn)
]
(

n1∑

B=1

n1
AB(tn+1) x1

B(tn) −
n2∑

C=1

n2
AC(tn+1) x2

C(tn)

)

︸ ︷︷ ︸
gTA

]
(12)
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where n1
AB and n2

AB are the weight factors defined as

n1
AB =

∫

γ 1
c

N1
A

(
ξ 1)N1

B

(
ξ 1)dγ, n2

AC =
∫

γ 1
c

N1
A

(
ξ 1)N2

C

(
ξ 2)dγ. (13)

Note that in the term corresponding to the normal component of Eq. (12), the weight
factors nα

AB and the positions xα
A are evaluated at the current time step tn+1, while in the

tangential component term, the positions are evaluated at the previous time step tn. This
way of defining the tangential component allows representing the incremental tangential
movement and ensuring objectivity properties in the formulation, as demonstrated by Puso
and Laursen [55]. Note also that to simplify the formulation, the outward unit normal vector
νA is evaluated explicitly at the previous time step tn. The contact potential energy term is
therefore finally written as

Π c =
n1∑

A=1

λNA(tn+1)gNA(tn+1) + λTA(tn+1) · gTA(tn+1). (14)

In what follows, the time variable t will be omitted from the equations to simplify the nota-
tion.

3.1 General solution of the friction contact problem

The general solution to the unilateral friction contact problem by a mortar formulation is
then given by

U = arginf
(
Π int,ext(U) + Πc(U)

)
,

s.t. gNA ≥ 0, λNA ≤ 0, λNAgNA = 0;
‖λTA‖ ≤ −μλNA, gTA = ‖gTA‖ λTA

‖λTA‖ , ‖gTA‖(‖λTA‖ + μλNA

) = 0;
A = 1, . . . , n1, (15)

where U is the global displacements vector. The first set of restrictions in Eq. (15) represents
the Karush–Kuhn–Tucker conditions (KKT) for the unilateral frictionless contact problem.
The first condition indicates the impenetrability restriction, the second one is the non-
traction condition (only compression is allowed) and the third one is the complementarity
equation. The second set of restrictions represents the KKT conditions for friction. The first
inequality establishes the maximum value of the tangential contact pressure, μλNA, where
μ is the friction coefficient. The second equation imposes the collinearity between the tan-
gential displacement and the tangential contact stress (an associative slip rule is assumed).
The third one is the complementary equation which indicates that gTA and ‖λTA‖ + μλNA

cannot be simultaneously zero. Hence, when ‖λTA‖ < −μλNA and gTA = 0 the contact status
is in stick, and when gTA 	= 0, the tangential stresses are equal to ‖λTA‖ = −μλNA and the
body slips. The consideration of friction presents an additional complexity with respect to
the frictionless problem, which is related to the successive changes of status from stick to
slip or vice versa.

A popular method to solve the friction contact problem is by a penalty approach together
with a return mapping algorithm [23, 59]. Here, in the stick status, the tangential force
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Fig. 2 Outward unit normal
vector calculation

depends linearly on a small slip quantity via an artificial penalty parameter. The first disad-
vantage of this method is that the user has to find a correct value of the penalty parameter
by trial and error, which implies multiple runs for tuning. Furthermore, some numerical dif-
ficulties appear in the stick condition due to the high value of penalty needed to properly
simulate this state, producing an ill-conditioned stiffness matrix. In addition, in the slip state
the tangent stiffness matrix is non-symmetric because the tangential force is independent of
the normal component of displacement. These drawbacks are overcome by using the aug-
mented Lagrangian method as proposed by Simo and Laursen [58] and Laursen [42], where
the friction force arises from a Lagrange multiplier evaluated in the previous iteration, which
produces a symmetric stiffness matrix. This approach is combined with an Uzawa-type algo-
rithm. However, the computational cost is relatively high because of the need of two nested
loops in the Uzawa algorithm.

In this work, the friction contact problem presented in Eq. (15) is solved as a minimiza-
tion problem with inequality constraints by using an augmented Lagrangian formulation,
where the values which make the functional stationary are solved in only one loop.

3.2 Normal vector

A unique normal vector νA at node A is calculated by averaging the normal vectors to the
non-mortar elements attached to this node (see Fig. 2):

νA =
∑n1

j nj

‖nj‖ , (16)

where

nj = vj × vj+1

‖vj × vj+1‖ (17)

is the normal vector to the non-mortar element j at node A, and the vectors vj and vj+1 are
calculated from the differences of the nodal coordinates,

vj+1 = x1
C − x2

A,

vj = x1
B − x2

A.
(18)

In the frictionless case, we worked with contact forces defined in terms of a different
normal vector at each non-mortar facet evaluated at node A. In this way, a scalar value
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Fig. 3 Three dimensional representation of the Coulomb’s friction cone

of the contact force was computed, as an average of the contact forces coming from the
contributions of each facet [10].

However, in the frictional case, it is of utmost importance to define a single normal vector
at the node. Otherwise, the tangent components of the contact stress vector would not be
computed correctly, their directions would change with the iterations, and consequently, the
contact forces of the element (see Eq. (12)) would switch iteratively between the stick or
slip status, severely affecting the convergence of the Newton iterations.

In order to simplify the formulation, the outward unit normal vector νA is evaluated
explicitly at the previous time step tn; in this way, it does not have any contribution to the
Hessian matrix, simplifying its computation.

4 Augmented Lagrangian formulation

The inequality constraints of the first set of restrictions in Eq. (15) that corresponds to the
unilateral contact problem can be equivalently written as the sub-differential inclusion

λNA ∈ ∂ΨR+(gNA), (19)

where ΨR+ is the indicator function of the real half line R+ and ∂ΨR+ is the sub-differential
of ΨR+ . Equation (19) expresses the unilateral contact conditions, with a contact pressure
field derived from a non-smooth potential ΨR+(gNA) [1, 31]. The last set of constraints of
Eq. (15) that refer to the contact friction problem has the following sub-differential inclu-
sion:

λTA ∈ ∂Ψ ∗
C(gTA), (20)

where Ψ ∗
C is the conjugate function of ΨC and ∂Ψ ∗

C is its sub-differential [1]. In three-
dimensional problems, the Coulomb’s isotropic friction law is represented by a cone, as
shown in Fig. 3(a). A section of the Coulomb’s cone of radius −μλNA is defined by

C(λNA) = {
λTA/‖λTA‖ ≤ −μλNA

}
. (21)
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Equation (15) can be regularized and solved using a mixed dual formulation based on
an augmented Lagrangian method, as proposed in Alart and Curnier [1, 21]. The potential
energy of contact (14) is replaced by an augmented Lagrangian function, which is defined
by

Lc(U ,λ) =
n1∑

A=1

(
kgNAλNA + r

2

∥∥gNA(U)
∥∥2 − 1

2r
dist2

[
kλNA + rgNA(U),R−]

+ kgTAλTA + r

2

∥∥gTA(U)
∥∥2 − 1

2r
dist2

[
kλTA + rgTA(U),Caugm

])
(22)

where r is a positive penalty parameter, k is a positive scale factor, dist(x,C) is the distance
between x and C. The term kλA + rgA is the so-called augmented Lagrange multiplier

σA = kλA + rgA = σNAνA + σ TA, (23)

with normal part σNA and tangential part σ TA:

σNA = kλNA + rgNA,

σ TA = kλTA + rgTA.
(24)

The extended cone Caugm is the convex set defined by extension of the friction cone
C(kλNA + rgNA) ≡ C(σNA) to the half-line R+(σNA), i.e., the set of positive values of the
normal augmented Lagrange multiplier, see Fig. 3(b).

The solution does not depend on the value of parameters r, k. Nevertheless, the conver-
gence rate does depend on their value. In numerical computations, default values of r and k

are selected in terms of a mean value of the Young modulus of the bodies in contact and of
a mean value of mesh size as follows:

r = k ≈ 10
Emean

hmean
. (25)

Numerical tests showed that this choice gives a better condition number of the iteration
matrix than other choices [10]. Eventually, different sets of values of r, k can be used for the
normal and for the tangential parts.

5 Contact element definition

A contact element is defined for each pair of facets, one on the non-mortar and the other on
the mortar surface. If N1 is the number of facets on the surface Γ 1

c , and N2 is the number
of facets on the surface Γ 2

c , a total of N1 × N2 contact elements are built. Note, however,
that only a few of them are active at a given time (i.e., only those elements whose facets
are seeing each other). At each contact element, the restrictions to the element facets of
the integrals needed for the computation of the weight factors n1

AB, n2
AB are evaluated. The

weight factors are then obtained by assembling the contributions of all elements [10, 53].
The generalized coordinates of the contact element are

Φe = [
x1

1
T

x1
2
T · · · x1

m1
T

x2
1
T

x2
2
T · · · x2

m2
T

λT
1 λT

2 · · · λT

m1

]T
, (26)
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where m1 and m2 are the number of nodes of the non-mortar facet and the mortar facet,
respectively, x1

I are the nodal coordinates of the non-mortar facet, x2
I are the nodal coordi-

nates of the mortar facet, and λI are the contact nodal forces. The total number of degrees
of freedom of the contact element is 6m1 + 3m2.

6 Internal force vector

The internal force vector for a contact element is obtained by taking variations in Lc, see
Eq. (22), thus,

δLc =
n1∑

A=1

⎡

⎢⎣
δx1

B

δx2
C

δλA

⎤

⎥⎦ ·
⎡

⎢⎣
n1

AB[projR−(σNA)νA + projCaugm(σ TA)]
−n2

AC[projR−(σNA)νA + projCaugm(σ TA)]
− k

r
[kλNA − projR−(σNA)]νA − k

r
[kλTA − projCaugm(σ TA)]

⎤

⎥⎦ , (27)

where projR−(σNA) is the projection of σNA on R−:

projR−(σNA) =
{

σNA if σNA < 0,

0 if σNA ≥ 0.
(28)

The projection operator projCaugm(σ TA) is defined as

projCaugm(σ TA) =
{

σ TA if ‖σ TA‖ ≤ ρ,

ρtA if ‖σ TA‖ > ρ,
(29)

where ρ = −μσNA corresponds to the radius of the disk in the friction Coulomb cone and
tA is the tangential unit vector in the slip direction at node A:

tA = σ TA

‖σ TA‖ . (30)

The contact status (gap, stick or slip) is determined in terms of the value of the normal com-
ponent of the augmented Lagrange multiplier σNA. The condition σNA ≥ 0 is associated to
the gap condition, in this case, projR−(σNA) = 0 and projCaugm(σ TA) = 0 . For these reasons,
from Eq. (27), the contribution of node A to the internal contact force vector yields

F cA =
⎡

⎣
0

0

− k2

r
λA

⎤

⎦ . (31)

The stick condition is obtained when ‖σ TA‖ < −μσNA. In this case, projR−(σNA) = σNA and
projCaugm(σ TA) = σ TA. Therefore, from Eq. (27), the contribution of node A to the internal
contact force vector yields

F cA =
⎡

⎢⎣
n1

ABσA

−n2
ACσA

kgA

⎤

⎥⎦ . (32)

Finally, the slip condition is produced for ‖σ TA‖ ≥ −μσNA. In this case, projR−(σNA) = σNA

and projCaugm(σ TA) = −μσNAtA. Thus, from Eq. (27), the contribution of node A to the
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internal contact force vector yields

F cA =
⎡

⎢⎣
n1

AB(νA − μtAσNA)

−n2
AC(νA − μtAσNA)

kνAgNA − k
r
(λTA + μσNAtA)

⎤

⎥⎦ . (33)

7 Hessian matrix

The linearization of the contact vector gives the contact Hessian matrix. The contributions
to the Hessian matrix are, for the different contact conditions, as follows:

– Gap status σNA ≥ 0,


F cA =
⎡

⎣
0

0

− k2

r

λA

⎤

⎦ . (34)

– Stick status ‖σ TA‖ < −μσNA,


F cA =
⎡

⎢⎣

n1

ABσA + n1
AB
σA

−
n2
ACσA − n2

AC
σA


gA

⎤

⎥⎦ . (35)

– Slip status ‖σ TA‖ ≥ −μσNA,


F cA =
⎡

⎢⎣

n1

AB (νA − μtAσNA) + n1
AB 
(νA − μtAσNA)

−
n2
AC (νA − μtAσNA) − n2

AC 
(νA − μtAσNA)


(νAgNA − k
r
(λTA + μσNAtA))

⎤

⎥⎦ . (36)

The linearization of these quantities can be calculated from the work of Cavalieri and Car-
dona [10], with the exception of the linearization of the tangential vector tA that is outlined
in Appendix. Here, it is important to remark that since νA is evaluated at the previous time
step, its linearization does not contribute to the Hessian matrix. This assumption leads to a
simple formulation with good convergence properties of the nonlinear problem. As it will be
shown in the examples, this assumption does not impose a severe restriction on the time-step
size necessary to get an accurate solution. Nevertheless, we remark that the linearization of
the average normal νA at the current time step can be incorporated without important modi-
fications to the formulation, with the only inconvenience of a more complex implementation
and a larger degree of coupling between degrees of freedom in the problem.

8 Numerical examples

Four numerical examples including finite deformations and large slip are presented to eval-
uate the robustness and accuracy of the proposed contact algorithm. The examples involve
quasi-static simulations and were carried-out in the research finite element code Oofelie [7]
where the contact algorithm has been implemented. All pre- and post-processing tasks were
performed using the software SAMCEF Field [57].
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Fig. 4 Elastic body pressured with a rigid surface and pulled tangentially

8.1 Validation example I. Friction test

This test represents an important validation example to study frictional contact algorithms.
The example has been first proposed by Oden and Pire [46] as a 2D example, whereas more
recent solutions can be found in Armero and Petocz [3], Areias et al. [2], Cavalieri and Car-
dona [9] using a node-to-segment approach, and in the work of Fischer and Wriggers [18]
using a 2D mortar approach. In this work, three-dimensional solutions have been computed
introducing boundary conditions that match plane strain conditions to reproduce the same
results as in Armero and Petocz [3]. The mesh topology, boundary conditions and mechani-
cal properties used in the simulation are shown in Fig. 4. The penalty and the scaling factors
are p = 103 and k = 1, respectively. The material behavior is linear elastic. The upper block
has a mesh with 462 nodes and 200 hexahedral elements. The length of the contact zone
is 3.6, as shown in Fig. 4. A uniform pressure qz = 200 is applied at the top surface of
the upper body, producing a deformation against the rigid foundation. Then, another pres-
sure qx = 60 acts on one side of the body, pulling it in the X-direction. The solution shows
agreement with that in [3]. Figure 5(a) shows a numerical comparison of the normal and
tangential stresses at the contact interface and Fig. 5(b) shows the residue evolution, giving
a quadratic convergence rate.

8.2 Validation example II. Pulling of a plug through a channel

The example presented in this section consists of a block which is pulled through a channel
with a corner, see Fig. 6(a). An initial penetration of 1 mm between the slider and the chan-
nel is introduced to generate the normal contact pressure. The process is simulated with a
uniformly increasing displacement of the slider imposed in 30 equal time steps, going from
left to right along a distance of 16 mm. The material behavior of both bodies is that of a
compressible Neo-Hookean solid, with the stored energy density expressed as

W(I,J ) = μ

2
(I − 3 − 2 logJ ) + λ

2
(J − 1)2, (37)

where λ and μ are the first and second Lamé parameters, respectively, I is the first invariant
of the deviatoric part of the left Cauchy–Green deformation tensor and J is the determinant
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Fig. 5 Numerical solutions for
the validation example I

Fig. 6 Problem description of a block through a channel

of the deformation gradient. Figure 6(b) shows the mesh topology and mechanical properties
of the example. Friction is modeled by a Coulomb law with a friction coefficient of μ = 0.1.
The penalty and scaling factors are both equal to 1×104. Due to symmetry, only one quarter
of the problem is analyzed. The non-mortar side is selected to be the contact surface of the
slider whereas the mortar side is given by the channel contact surface.

It is well known that for this example the convergence rate decreases when using clas-
sical node-to-segment approaches and, additionally, solid elements can exhibit an excessive
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Fig. 7 Example with large slip. Deformation and contact pressure vectors at different time steps

Fig. 8 Total tangential reaction.
Comparison with solution of
Krstulovic-Opara et al. [41]

distortion [18]. This effect is due to the fact that reaction forces appear suddenly and are
concentrated in small areas, like at the beginning of the channel ramp. To alleviate these
drawbacks, the use of smooth contact surfaces, for example, C1 surfaces, B-splines and
others have been proposed; see, for example, the works of Stadler et al. [62] and Krstulovic-
Opara et al. [41]. However, it is important to remark that when a node-to-segment contact
algorithm is used in combination with high order solid elements, the smoothing techniques
of the contact surfaces produce oscillations in the contact pressures. Furthermore, despite
smoothing, these algorithms do not pass the contact patch tests [8]. The isogeometric anal-
ysis applied to frictional contact problems presented by De Lorenzis et al. [14] could help
to overcome this drawback; however, in the mentioned work, the integration is carried out
without segmentation of the contact surfaces, which could introduce errors for a general
discretization. Errors can be reduced by increasing the number of integration points on the
contact surface [17].

As it is shown in this example, the mortar formulation does not present these inconve-
niences. Figure 7 shows the slider evolution in time where the vectors represent the contact
pressures. Note that the slider could pass the channel corner without oscillations of the con-
tact pressure vectors. Horizontal reactions are evaluated at nodes where the displacement is
imposed as depicted in Fig. 8. Numerical solutions displayed in Fig. 8 were made using a
time step of 0.005. The present mortar approach is in agreement with results of the bibli-
ography; however, as a remarkable difference, smooth solutions of the reaction forces are
achieved, while the node-to-segment approach showed strong oscillations in the response.
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Fig. 9 Total tangential reaction.
Comparison of results for
different time steps

Fig. 10 Residue evolution for a
typical time step for the pulling
of a plug problem

In order to study the influence of calculating the mean normal vector νA at the previ-
ous time step, different computations were performed for various time step values, and the
computed tangential and normal reaction forces were compared. The time steps selected for
the numerical experiments were: 0.1, 0.01 and 0.005. Solutions using these time steps are
plotted in Fig. 9. The differences in the computed normal and tangential reaction forces are
negligible, showing that using explicit forms of the mean normal vector does not have a
strong influence on the results accuracy.

Figure 10 shows the residue evolution for a typical time step, giving a quadratic conver-
gence rate.

8.3 Validation example III. Two blocks friction test

The test presented in this section is based on a bidimensional example proposed in Ham-
mer’s doctoral thesis [26]. A three-dimensional version of this problem has been defined
by introducing boundary conditions that match plane strain state. The dimensions and mesh
topology are shown in Fig. 11. The mesh has 100 nodes and 39 hexahedral linear finite
elements as shown in Fig. 11(a). The material behavior of both bodies is compressible Neo-
Hookean with the same stored energy density function as that presented in Eq. (37). Fig-
ure 11(a) shows the mechanical properties used in the example. The penalty and the scaling
factors are 1 × 1014 and 1 × 106, respectively.

At the beginning of the simulation, there is an initial gap of 1 mm between the bodies.
This gap is introduced to demonstrate that the implementation is able to capture new contact
surfaces, see Fig. 12(a). Then, the upper block is moved downwards in the vertical direction
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Fig. 11 Validation example III

with a movement law as shown in Fig. 11(b). At the time of 1 s, the vertical displacement
uz(t) is 10 mm. The deformation state at this moment is shown in Fig. 12(b). After 1.6 s, the
upper body starts to slip, changing the contact status from stick to slip. Figure 12(c) shows
the deformation of both blocks due to the friction forces. Then, the upper block is moved
in the Y -direction with a horizontal displacement uy , until arriving at 50 mm at time 4 s,
see Fig. 12(d). After 4 s the movement direction changes and continues until the time of
7 s. Here, the upper block starts lifting to the initial position which is reached at the time of
8 s. The total horizontal and vertical reactions forces evaluated on the top side of the upper
block are compared with those computed by Hammer [26]. Both solutions are presented in
Fig. 13(a) showing almost perfect agreement. Figure 13(b) displays the residue evolution
for a typical time step, showing quadratic convergence.

8.4 Validation example IV. Frictional ironing problem

The fourth example, depicted in Fig. 14, corresponds to the so-called frictional ironing prob-
lem. It was originally presented in the work of Puso et al. [54], where they solved this prob-
lem by using a mortar based contact formulation with a penalty regularization scheme. Sim-
ilar examples were proposed by Gitterle [24] who used dual Lagrange multipliers, whereas
Temizer [64] and De Lorenzis et al. [14] solved the problem with a kinematic description
obtained by using isogeometric analysis.
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Fig. 12 Validation example III.
Deformation evolution

In this example, a cylindrical die with E = 1000 and ν = 0.3 is pressed into an elastic
block with E = 1 and ν = 0.4999. The material behavior for both bodies is compressible
Neo-Hookean with the same stored energy density function as that presented in Eq. (37). The
penalty and scaling factors are both equal to 1 × 104. The discretization is performed using
eight-nodes hexahedral finite elements. The die is pressed into the block by a prescribed
vertical displacement uY which varies from 0 to 0.8 m in the negative Y -direction. Then,
the vertical displacement uY is held constant at 0.8 and at this instant, the die begins to slide
with a prescribed horizontal displacement uX from 0 to 7.13 in 0.45 s. The time step used
in the simulation is constant and equal to 0.01. In order to evaluate the robustness of the
algorithm, two mesh sizes for the block are proposed. The element size for the coarse mesh
is (X × Y × Z) 0.45 × 0.5 × 0.45, meanwhile it is 0.225 × 0.5 × 0.4 for the finer mesh.

Figure 14(a) shows the boundary conditions and the mesh topology for the coarse block
mesh. Figures 14(b)–(d) show the deformed configurations at different stages. From the pic-
tures, it can be seen that large finite deformations are produced. At the beginning, when
the prescribed horizontal displacement uX starts to act on the die, the contact is mainly in
stick. Later on, when the tangential contact forces are equal to the coefficient of friction
multiplied by the normal contact forces, the contact state changes to sliding and slip oc-
curs. These stages can be recognized in Fig. 15, where the normal and tangential reaction
forces for the two kind of meshes are plotted. As it can be seen, in the coarse mesh case,
very small oscillations of the tangential and normal reaction forces are displayed, which are
almost completely smoothed out in the fine mesh computation. Figure 16 shows the residue
evolution giving a quadratic convergence rate.
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Fig. 13 Numerical solutions for
the validation example III

9 Conclusions

In this work, a new contact algorithm using an augmented Lagrangian method and a mortar
approach is presented. The algorithm has three main features: it allows solving the equations
with a semismooth Newton method and avoiding the programming complications of algo-
rithms based on activation/deactivation of constraints with a two-leveled iterative loop, it is
applicable to problems with non-conforming meshes, and the user does not need to define
a penalty parameter. The equations for the computation of the residual forces and tangent
matrices were presented. The presented numerical examples demonstrated the ability of the
scheme to represent frictional contact problems with small and large displacements. Finally,
quadratic convergence rate with a small number of iterations has been achieved in all exam-
ples.

Acknowledgements This work has received financial support from Consejo Nacional de Investigaciones
Científicas y Técnicas (CONICET), PIP 2011/01105, and from Universidad Nacional del Litoral (CAI+D
2011).
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Fig. 14 Ironing example. Mesh topology and deformed configurations for different time steps (Color figure
online)

Fig. 15 Normal and tangential
reaction forces at the upper
surface of the die

Appendix

The linearization of the tangential vector tA is presented. The tangential vector t is used in
the slip status, thus

tA = σ TA

‖σ TA‖ = σ TA

−μσNA
. (38)

The linearization operator 
 applied to Eq. (38) yields


tA = [I − tA ⊗ tA]
σA

‖σ TA‖ = [I − tA ⊗ tA]
σA

−μσNA
. (39)
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Fig. 16 Residue evolution for a
typical time step in the ironing
problem

After some algebraic manipulations, the linearization of the tangential vector is written as


tA = −I − tA ⊗ tA − νA ⊗ νA

μσNA

σA + νA ⊗ σA + (I − tA ⊗ tA)σNA

μσNA

νA. (40)

If the variation of the normal vector νA is neglected, i.e., if the normal vector is computed
at the previous time step, the final expression is given by


tA = −I − tA ⊗ tA − νA ⊗ νA

μσNA

σA. (41)
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