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The formulation of a phase-field continuum theory for brittle fracture in elastic–plastic sol-
ids and its computational implementation are presented in this contribution. The theory is
based on a virtual-power formulation in which two additional and independent kinemat-
ical descriptors are introduced, namely the phase-field and the accumulated plastic strain.
Further, it incorporates irreversibility of both phase-field and plastic strain evolutions by
introducing suitable constraints and by carefully heeding the influence of those constraints
on the kinetics underlying microstructural changes associated with plasticity and fracture.

The numerical implementation employs the finite-element method for spatial discretiza-
tion and a splitting scheme with sub-stepping for the time integration. To illustrate its
potential utility, we apply the model to a number of well known linear, as well as non-
linear, fracture mechanics problems.

The described phase-field model, coupled with plasticity, provides a feasible technique
to analyzing crack initiation and the subsequent crack growth resistance only if the length
scale parameter included in the phase-field model is finite and treated as a material param-
eter which should be properly characterized.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

In classical fracture mechanics, fracture process can occur only at the crack tips. Under this premise, crack growth is dri-
ven by the near tip J-integral (c.f. Rice, 1967; Gurtin and Podio-Guidugli, 1996; Tillberg et al., 2010), a quantity that coincides
with the energy release rate in the case of elastic materials. In situations involving elastic–plastic solids, it may happen that
the calculated near tip J-integral vanishes (Rice, 1978; Simha et al., 2008; Brocks et al., 2003), which implies that there is no
driving force for crack growth. Hence, according to classical approach, fracture cannot occur for such situations. The physical
explanation for this paradox is that, contrary to the predicated by the classical approach, fracture events take place ahead the
crack tip, in a finite region called the fracture process zone. Therefore, fracture mechanics models for crack problems in elas-
tic–plastic solids must reflect the presence of a finite size fracture process zone.

Process zone description requires the modeling of material softening induced by the nucleation, growth and coalescence
of microdefects – microcracks or microvoids depending on whether the underlying fracture mechanism is brittle or
ánchez),
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ductile–, which brings to the scene the issue of material length scales. Be that as it may, two families of fracture mechanics
models stand out, cohesive zone models and continuum damage models (c.f. Brocks et al., 2003). A different strategy was
given by Stumpf et al. (2009), who used the notion of configurational forces to describe the evolution of a fracture process
zone in ductile materials. In cohesive models, fracture events are assumed to take place in a surface and are described by
cohesive laws. Within this category, we include the methodologies using strong discontinuity kinematics as an artifact to
represent cracks such as it was shown in Simo et al. (1993) and Belytschko and Gracie (2007), and particularly, the contin-
uum strong discontinuity approach by Oliver and coworkers Oliver et al. (2002), Huespe et al. (2009, 2012). On the other
hand, continuum damage models consider the process zone as a region in which damage, described trough a continuum var-
iable, accumulates. A material length scale parameter is innate to cohesive zone models, but, it is absent in conventional con-
tinuum damage formulations. This has led to the development of enhanced damage theories, including nonlocal and gradient
theories for damage (c.f. Pijaudier-Cabot and Bazant, 1987; Frémond and Nedjar, 1996 and the references therein).

Continuum damage theories give rise to a definition of cracks as small zones of high gradients of rigidity and strength. In
those zones, all fields remain continuous when critical conditions of damage are reached (e.g. Lemaitre, 1986). This is exactly
the view adopted in the phase-field approach to fracture, in which case damage is measured by a scalar field, the phase-field,
as first proposed by Aranson et al. (2000). The phase-field approach to fracture, which may be regarded as a legitimate con-
tinuum gradient damage theory, has been extensively used to describe crack propagation in elastic solids (Spatschek et al.,
2011). In this case, it can be viewed either as a regularization or as an extension of the classical theory of brittle fracture. In
fact, it can be shown that the length parameter carried by the theory may be viewed as a regularizing parameter in the sense
that when it goes to zero, either the classical approach (Silva et al., 2013; Hakim and Karma, 2009) or the variational
approach (Francfort and Marigo, 1998) to fracture in elastic solids is recovered. On the other hand, a finite value of this length
parameter allows the description of effects that are not accounted for by the classical theory of brittle fracture, such as
branching and oscillatory instabilities (c.f. Karma and Lobkovsky, 2004; Henry and Levine, 2004).

In this paper, we develop the formulation and the numerical implementation of a small-strain continuum theory for brit-
tle fracture in elastic–plastic solids. Typically, this failure mechanism can be observed in metal fracture below the transition
temperature displaying transgranular cleavage. In this case, contained plastic deformation can take place close to notch
roots. Failure criteria based on a critical stress have been proposed in the past to analyze this kind of fracture (Ritchie
et al., 1973).

The formulation is carried out within the framework of continua with microstructure (e.g. Capriz, 1989). Accordingly,
fracture and plasticity are accounted for by two additional kinematical descriptors, the phase-field and, the accumulated
plastic strain, along with the corresponding microforce systems. After invoking the principle of virtual power, we arrive
at the basic balances of the theory, namely the standard force and moment balances, and two microforce balances. Following
Fried and Gurtin (2003), we introduce an energy imbalance representing a mechanical version of the second law of thermo-
dynamics, which is used as a guide for developing a thermodynamically compatible constitutive relations. On combining
these relations with the balances, we arrive at a system of coupled equations governing the evolution of displacement,
phase-field and accumulated plastic strain. A special version of the theory is presented with a view towards the description
of rate-independent brittle fracture in conventional elastic–plastic solids. Its numerical implementation is based on the finite
element method for spatial discretization, where the displacement and phase-field are interpolated, and a staggered scheme,
similar to that proposed by Bourdin et al. (2000) and Miehe et al. (2010), for time integration of the resulting semi-discrete
evolution equations. Similar works linking gradient damage with plasticity (c.f. Nedjar, 2001), as well assuming large defor-
mation (c.f. Aslan et al., 2011; Saanouni and Hamed, 2013, and references cited therein), have been previously published in
the literature.

The numerical assessment of the model is presented in two main parts. In the first part, we show that the methodology
provides a correct asymptotic solution to the sharp-crack elastic problem as long as the regularization parameter of the
phase-field model goes to zero. Similar analysis have been previously presented in the literature. However, as a contribution
of this paper, in Sections 4.1.2 and 4.1.3 we emphasize the issues related to the numerical analysis of the dissipated energy of
crack propagation processes. Particularly, we study the sensitivity of the model parameters for capturing the correct dissi-
pated energy according with adopted material fracture energy. Two standard specimens are loaded until reaching the com-
plete loss of the structural load capacity and, after very careful numerical analysis, we draw some conclusions about these
issues.

A more significant contribution of the paper is presented in the second part of Section 4, where the problem of crack prop-
agation in mode I under small-scale yielding condition is analyzed. The phase-field model interacting with a plastic defor-
mation process is assessed, and solutions furnished by this model with those obtained using a cohesive model are compared.
Also, the conditions to be satisfied by the length parameter of the phase field model in order to extract valid results are eval-
uated. The analysis shows that the advance of the pre-existent crack involves, in some cases, the following steps: (1) forma-
tion of a new crack ahead the original crack tip; (2) propagation of the new crack towards, and also away, the tip of the
original crack; and (3) extension of original crack when its tip is reached by the new crack. This implies the crack extension
can occur in a discontinuous manner. This mechanism has been invoked for explaining brittle fracture in elastic–plastic sol-
ids (Tetelman and McEvily, 1967; Kfouri, 2008; Kfouri and Miller, 1976; Ritchie et al., 1973). Discontinuous crack growth can
also occur within the context of ductile fracture. See, for instance, the studies carried out by Levitas (2000) and Idesman et al.
(2000).
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2. Elastoplasticity and fracture

We now formulate a phase-field/gradient damage theory for fracture in elastic–plastic solids under small-strains and iso-
thermal conditions. The theory is based on a virtual-power formulation in which two additional and independent kinemat-
ical descriptors are introduced, namely the phase-field and the accumulated plastic strain. Attention is confined to isotropic
behavior and conventional plasticity. The treatment of plasticity adopted here is akin to the streamlined version of the vir-
tual-power principle based on codirectionality presented in Gurtin et al. (2010) where the accumulated plastic strain is an
independent kinematical descriptor. Following Silva et al. (2013), the theory developed here incorporates irreversibility of
both: phase-field and accumulated plastic strain evolutions. This is achieved by introducing suitable constraints and by care-
fully heeding the influence of those constraints on the kinetics underlying microstructural changes associated with plasticity
and fracture.

2.1. Preliminaries

Let B be a body identified with the region it occupies in a fixed reference configuration. Let u denote the displacement
field, ru and ru> the displacement gradient and its transpose, and E the infinitesimal strain tensor, which is defined by:
E ¼ ruþru>

2
: ð1Þ
To account for the fact that the total deformation is the outcome of elastic and plastic contributions, the additive decom-
position of the strain E into its elastic Ee and plastic Ep parts is introduced:
E ¼ Ee þ Ep: ð2Þ
The plastic strain Ep is traceless, that is, tr Ep ¼ 0, and satisfies the equation
_Ep ¼ _eN; ð3Þ
with
_e ¼ j _Epj; jNj ¼ 1; trðNÞ ¼ 0: ð4Þ
Henceforth, e is the accumulated plastic strain and N is the plastic orientation tensor.
Remarks:

� The assumptions represented by Eqs. (2)–(4) could be introduced later, in the section devoted to the constitutive the-
ory. However, they were introduced at this stage for the sake of convenience only.

To describe fracture, we introduce the phase-field u which takes values on the interval ½0;1�. If u ¼ 0 at a point, then that
point is unfractured. If u ¼ 1 at some other point, then that point is fractured. Values of u between zero and one correspond
to partially fractured material. Ideally, such values should be confined to transition zones that represent cracks.

In this paper we treat the accumulated plastic strain e and the phase-field u as extra kinematical descriptors, whereas the
plastic orientation tensor N is assumed to be constitutively prescribed. Thus, the kinematics of B is defined by the fields u; e,
and u. The corresponding realizable velocities are denoted by _u; _e and _u, whereas the virtual velocities are denoted by ~u; ~e and
~u. The three force balances, one for each kinematical descriptor are deduced next.

2.2. Force balances

We assume that the dynamics of B is specified in terms of a pair of linear, bounded, and continuous functionals, referred
to as the internal and external virtual power expenditures. These are defined for any part P, with boundary @P, of B and a
given collection ð~u; ~e; ~uÞ 2 V, where V is the vector space of virtual velocities and, for a given time instant, it is assumed that
the list ð _u; _e; _uÞ 2 V. For any part P � B, the internal virtual power is defined by
W intðP; ~u; ~e; ~uÞ :¼
Z
P
ðS � r~uþ n � r~uþ c~eþ p~uÞ dv ; ð5Þ
where the macrostress tensor S and the microstress n represent interactions of first order, whereas the internal microforces
densities c and p represent interactions of zeroth order. Note that since we are interested in conventional plasticity only,
which by its turn is a local theory, we do not consider first order interaction forr~e. Otherwise, accounting for this interaction
would provide a foundation upon which to build gradient plasticity theories. Further, for any part P � B, the external virtual
power is defined by
WextðP; ~u; ~e; ~uÞ :¼
Z
@P
ðs � ~uþ n@P ~uÞ daþ

Z
P
ðb � ~uþ cext~eþ pext ~uÞ dv; ð6Þ
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where s and n@P represent contact interactions and b; cext and pext interactions at a distance. The standard body force b is
presumed to include inertia, that is,
b ¼ b0 � q€u ð7Þ
in an inertial frame. Here, b0 is the non-inertial contribution to b and q is the mass density.
The principle of virtual power, which is assumed to hold at each fixed time, states that, for any given part P � B:

1. The internal and external virtual powers are balanced, that is,
W intðP; ~u; ~e; ~uÞ ¼ WextðP; ~u; ~e; ~uÞ ð8Þ

for each admissible virtual velocity ð~u; ~e; ~uÞ.
2. The internal virtual power is frame-indifferent, that is,
W intðP; ~u; ~e; ~uÞ ¼ W intðP; ~u�; ~e�; ~u�Þ ð9Þ

where

u� ¼ uþ aþWr; ~e� ¼ ~e; ~u� ¼ ~u: ð10Þ

Here, a and W are arbitrary spatially constant vector and skew tensor fields, respectively, and r ¼ x� o is the position
vector at a point x in P, with o being the point at the origin.

This principle implies the force balances:

� Standard force balance
div Sþ b ¼ 0 on P and Sn ¼ s on @P; ð11Þ

where S is symmetric thanks to the frame-indifference of the internal power;
� Phase-field microforce balance
div n� pþ pext ¼ 0 on P and n � n ¼ n@P on @P; ð12Þ

� Plastic-strain microforce balance

�cþ cext ¼ 0 on P; ð13Þ

where n is the exterior unit vector normal to @P. Notice that (11)1 represents the local form of the standard force balance,
whereas (11)2 the standard traction condition, with S and b representing the standard stress and body force, respectively.
Likewise, (12)1 gives the local form of the microforce balance equation associated to the phase-field and (12)2 the corre-
sponding traction condition, with n;p, and pext representing the microstress, internal microforce, and external microforce,
which are associated to processes leading to fracture as described by the phase-field u. Since a zeroth-order description
has been adopted for plasticity, there is no traction condition in (13).
2.3. Energy imbalance

In addition to the force balances introduced before, we impose the first and second laws of thermodynamics via an energy
imbalance. This imbalance requires that the rate of change of the free energy of any P does not exceed the inflow of energy to
P due to the power expended on P by external agencies. Specifically, introducing the free-energy density w per unit volume,
the law of energy imbalance for P reads
d
dt

Z
P

wdv 6WextðP; _u; _e; _uÞ: ð14Þ
Bearing in mind that P is arbitrary, making use of the power balance (8), and recalling that S is symmetric, we find the inte-
gral statement (14) of energy imbalance has the equivalent point-wise version
_w� S � _E� n � r _u� c _e� p _u � 0: ð15Þ
In view of (2)–(4)3, this implies that
_w� S � _Ee � n � r _u� �c _e� p _u � 0; ð16Þ
where
�c ¼ cþ s; s ¼ S0 � N; ð17Þ
where s is the resolved stress obtained by projecting S0, the deviatoric part of S, along the plastic flow direction.
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2.4. Constitutive theory

The structure of the inequality (16) dictates certain natural choices for dependent and independent constitutive variables.
Before taking this point, it is crucial to decide if it is possible or not to choose arbitrarily _Ee; _e; _u, andr _u. When this choice is
limited, B is subjected to internal constraints (Capriz, 1989). If this is the case, the standard practice of dealing with internal
constraints dictates that S; n;p and �c are sums of two components, one called active and the other called reactive, that is,
S ¼ Sa þ Sr; n ¼ na þ nr; p ¼ pa þ pr; �c ¼ �ca þ �cr; ð18Þ
where constitutive relations can be assigned only for the active components. Further, the reactive contributions expend no
power, that is,
Sr � _Ee þ nr � r _uþ pr _uþ �cr _e ¼ 0; ð19Þ
for all admissible _Ee; _e; _u, and r _u.
In this work, we assume that _Ee and r _u are unconstrained, whereas _e and _u are such that:
_e P 0; _u P 0: ð20Þ
These constraints represent the often invoked assumption that microstructural changes leading to plasticity and fracture are
irreversible. With these assumptions, it follows from (19) that
Sr ¼ 0; nr ¼ 0; ð21Þ

�cr ¼
undetermined; if _e ¼ 0;
0; if _e > 0;

�
ð22Þ
and that
pr ¼
undetermined; if _u ¼ 0;
0; if _u > 0:

�
ð23Þ
Therefore, whereas S and n are constitutively assigned, �c and p are constitutively assigned only for _e > 0 and _u > 0,
respectively.

2.4.1. Constitutive response functions
Suppose that _e > 0 and _u > 0. Guided by the structure of the inequality (16), we allow for possible constitutive depen-

dencies of w; S; �c;p, and n on Ee; e;u;ru; _e, and _u. Granted the availability of external forces needed to ensure the satisfac-
tion of the local balances (11)1, (12)1 and (13), a straightforward application of an argument first employed by Coleman and
Noll (1963) shows that w must be independent of _u,
w ¼ ŵðEe; e;u;ruÞ; ð24Þ
that S and n must be given by equations of state
S ¼ @ŵðEe ;e;u;ruÞ
@Ee

;

n ¼ @ŵðEe ;e;u;ruÞ
@ru ;

9=
; ð25Þ
that �c and p must be a sum of the form
�c ¼ @ŵðEe; e;u;ruÞ
@e

þ ĉdisðEe; e;u;ru; _e; _uÞ; ð26Þ
and
p ¼ @ŵðEe; e;u;ruÞ
@u

þ p̂disðEe; e;u;ru; _e; _uÞ; ð27Þ
and that ĉdis and p̂dis must obey the residual dissipation inequality
d ¼ ĉdisðEe; e;u;ru; _e; _uÞ _eþ p̂disðEe; e;u;ru; _e; _uÞ _u 	 0; ð28Þ
where d denotes the dissipation density.
Instead of determining the most general constitutive response functions ĉdis and p̂dis of (28), we suppose that ĉdis is inde-

pendent of _u and p̂dis independent of _e. Thus, we restrict attention to solutions for which the dissipative mechanisms asso-
ciated with plasticity and fracture are decoupled, in which case (28) implies the inequalities
ĉdisðEe; e;u;ru; _eÞ _e 	 0 ð29Þ
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and
p̂disðEe; e;u;ru; _uÞ _u 	 0; ð30Þ
hold separately. Henceforth, we assume that ĉdis and p̂dis are given by
ĉdisðEe; e;u;ru; _eÞ ¼ âðEe; e;u;ruÞ þ b̂ðEe; e;u;ruÞ _e ð31Þ
and
p̂disðEe; e;u;ru; _uÞ ¼ âðEe; e;u;ruÞ þ b̂ðEe; e;u;ruÞ _u; ð32Þ
where to ensure satisfaction of (30) and (29), the response functions â; b̂; â and b̂ are chosen to be non-negative valued func-
tions. The condition b̂ ¼ 0 in (31) corresponds to rate-independent plastic response, whereas the condition b̂ ¼ 0 in (32) cor-
responds to rate-independent damage response.

Now, we prescribe the constitutive equations for �ca, the active part of �c, when _e ¼ 0, and pa, the active part of p, when
_u ¼ 0. In both cases, we assume that the constitutive equations for w; S and n are given by (24) and (25). Since _e ¼ 0, ther-

modynamic compatibility places no restriction on constitutive responses for �ca. In this sense, constitutive equations for �ca

may be freely prescribed. Hereafter, we stipulate that, if _e ¼ 0,
�ca ¼
@ŵðEe; e;u;ruÞ

@e
þ âðEe; e;u;ruÞ: ð33Þ
By a similar reasoning, constitutive equations for pa may be freely prescribed. Hereafter, we stipulate that, if _u ¼ 0,
pa ¼
@ŵðEe; e;u;ruÞ

@u
þ âðEe; e;u;ruÞ: ð34Þ
As will become evident, the choices (33) and (34) for �ca and pa are very convenient. In particular, it can be shown that
these choices imply that �cr and pr change continuously in a process during which _e and _u change continuously from
_e ¼ 0 and _u ¼ 0 to _e > 0 and _u > 0.

2.4.2. Yield criterion and the plastic orientation tensor
We now specify the yield criterion, that is, the condition under which plasticity occurs, and the plastic orientation tensor

N. The yield criterion adopted here is motivated by the microforce balance (13).
On assuming that cext ¼ 0, the use of the relations (17), (26), (31), and (33) in the microforce balance (13) yields that
s� y ¼
g _e; _e > 0;
�cr; _e ¼ 0;

�
ð35Þ
where for sake of notation, we have introduced the quantities
g :¼ b̂ðEe; e;u;ruÞ; y :¼ @ŵðEe; e;u;ruÞ
@e

þ âðEe; e;u;ruÞ: ð36Þ
In the sequel, it is important to keep in mind the distinction between the two alternatives in (35): the first alternative is a
restriction on the manner that microstructural changes leading to plasticity occur; the second alternative is an identity that
determines �cr when such changes are arrested, which case the microforce balance is automatically satisfied.

We now turn to the specification of the yield criterion. First, we consider that g > 0, that is, a rate-dependent plasticity
response. In this case, (35)1 implies that _e > 0 only if
s > y: ð37Þ
Here, we stipulate that condition (37) is also sufficient for _e > 0, which means that the yield condition is given by (37). Notice
that, equivalently, _e ¼ 0 if and only if
s 6 y: ð38Þ
For a rate-independent plastic response, (35)1 indicates that _e > 0 only if s ¼ y. In this case, we stipulate that (38) always
must be obeyed, but now with the provision that the strict inequality is sufficient but not necessary for _e ¼ 0. Under these
conditions, it can be shown that _e > 0 if and only if
s ¼ y and _s ¼ _y: ð39Þ
It is easy to see that in both rate-dependent and rate-independent case, the reactive microforce �cr obeys the inequality
�cr 6 0: ð40Þ
Notice that the rate-independent case can be obtained from the rate-dependent one in the limit as g goes to zero (c.f. Simo
and Hughes, 1998).
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To prescribe the plastic orientation tensor N, we begin by observing that after taking (17)2, (29), (31), (35)1, (36) into
account, it follows that the plastic dissipation density is given by
S0 �N�
@ŵðEe; e;u;ruÞ

@e

 !
_e P 0: ð41Þ
Notice that (25)1 implies that S0, the deviatoric part of S, is a function of the list ðEe; e;u;ruÞ. Therefore, for a given
ðEe; e;u;ruÞ, the plastic dissipation is a function of N, whose maximum is attained at
N ¼ S0

jS0j
; ð42Þ
and hence
s ¼ jS0j: ð43Þ
Thus, if the principle of maximum dissipation is invoked, the equations above must hold. See Gurtin et al. (2010) for a
detailed discussion of this issue. See also Aifantis (1987).

2.4.3. Damage criterion
Now, we turn to the issue of the damage criterion. The damage criterion adopted here is motivated by the microforce bal-

ance (12). The development follows along the same lines adopted for plasticity.
After assuming that pext ¼ 0 and using the relations (12)1, (25)2, (27) and (32), it follows from the microforce balance (12)

that
f� a ¼
b _u; _u > 0;
pr; _u ¼ 0;

�
ð44Þ
where to simplify the notation,
b :¼ b̂ðEe; e;u;ruÞ; a :¼ âðEe; e;u;ruÞ ð45Þ
and
f :¼ div
@ŵðEe; e;u;ruÞ

@ru

 !
� @ŵðEe; e;u;ruÞ

@u
: ð46Þ
Notice that �f is the variational derivative of ŵ with respect to u. Again, it is important to keep in mind the distinction
between the two alternatives in (44): the first alternative is a restriction on the manner microstructural changes leading
to damage occur; the second alternative is an identity that determines pr when such changes are arrested, which case
the microforce balance is automatically satisfied.

When b > 0, that is, for a rate-dependent damage response, (44)1 implies that
f > a ð47Þ
is a necessary condition for _u > 0. Here, we stipulate that condition is also sufficient for _u > 0, which means that damage
occurs if and only (47) holds. Equivalently, no damage occurs whenever
f 6 a ð48Þ
is satisfied. For a rate-independent damage response, i.e., for b ¼ 0, (44)1 indicates that f ¼ a is a necessary condition for
_u > 0. In this case, we stipulate that (48) always holds, but now with the provision that the strict inequality is sufficient

but not necessary for _u ¼ 0. Under these conditions, it can be shown that _u > 0 if and only if
f ¼ a and _f ¼ _a: ð49Þ
It is easy to see that in both rate-dependent and rate-independent case, the reactive microforce pr obeys the inequality
pr 6 0: ð50Þ
2.5. Governing equations

Now, we collect the results obtained so far to write the set of governing equations for the basic fields of the theory,
namely u; e;u; �cr and pr. This set of equations is obtained by combining the force balances and constitutive theory, including
the yield and damage criteria.

We begin by considering the governing equations for _e and �cr. For the sake of convenience, let us introduce the function f
defined by
f :¼ jS0j � y; ð51Þ



276 F.P. Duda et al. / International Journal of Plasticity 65 (2015) 269–296
with y given by (36)2. In the rate-independent case, it is easy to see that the governing equations for _e and �cr are given by
_e P 0; f 6 0; _ef ¼ 0; �cr ¼ f ; ð52Þ
whereas in the rate-dependent case they are given by
g _e ¼ hf i; �cr ¼ �h�f i; ð53Þ
with g given by (36)1. Henceforth hhi denotes the Macaulay bracket of a scalar-valued quantity h, that is,
hhi ¼
0; h � 0;
h; h > 0:

�
ð54Þ
After introducing the function
F ¼ f� a; ð55Þ
with f and a given by (46) and (45)2, it can be shown that the governing equations for _u and pr reduce to
_u P 0; F 6 0; _uF ¼ 0; pr ¼ F ð56Þ
in the rate-independent case, and to:
b _u ¼ hFi; pr ¼ �h�Fi ð57Þ
otherwise, where b is defined in (45)1.
The remaining governing equations are given by (1)–(3) with N ¼ S0=jS0j, and the standard force balance (11) with S given

by (25)1.

2.6. Specialization

We now specialize the constitutive response functions introduced before with a view towards the development of a sim-
ple rate-independent continuum model for fracture in elastic–plastic materials. As described below, we assume that the free
energy is given as the sum of elastic, fracture and plastic contributions. Further, we consider that damage results from micro-
cracking and manifests itself only through a reduction in the elastic energy storage capacity of the material.

Our choice for the free energy response ŵ is
ŵðEe; e;u;ruÞ ¼ ŵeðEe;uÞ þ ŵpðeÞ þ ŵf ðu;ruÞ; ð58Þ
with
ŵeðEe;uÞ ¼ ð1�uÞ2 þ kc

� �
ŵþe ðEeÞ þ ŵ�e ðEeÞ;

ŵþe ðEeÞ ¼
1
2

k trEeh i2 þ 2lEþe : Eþe
� �

;

ŵ�e ðEeÞ ¼
1
2

k �trEeh i2 þ 2lE�e : E�e
� �

;

Eþe ¼ ðEeÞi
� �

ei 
 ei ; E�e ¼ � �ðEeÞi
� �

ei 
 ei;

ð59Þ

ŵpðeÞ ¼
r2

y

Eðnþ 1Þ 1þ
ffiffiffi
2
3

r
Ee
ry

 !nþ1

�
ffiffiffi
2
3

r
rye; ð60Þ
and
ŵf ðu;ruÞ ¼ gf
u2

2l
þ l

2
jruj2

� 	
: ð61Þ
Here, k and l are the Lamé parameters, E is the Young’s modulus, ðEeÞi and ei are the i-th principal strain and eigenvector of
Ee, respectively. In expressions (59)2�3, and according with (59)4, Eþe and E�e are the spectral decomposition of the positive
and negative elastic strain. The constant parameter kc is greater than zero (kc > 0), and is introduced to prevent a possible ill-
conditioning of the model when u ¼ 1. But otherwise, it should be as small as possible to avoid an overestimation of the bulk
energy. The strain hardening exponent of the plastic model is denoted n, the yield stress at e ¼ 0 is ry, the fracture energy is
gf , and l is a parameter with dimension of length.

Notice that ŵe , the elastic contribution to the free energy, contains an interaction term between damage, which accounts
for microcrack closure/opening effect, and elastic strain, and that this term is a decreasing function of the degree of degrada-
tion as described by the phase field. Thus, ŵe is decomposed additively in two terms associated with the positive and negative
elastic strains. Only the first component of ŵe couples u with elastic strains. As can be seen in the following development, the
coupling of u with ŵþe means that the evolution of u is driven by ŵþe . Therefore, changes of u are only attached to changes of
Eþe , but not to changes of E�e . The partition ŵe defined in Eq. (59), has been taken from Miehe et al. (2010).
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The fracture energy ŵf is given by the sum of two contributions, a homogeneous one and a gradient one. Whereas the
former favors the local state u ¼ 0, the later penalizes rapid spatial variation and smears out the transition zone in which
u varies between 0 and 1. Aside from the effects of unilateral damage and plasticity, this choice for the free-energy
density appears in the context of the variational approximation of brittle fracture (c.f. Bourdin et al., 2008), which by
its turn was based on the phase-field approximation of the Mumford–Shah potential introduced by Ambrosio and
Tortorelli (1990).

Since we are concerned with a rate-independent theory, we assume that the response functions b̂ and b̂ are identically
equal to zero. Further, we assume:
âðEe; e;u;ruÞ ¼
ffiffiffi
2
3

r
ry; ð62Þ

âðEe; e;u;ruÞ ¼ 0; ð63Þ
The aforementioned constitutive specialization results in the following expressions for S; f and F:
S ¼ ð1�uÞ2 þ kc

� �
ðk trEeh iIþ 2lEþe Þ þ ð�k � trEeh iIþ 2lE�e Þ; ð64Þ

F ¼ 2ð1�uÞŵþe ðEeÞ �
gf

l
ðu� l2

MuÞ; ð65Þ

f ¼ jS0j �
ffiffiffi
2
3

r
ry 1þ

ffiffiffi
2
3

r
Ee
ry

 !n

: ð66Þ
2.6.1. Alternative handling of the phase-field equations
The numerical treatment of the phase-field Eqs. (56) is admittedly difficult. In the past, and within the context of gradient

damage models, algorithms have been proposed to solve similar problems. Typically, we mention the algorithm proposed by
Liebe et al. (2001) which has been borrowed from nonlinear programming methods. This technique primarily consists of an
iterative method which sequentially searches for the active sets, i.e. the regions where _u < 0, and a posterior returning to the
feasible domain defined by _u P 0.

Alternatively to that kind of procedures, the solution proposed by Miehe et al. (2010) is here adopted. It is next described.
Let us consider the compact history field function HðtÞ defined as follows:
HðtÞ ¼max
s

hðsÞ; s 2 ½0; t�; ð67Þ
where
hðtÞ :¼ ŵþe ðEe; tÞ: ð68Þ
Then, instead of solving uðtÞ using the phase-field Eqs. (56), with F defined by (65), it is solved the equation:
2ð1�uðtÞÞHðtÞ �
gf

l
ðuðtÞ � l2

MuðtÞÞ ¼ 0: ð69Þ
In Appendix A, and after introducing simplifying assumption, we sketch the equivalence between the phase-field Eqs. (56)
and (69).

2.6.2. Summary of governing equations
Table 1 summarizes the governing equations of the coupled rate-independent elasto-plastic phase-field model.

3. Numerical model of the boundary value problem (BVP)

In order to numerically solve the BVP defined in the previous section, the variational format presented in the principle of
the virtual power (8) is reconsidered. Then, after defining admissible variations of the kinematical descriptors (~u and ~u), the
corresponding variational equations are derived. In this format, the problem is amenable to be approached by means of a
finite element technique. In the following, we consider a rate-independent constitutive model of fracture and plasticity.

Let us consider the body B. Essential boundary conditions in displacements are prescribed on @Bu, that is, u ¼ �u on @Bu.
Whereas tractions are prescribed on the boundaries @BS and @Bn. That is, Sn ¼ s on @BS, and ru � n ¼ 0 on @Bn. Initial con-
dition are defined for u. A possible choice is: u ¼ 0 on B.

Let us consider the following functional spaces defined on B:
Vu ¼ fu 2 H1 j u ¼ �u on @Bug;
Vu ¼ fu 2 H1g;

ð70Þ



Table 1
Summary of the governing equations of the coupled elasto-plastic-phase field problem.

Balance equations:

div Sþ b ¼ 0; on B and Sn ¼ s on @BS ; ðTI:1Þ

2ð1�uÞH �
gf

l
ðu� l2MuÞ ¼ 0; on B and ru � n ¼ 0 on @Bu; ðTI:2Þ

with:

S ¼ ð1�uÞ2 þ kc

� �
ðk tr Eeh iIþ 2lEþe Þ þ ð�k �tr Eeh iIþ 2lE�e Þ; ðTI:3Þ

HðtÞ ¼max hðsÞ ¼max ŵþe ðEeðsÞÞ; s 2 ½0; t�; ðTI:4Þ

_e P 0; f 6 0; _ef ¼ 0; cr ¼ f ; on B; ðTI:5Þ

f ¼ jS0j �
ffiffiffi
2
3

r
ry 1þ

ffiffiffi
2
3

r
Ee
ry

 !n

: ðTI:6Þ
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with H1 being a space of smooth enough functions. Vu is the space of admissible displacement and Vu the space of admissible
phase-fields. Corresponding admissible spaces of variations are:
Vu
0 ¼ fu 2 H1 j u ¼ 0 on @Bug;
Vu

0 ¼ V
u;

ð71Þ
Then, the variational problem consists of finding the functions u 2 Vu and u 2 Vu fulfilling the two following equations:
Z
B

Sðu; e;uÞ � ~Edv �
Z
B

b � ~u dv �
Z
@BS

s � ~uda ¼ 0; 8 ~u 2 Vu
0 ð72Þ

Z
B

lgf ðru � r ~uÞdv þ
Z
B
�2ð1�uÞHðu; eÞ þ

gf

l
u

� 	
~udv ¼ 0; 8 ~u 2 Vu

0 ð73Þ
jointly with the kinematics equations: (2) and (3), constitutive equations: (TI-3)–(TI-6).

3.1. Finite element implementation

A mixed finite element with equal order of interpolation for displacements u and phase-field u is proposed.
Let us consider the spatial discretization for each of these fields as follows:
uðxÞ ¼
Xnnode

i¼1

NiðxÞui ð74Þ

uðxÞ ¼
Xnnode

i¼1

NiðxÞui ð75Þ
where nnode stands for the number of nodes in the finite element mesh. The standard shape functions related to node i is
denoted NiðxÞ. At the same node, displacement and phase-field interpolation parameters are denoted ui and ui, respectively.

The corresponding spatial discretization of the virtual fields reads:
~uðxÞ ¼
Xnnode

i¼1

NiðxÞ~ui ð76Þ
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~uðxÞ ¼
Xnnode

i¼1

NiðxÞ ~ui ð77Þ
where ~ui and ~ui are virtual variations of the displacement and the phase field at node i.
In a generic finite element e, the strain E and the admissible variation of strain ~E are given as follows:
EðxÞ ¼ BeðxÞue ~EðxÞ ¼ BeðxÞ~ue ð78Þ
where ue is the nodal displacement vector of the element e. The strain–displacement matrix Be is defined according with the
B-Bar technique (c.f. Simo and Hughes, 1998), i.e. quadrilateral finite elements with bilinear interpolation. Within a two-
dimensional setting, the matrix Be is:
Be ¼ Be
1 Be

2 . . . ; Be
ne

node

h i
;

Be
i ¼

2
3 Ne

i


 �
;x � 1

3 Ne
i


 �
;y

� 1
3 Ne

i


 �
;x

2
3 Ne

i


 �
;y

Ne
i


 �
;y Ne

i


 �
;x

2
664

3
775þ 1

3

Bhe

i

Bhe

i

0

2
64

3
75; Bhe

i ¼
1
jBej

Z
Be

ðNe
i Þ;x ðNe

i Þ;y
� 


dv
ð79Þ
The gradient of the phase-field and the gradient of the admissible virtual variations are:
ruðxÞ ¼
Xnnode

i¼1

½rNi�ðxÞui; r~uðxÞ ¼
Xnnode

i¼1

½rNi�ðxÞ~ui; ½rNi� ¼
ðNiÞ;x
ðNiÞ;y

" #
ð80Þ
3.1.1. Interpolation order selection of the fields in the mixed finite element
In the context of mixed finite element approaches (interpolation of u and u), and according to the analysis presented by

Bourdin et al. (2000), selection of low orders of interpolation for both fields is advantageous. However, it is known that equa-
tions coupling two fields may induce numerical locking. And locking effect tends to decrease with the use of high-order finite
elements.

In fact, Verhoosel and de Borst (2013) (c.f. also Simone, 2003) claimed that numerical locking arises when the phase-field
problem is solved with equal low order of interpolation (linear or bilinear) for u and u. In this case, numerical locking
induces stress field oscillations, which can be relieved with a displacement interpolation of third, or higher, order.

We have also observed stress oscillation in numerical solutions obtained with low order of interpolations. However, dis-
placement and phase-field solutions are not affected. While, the stress oscillation can be alleviated through a standard
smoothing technique without appealing to higher-order of interpolations.

Furthermore, our experience indicates that only a marginal increase of the error convergence rate, with respect to the
finite element mesh size, is observed when increasing the interpolation order of the displacement field. Note that, in the case
of elastic materials, convergence to sharp crack solutions requires both conditions: mesh size, as well as phase-field regu-
larization parameter l, going to zero. Thus, only increasing the interpolation order does not necessarily implies increase of
convergence rate. This observation agrees with that expressed by Bourdin et al. (2000).

3.1.2. Discrete equations of the quasi-static problem
Substituting Eqs. (74)–(80) into the variational problem (72) and (73), yields:

� Force balance:
K
nelem

e¼1

Z
Be

Beð ÞT Sðu; e;uÞ dv � Fext
u ¼ 0; ð81Þ

where K is the finite element assembling operator, nelem is the number of finite elements in the mesh and S is the stress
term defined by the constitutive model. The vector Fext

u is derived from the second and third terms in (72) and represents
the conventional external forces. In expression (81), the variables u and u are the vector of nodal displacements and
phase-field respectively, while e is the vector collecting the accumulated plastic strains of all Gauss points.
� Damage equation:
Ku þMu
� 


½u� � Fext
u ¼ 0; ð82Þ

where

Ku ¼ K
nelem

e¼1
Ke

u; ½Ke
u�i;j ¼

Z
Be

lgf ðrNe
i Þ

T � rNe
j

� �
dv ; ½rNe

i � ¼
Ne

i;x

Ne
i;y

� �
;

Mu ¼ K
nelem

e¼1
Me

u; ½Me
u�i;j ¼

Z
Be

ð2Hðu; eÞ þ
gf

l
Þ ðNe

i Þ
T � Ne

j

� �
dv;

Fext
u ¼ K

nelem

e¼1
ðFe

uÞ
ext; ½ðFe

uÞ
ext�

i
¼
Z
Be

Nið2Hðu; eÞÞ dv

ð83Þ
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3.1.3. Time integration scheme
Let us denote RSðu; e;uÞ and Ruðu; e;uÞ the residues of Eqs. (81) and (82), respectively. Then, these equations can be

rewritten in short as follows:
Table 2
Stagger

LOO
Give
Find

ite
(1

(2

(3

END
RSðu; e;uÞ ¼ 0;

Ruðu; e;uÞ ¼ 0;
ð84Þ
where the implicit dependence of the fields with the pseudo-time t is understood.
Eqs. (84) can be integrated by appealing to the staggered schema shown in Table 2. It consists of solving successively

Eqs. (84)1 and (84)2. First, Eq. (84)1 is solved to obtain u1
nþ1 and e1

nþ1 with un fixed. Subindices and supraindices denoting
the integration time step and subiteration, respectively. In a second step, Eq. (84)2 is solved to obtain u1

nþ1 with u1
nþ1 and

e1
nþ1 fixed. Finally, a sub-iteration (mentioned as point 3 in Table 2) can be carried out, which consists of a sequential

repetition of the first and second steps, in order to reach a converged solution.
By solving Eq. (2), in the first step of this staggered scheme, the incremental inequality De P 0 is pointwise guaranteed by

means of a conventional return mapping algorithm.
Also, by solving Eq. (2) in the second step of the staggered scheme, the inequality DuðxÞ ¼ unþ1ðxÞ �unðxÞP 0 in B is

satisfied (c.f. Miehe et al., 2010, see also Appendix A) by defining the compact history field HðEe; tnþ1Þ as follows:
Hðx; tnþ1Þ ¼ ŵþe ðEeðx; tnþ1ÞÞ if ŵþe ðEeðx; tnþ1ÞÞ > ŵþe ðEeðx; tnÞÞ
Hðx; tnþ1Þ ¼ Hðx; tnÞ if ŵþe ðEeðx; tnþ1ÞÞ 6 ŵþe ðEeðx; tnÞÞ

ð85Þ
Thus, the function H satisfies:
Hðx; tnþ1ÞP Hðx; tnÞ ð86Þ
for every time in B.
As can be seen in the next Section, we show that using this technique, the inequality DuðxÞP 0 is satisfied in the ana-

lyzed points.

4. Numerical model assessment

The numerical assessment of the model is carried out by simulating two kinds of tests. First, in Section 4.1, a series of
standard linear elastic fracture mechanic problems (LEFM) are solved. An accurate estimation of the expended external
energy to achieve complete structural failure is evaluated. As a consequence of considering linear elastic response, the
accuracy of the numerical solutions can be easily sized up by comparing the expended external energies with the analytical
dissipated energies governed by the parameter gf . Also, an identical comparison evidences the low sensitivity of the
expended external energy with the length parameter l.
ed time integration scheme for solving the coupled elasto-plastic-phase field problem.

P over time steps: ðnþ 1Þ
n un; en; un and ðFext

u Þnþ1, ðFext
u Þnþ1

;
: unþ1, enþ1 and unþ1 as follows:
r ¼ 1; u0

nþ1 ¼ un ; e0
nþ1 ¼ en;

) Using a Newton–Raphson iteration, find uiter
nþ1 and eiter

nþ1 by solving:

RSðuiter
nþ1; e

iter
nþ1;unÞ ¼ 0; ðTII:1Þ

) Find uiter
nþ1, with uiter

nþ1 fixed, by solving the system of linear equations:

Ruðuiter
nþ1; e

iter
nþ1;u

iter
nþ1Þ ¼ 0; ðTII:2Þ

) if kuiter
nþ1 �unk > 0:1, then:

DO WHILE kuiter
nþ1 � uiter�1

nþ1 k=kuiter
nþ1k > tol & iter 6 MAXiter

iter ¼ iter þ 1;
Use a fixed-point iteration to find uiter

nþ1; e
iter
nþ1 and uiter

nþ1 by iteratively solving the sequence of steps (1) and (2) (Eqs. (TII-1) and (TII-2));

In Eq. (TII-1), un should be replaced by uiter�1
nþ1

END DO
Assign: unþ1 ¼ uiter

nþ1 ; enþ1 ¼ eiter
nþ1 ; unþ1 ¼ uiter

nþ1;
LOOP over time steps
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In the second part, Section 4.2, the phase-field approach is studied in combination with an elasto-plastic model. The prop-
agation of a pre-existent crack in Mode I under the small scale-yielding assumption is simulated. A detailed analysis is
accomplished about the sensitivity of the material parameters; specifically the relationship between the parameters of
the plastic and phase-field models. A discussion of results is presented. With the present approach, it is concluded that
the regularization parameter of the phase-field model, l, should be reinterpreted in order to capture the interaction effects
between both mechanisms: plasticity and damage. This parameter must not go to zero. Instead, it has to be considered as a
material characteristic length, of finite size, which should be characterized jointly with the fracture energy.

All solutions in this Section have been obtained assuming plane strain hypothesis.

4.1. Linear elastic fracture problems

The following numerical assessments of the phase-field approach are carried out by using a set of linear elastic fracture
mechanic (LEFM) problems:

(i) in Section 4.1.1-case 1, the phase-field model is validated by comparing results available in the literature;
(ii) in Section 4.1.1-case 2, the convergence properties of the staggered time-integration algorithm, proposed in Table 2, is
studied.
In both cases (1 and 2) of Section 4.1.1, several Single Edged Notched Tension (SENT) tests, undergoing uniform stresses at
both edges, are simulated.
(iii) in Sections 4.1.2 and 4.1.3, two specimens are simulated till reaching the complete loss of the structural loading car-
rying capacity. In both cases, the dissipated energies are evaluated and compared with the exact ones obtained in closed
form.

These findings provide a better understanding of the results evaluated in the second part (Section 4.2) of this Section.

4.1.1. SENT test
Single Edged Notched Tension (SENT) tests under uniform tractions at the upper and lower edges, as shown in Fig. 1(a),

are numerically solved using a phase-field approach with the assumption of linear elastic response in the bulk material.
Classical analytical solutions for this problem are widely reported in standard books of fracture mechanics.

Case 1: Load estimation at the crack propagation onset
Fig. 1 shows the geometry of the specimen and the finite element model that is used to estimate the external load which

initiates the crack propagation process. Due to symmetry conditions, only one half of the specimen (the upper part) is mod-
eled. A finite element mesh with bilinear quadrilateral elements is used. Note that close to the crack propagation zone, a
structured mesh is adopted with elements of size: ðhe � heÞ being he ¼ 0:3125 mm.

The stress intensity factor at the crack propagation onset for the SENT test, as a function of the fracture energy, is reported
in the book of Gross and Seelig, 2006. From this reference work, it can be determined the corresponding critical uniform
stress (Scrit

yy ) acting on the upper and lower specimen edges which initiates the crack propagation process. In the present
numerical solutions, we adopt the crack propagation onset as the time instant when the bottom node in the notch root
reaches a damage value: u > 0:97.

For the geometry depicted in Fig. 1(a), the critical stress is given by:
Scrit
yy ¼

1
B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

1� m2

gf

2b

r
; B ¼

1:762þ 0:37ð1� sinðp4ÞÞ
3

cosðp4Þ
: ð87Þ
b=50.[mm]

a=b/2

L=
4b

hehe

x

y

S
Point A

yy

Syy

(a) (b)

FE mesh:
1644 B-BAR elements
1711 nodes

Fig. 1. SENT test: geometrical data and mechanical model.
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Fig. 2(a) plots the function: Scrit
yy ðgf Þ after considering a Young’s modulus: E ¼ 5:5 GPa and a Poisson ratios: m ¼ 0:25. In the

same figure, the finite element numerical solutions are depicted for three fracture energies: g1
f ¼ 1 N=mm; g2

f ¼ 5 N=mm and
g3

f ¼ 10 N=mm, respectively. The length parameter l of the phase-field model is defined as: l ¼ 1:2 mm (� 4he), and kc ¼ 10�8.
As can be observed in this figure, very accurate numerical solutions for estimating the critical stresses are obtained. A

similar conclusion has been reported by Kuhn and Müller (2010).
Fig. 2(b) plots the loads (per unit of thickness) vs. the vertical displacement of the point A (depicted in Fig. 1(b)). The crit-

ical loads, at the crack propagation onset, are lower than the structural limit loads. Also, the structural response displays a
slight non-linearity before reaching the limit load. Both effects suggest an inaccurate response obtained for this kind of prob-
lem, confirming that bilinear finite elements have deficiencies to resolve the sharp-crack linear elastic problem.

Case 2: analysis of the integration scheme
The item (3) in Table 2 describes a sub-iteration procedure which increases the time integration accuracy. The effects on

including such sub-iteration procedure in the integration scheme is next evaluated. The analysis consist of comparing the
computational cost vs. the solution accuracy obtained in different instances: using, or not, the sub-iteration procedure.

The simulated SENT specimen is depicted in Fig. 3(a). The elastic material is characterized with a Young’s modulus
E ¼ 50:5 GPa, Poisson ratio m ¼ 0:40, fracture energy gf ¼ 0:5939 N=m and length parameter of phase-field model
l ¼ 0:05 mm. One half of the specimen is modeled with 6679 bilinear quadrilateral finite elements. A structured mesh is used
in the region close to the crack tip, with the finite element size: he ¼ 0:01 mm.

In Fig. 3(b), the total load (F) per unit of thickness vs. the vertical displacement of point A is plotted. This point is located at
2:5 mm of the upper left corner of the specimen. When this displacement is considered, the equilibrium path displays a very
marked snap-back behavior. Thus, in order to trace this response, the vertical displacement of the point B (depicted in
Fig. 3(a) and close to the notch tip) is controlled through the parameter s. Fig. 3(c) displays the deformed specimen when
the control parameter s has reached the value s ¼ 0:1 mm.

Fig. 3(d) plots three curves representing numerical errors vs. the CPU time required to find the solution. Curves in Fig. 3(d)
correspond to MAXiter ¼ 1;2 and 3, respectively. The parameter MAXiter defines the number of sub-iterations performed
during the time integration step, see Table 2. The integration scheme does not use sub-iterations when MAXiter ¼ 1. Each
point of the curves is obtained by modifying the value of the control parameter Ds. Note that, the smaller is Ds, the lower
is the integration error and the larger is the computational time. All structural solutions have finished once the control
parameter reached the value s ¼

P
Ds ¼ 0:1 mm.

The vertical axis of the plots in Fig. 3(d) corresponds to the logarithmic errors:
logðerrorÞ ¼ log
Wext �Wext

E

Wext
E

 !
which is evaluated as the difference between the total external work (per unit of thickness):
Wext ¼
Z Z Ds¼0:0001

Ds¼0
Syy duðs; xÞ

� 	
dx ð88Þ
and the exact external work of comparison, Wext
E . In expression (88), Syy and duðxÞ are the uniform stretching stresses

and incremental displacements (which increase with the control parameter s) in the upper edge of the specimen. The
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x-integration is performed along this edge. While, the exact external work of comparison Wext
E is evaluated using a numerical

solution obtained with an extremely small increment of the control parameter: ds ¼ 10�5 mm and MAXiter ¼ 3. In this case,
the total CPU time is 108,000 s.

From the plots in Fig. 3(d), it can be concluded that the better performance of the integration scheme for identical CPU
times is obtained with two sub-iterations per step: MAXiter ¼ 3.

4.1.2. DENT panel test under uniform displacement
In this Section, the numerical solution accuracy for capturing the structural dissipated energy during a crack propagation

problem is studied. A Double-edged notched test (DENT) is solved assuming linear elastic response. The geometry of the
specimen is depicted in Fig. 4. Uniform vertical displacements in the top and bottom edges of the specimen are prescribed.

A symmetric solution of the problem is simulated. Therefore, only one fourth of the specimen is modeled. A region in the
specimen middle, of height equal to 3: mm, is modeled with a structured and uniform finite element mesh (see Fig. 4(b)),
with element sizes 1:67he � he. Two meshes are designed with this criteria: the Mesh 1 has a finite element size:
he ¼ 0:1 mm, and the Mesh 2 has a size he ¼ 0:3 mm. The material parameters are: Young’s modulus E ¼ 2:5 GPa, Poisson
ratio m ¼ 0:25, fracture energy gf ¼ 5 N=mm and kc ¼ 10�9. In general, structural dissipated energies are influenced by kc

when kc > 10�7.
Fig. 5(a) depicts three plots that show total loads (per unit of thickness) vs. upper edge vertical displacements. Two of

these curves have been obtained with Mesh 1 (l ¼ 1:2 mm and l ¼ 2:4 mm) and the third one with Mesh 2 (l ¼ 1:2 mm).
A load control scheme has been adopted to obtain these equilibrium curves consisting of the following procedure. Ini-

tially, the list of nodes located just above the crack path is collected (the direction of the crack path has been estimated
beforehand and is the horizontal line coinciding with the bottom edge of the finite element model. Then, in every time step
and from that list, it is selected the node that has shown the maximum incremental vertical displacement. In the following
time step, a displacement increment Ds is prescribed in that node.

This test provides a clue about the capability of the numerical methodology to capture the total energy dissipated during
the structural failure process. Due to the elastic bulk response, and considering a unit specimen thickness, the exact total
dissipated energy for the symmetric solution is gf ðb� 2aÞ ¼ 125 N mm. With the present numerical model, only the half
of this energy (62:5 N mm) is estimated because the upper part of the specimen is simulated.

The areas enclosed by the plots in Fig. 5 represent half of the external work expended to produce the complete structural
failure. Due to the elastic response of the material, these quantities are equivalent to the energy D dissipated by the fracture
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propagation process across the specimen. Table 3 shows the expended external work obtained with both meshes (Mesh 1
and Mesh 2) and three different length parameters (l ¼ 1:2 mm; l ¼ 1:8 mm and l ¼ 2:4 mm). The figures in parenthesis give
the overestimation (in percent) of the numerically evaluated external work respect to the exact value that is expected from
the crack propagation process (62:5 N mm). Observe the slow convergence rate obtained with mesh refinement. Once again,
this poor response evidences the difficulty that bilinear finite elements have in order to resolve the sharp-crack limit
solution.

Additional discussion of these results are presented in the next sub-Section.
Fig. 6 displays the damage distribution along the vertical line, close to the initial crack tip, which is denoted y–y0 (see the

insert in Fig. 6). The results corresponds to Mesh 1, l ¼ 2:4 mm. Several plots displaying the evolution of damage are depicted
in this figure. Each plot corresponds to a different load stage which are marked with points in the structural response plot
inserted in Fig. 6(a).

In the plots of Fig. 6(a), it can be observed that, as the structural loading proceeds, the damage evolution displays a
monotonous increase: DuðxÞP 0, satisfying the phase-field model constraint: _u � DuðxÞP 0. This property is observed
for every point x along the line y–y0 and for every time.

Fig. 6(b) shows additionally a very important feature which is characteristic of the phase-field model. The damage distri-
butions along the vertical line y–y0 in stages F and G are plotted in Fig. 6(b). Both results have been taken from a completely
degraded specimen while the crack is opening. The plots are almost indistinguishable. Therefore, although the crack opens
continuously and strains tend to infinity in the localization zone, damage stops to progress in its vicinity. This conclusion,
jointly with the response observed in the deformed specimens of Figs. 3(c), 7(b) and 9(a), allow us to conclude that the
phase-field model correctly represents strain localization bands leading to strong discontinuity solutions.

This feature, which is additionally discussed in the following Sections, is not shared by some damage gradient models
such as that presented in Peerlings et al. (1996) (see additional details in Appendix B).
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Table 3
DENT panel test under uniform displacement. External expended work to produce the complete structural failure.

l ¼ 1:2 mm l ¼ 1:8 mm l ¼ 2:4 mm

Mesh 1: he ¼ 0:1 mm 72.5 N mm (16%) 72.7 N mm (16%) 73.0 N mm (16%)
Mesh 2: he ¼ 0:3 mm 83.0 N mm (32%) 78.6 N mm (25%) 77.3 N mm (23%)
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Fig. 6. DENT panel test under uniform displacement. (a) Damage distribution along the vertical line y–y0 (Mesh 1, l ¼ 2:4 mm). Each curve corresponds to a
loading stage that is marked in the structural plot inserted in the figure. (b) Damage distribution at stages F and G, once the specimen has completely lost its
structural capacity.
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Fig. 7(a) shows a series of pictures displaying the distribution of damage at different loading stages. Also, Fig. 7(b) shows
the deformed meshes at the same stages. Again, the last picture in Fig. 7(b) reflects the capability of the model to capture a
strong discontinuity solution.
4.1.3. Single-Edge Notched Bending (SENB) test
The SENB test displayed in Fig. 8 is simulated and the total structural dissipated energy is analyzed.
Identical material parameters described in the previous Section 4.1.2 are adopted: Young’s modulus E ¼ 2:5 GPa, Poisson

ratio m ¼ 0:25 and fracture energy gf ¼ 5 N=mm. Due to the problem symmetry, one half of the beam is modeled. The spec-
imen geometry is depicted in Fig. 8. The beam sizes are such that the analyzed domain is identical to that defined for the
SENT test in the previous Section 4.1.2. Then, absolute finite element sizes and phase-field characteristic lengths are com-
parable in both tests (SENT and SENB). Similar to previous cases, the size of the notch is given by he.

The results have been obtained with three meshes. They have been designed with the same mesh refinement criteria as
that adopted in Section 4.1.2. Mesh 1 and Mesh 2 coincide with the previous ones defined there (finite element sizes
he ¼ 0:1 mm and he ¼ 0:3 mm, respectively, in the region close to the crack tip), and Mesh A has finite element sizes
he ¼ 0:05 mm in the same region.

Fig. 8(b) shows half of the load vs. vertical displacement of the load application point. The crack opening is controlled
during the loading process imposing a similar strategy to that defined for the previous SENT test.

Fig. 9(a) depicts the deformed mesh and Fig. 9(b) the distribution of damage. Both results have been obtained at the end
of analysis. Again in this case and once the material completely loses the loading carrying capacity, the deformed mesh
shows a solution being compatible with a strong discontinuity kinematics.

Fig. 10 depicts the distribution of damage. Only values having u 6 0:01 are shown. Fig. 10(a) corresponds to the SENB test
with l ¼ 2:4 mm, at the initial stage of analysis, while Fig. 10(b) displays the solution at the end of analysis. Fig. 10(c) plots
the u-distribution, at the initial stage, when the Poisson’s ratio m ¼ 0. Comparing Fig. 10(a) and (c) in the zone we have
denoted with A, we find that using m ¼ 0. a uniaxial negative strain in the horizontal direction (uniaxial compressive stress)
is obtained. Alternatively, with m ¼ 0:25, a biaxial strain is computed in that zone, being the larger principal strain in the hor-
izontal direction negative, but a small positive strain (with vertical component ðEeÞyy) is also computed. The positive com-
ponent ðEeÞyy is the responsible for producing an increase (even small) of u. With this analysis, we remark that the strain



Fig. 7. DENT panel test under uniform displacement. (a) Damage distribution (Mesh 1, l ¼ 2:4 mm. (b) Deformed meshes. (figures are depicted from top to
bottom for the following vertical displacement at the upper edge: 0:20 mm; 0:44 mm; 0:50 mm and 0:82 mm, respectively.
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triaxiality effects are included in the evolution of the damage model. This issue is relevant because it plays an important role
when crack propagation problems are evaluated in ductile metals.

Table 4 shows the overestimation, in percent, of the total expended work to achieve the complete structural failure. In
this case, the theoretical expended work is 62:5 N=mm.

After evaluating the total dissipated energy in both tests, DENT and SENB, the following conclusions can be pointed out:

(i) The overestimation of the dissipated energy is notably high, even when fine meshes and controlled loading increment
techniques are used. Thus, bilinear quadrilateral finite elements show a very slow convergence rate with mesh
refinement;
(ii) From the authors’ experience, acceptable results can be obtained with meshes having finite element sizes he smaller
than 0:2l, even better if he

6 0:1l. From this conclusion, the result corresponding to Mesh 2, l ¼ 1:2 mm could be consid-
ered as not reliable;
(iii) It has not been possible to evaluate, with acceptable confidence, the dissipated energy sensitivity with respect to the
parameter l.
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Table 4
SENB test. Percentage of overestimation of the simulated external work to produce complete structural failure respect to the exact value.

l ¼ 0:9 mm l ¼ 1:2 mm l ¼ 1:8 mm l ¼ 2:4 mm

Mesh A: he ¼ 0:05 mm 8.6% 7.8% 7.2% 6.8%
Mesh 1: he ¼ 0:1 mm 11.8% 9.5% 7.8% 7.3%
Mesh 2: he ¼ 0:3 mm – 25.1% 17.6% 14.3%
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4.2. Mode I crack growth analysis under small-scale yielding conditions

The numerical model developed previously to study the growth of a preexisting crack in an elastic–plastic body under
plane strain mode I loading is here applied. Our purpose is twofold:

� To investigate the effect of the material parameters, namely the elastic–plastic parameters E; m;ry and n, and the
phase-field parameters gf and l, on the fracture toughness.

� To study the nature of crack extension.

Towards this end, a circular region of the body containing the crack (a modified boundary layer) is considered, as illus-
trated in Fig. 11(a). The boundary conditions are inferred from the solution of linear fracture mechanics. To guarantee the
validity of this boundary condition, which involves the stress intensity factor KI , the plastic and process zones developed
around the crack tip remain small relative to the size of the circular region.

As the outcome of careful numerical simulations, the present model predicts, inter alia, that:

� For given E; m;ry;n and gf , fracture toughness, here denoted KSS and being the maximum KI-value attained up to ini-
tiation of crack growth, increases as l decreases. In particular, the simulation indicates that there is a critical value of l,
say lc , such that KSS !1 as l! lc . Thus, if l 6 lc the theory predicts that crack expansion is impossible no matter the
load level. Therefore, to describe crack expansion, a finite value of l greater than lc must be taken. This value of l can
be estimated provided the experimental value for KSS is known.

� In some cases, the advance of the pre-existent crack involves the following steps: (1) formation of a new crack ahead
the original crack tip; (2) propagation of the new crack towards, and also away, the tip of the original crack; (3)
extension of original crack when its tip is reached by the new crack. This implies the crack extension can occur in
a discontinuous manner. This mechanism has been invoked for explaining brittle fracture in elastic–plastic solids
(c.f. Tetelman and McEvily, 1967; Kfouri, 2008; Kfouri and Miller, 1976; Ritchie et al., 1973). Interestingly, this effect
is captured even using a small strain deformation theory.

4.2.1. Mechanical model
The geometrical description of the test and finite element model are displayed in Fig. 11. Due to the problem symmetry,

only one half (the upper part) of the domain is modeled. A structured mesh of BBAR finite elements of size (he � he) are used
in the vicinity of the crack tip, see Fig. 11(b). The structured mesh extends over a domain of size: 90he � 40he around the
crack tip. The finite element size is: he ¼ 40 lm. Note that the complete geometry of the problem, including the notch size,
is parametrized with he.
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Fig. 11. Mode I crack growth. (a) Geometry data. (b) Finite element model.
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Displacements, defined by the K-field around a sharp crack loaded in mode I, are prescribed on the far boundary A� B� C.
They are given by:
ux ¼
2ð1þ mÞKI

E

ffiffiffiffiffiffiffi
r

2p

r
cosðh=2Þ 1� 2mþ sin2ðh=2Þ

h i
; ð89Þ

uy ¼
2ð1þ mÞKI

E

ffiffiffiffiffiffiffi
r

2p

r
sinðh=2Þ 2� 2m� cos2ðh=2Þ

� 

; ð90Þ
with (r; h) being the polar coordinates of the boundary points and KI is the stress intensity factor. The coordinate system is
centered in the crack tip. The displacements of boundary C � D are prescribed to satisfy symmetry conditions.

The initial value and boundary conditions imposed on the phase field are: u ¼ 0 on the complete domain, ru � n ¼ 0 on
the boundary D� A� B� C.

In the following simulations, the far boundary conditions are prescribed by controlling the crack mouth opening displace-
ment through the parameter Ds, as shown in Fig. 13(a).

Material parameters: the yield stress is taken: ry ¼ 10 MPa, the ratio between Young’s modulus and yield stress is
E=ry ¼ 333:3, Poisson’s ratio: m ¼ 0:3. The strain hardening exponent n changes according to the analyzed cases. The material
parameters of the phase-field model are defined in the following.

4.2.2. Plasticity and phase-field models: analysis of the interaction effects
According to Tvergaard and Hutchinson (1992), the two most important adimensional parameters governing the interac-

tion effects between the mechanisms of crack separation and plastic deformation, are:

(i) the ratio r̂=ry, where r̂ is the critical traction of the crack separation mechanism, i.e. the maximum traction of the
traction-separation law describing the cohesive forces acting through the crack surfaces; and ry is the yield stress of
the plastic model;
(ii) the strain hardening exponent n of the plastic model.

The phase-field model has not an explicit parameter identifying the critical traction r̂. However, it can be estimated
through the parameters gf and l as follows. First, a uniaxial (one-dimensional) homogeneous elastic phase-field problem
is analytically solved. The equations governing this problem are the momentum balance Eq. (1), the phase-field Eq. (1)
and the constitutive Eq. (1) (with Ee ¼ E) described in Table 1. Due to the assumed homogeneity, all gradients are zero
(ru ¼ Du ¼ 0). Then, the result of this problem, reported in Ciarbonetti et al. (2012) and Borden et al. (2011), provides
stress–strain responses like those plotted in Fig. 12. They are plotted for several fracture energies and length parameters.
Finally, the maximum stress values of those responses, and the corresponding strains, are given by the following
equations:
r̂ ¼ 3
ffiffiffi
3
p

16

ffiffiffiffiffiffiffi
gf E

l

r
; ê ¼ 1ffiffiffi

3
p

ffiffiffiffiffi
gf

lE

r
ð91Þ
Note that, due to the assumed spatial homogeneity of the 1-D problem, the response given by Eq. (91) is highly idealized and
artificial because strain localization is precluded, and thus, it does not represent any possible physical solution of a crack
problem. Therefore, the area enclosed by the curves in Fig. 12, a density of energy per unit of volume uniformly distributed
in the 1D domain, is not related with the parameter gf .

In any case, expression (91)-a allows to estimate r̂ as a suitable, but crude, assessment of the separation critical stress
value provided by the phase-field model. Note the similarity between (91) and the classical expression of the Irwin’s char-
actersitic lenght given in (92).
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4.2.2.1. Characterization of interaction effects through the parameter gf . Similar to the analysis reported in Tvergaard and
Hutchinson (1992) using a cohesive model, the crack growth resistance provided by the joint interacting models of plasticity
and phase-field is next analyzed. This study takes the parameters gf and n as two variables, while holding fixed l; E and ry.
Instead of considering l! 0, as would be required for recovering the sharp-crack limit theory in elastic solids, we fix l with a
not null value, being: l ¼ 400 lm ¼ 10he. The reason of adopting this decision are given in the present analysis, where we
show that l must be reinterpreted as a material parameter.

The fracture energy gf defines the critical stresses r̂ðgf Þ through Eq. (91). Once r̂ðgf Þ and n are given, the analysis of the
fracture toughness of the propagating crack is evaluated. In the following analysis, we have varied the parameter gf .

Note that, considering the plastic parameters for this case, the classical estimation of the reference plastic zone size
(Irwin’s characteristic length) is:
R0 ¼
1

3pð1� m2Þ
gf E
r2

y
ð92Þ
Considering fracture energies ranging from gf ¼ ½0:116;1:024� N=mm, the corresponding range of r̂ðgf Þ=ry and R0 are:
r̂ðgf Þ=ry ¼ ½1;3� and R0 ¼ ½450;3970:� lm. Then, from these figures, the notch tip of the numerical model has an initial width,
ranging from 2he ¼ 0:18R0 (for the ratio r̂=ry ¼ 1) to 2he ¼ 0:02R0 (for the ratio r̂=ry ¼ 3). We can conclude that, for high
fracture energies, the numerical model satisfies the sharp crack assumption.

Finally, notice that the ratio r̂=ry, governing the interaction effects between the phase-field model and plasticity, is pro-
portional to

ffiffiffiffiffiffiffiffiffi
R0=l

p
. So, the following discussion given in terms of the former could be rephrased in terms of the later.
4.2.2.2. Results obtained with the numerical model. Fig. 13 displays results obtained with the parameters n ¼ 0 (perfect plas-
ticity) and gf ¼ 0:328 N=mm (r̂ðgf Þ=ry ¼ 1:7).

Fig. 13(b) plots the vertical displacement uT
y of point T (see Fig. 13(a)) vs. control parameter Ds (i.e. the crack mouth open-

ing displacement) normalized with he. In the inserts of the same figure (Fig. 13(c)–(f)) are displayed the evolution of damage
u, with u > 0:97. Arbitrarily, we consider that points with u > 0:97 represents the crack. Every picture is in correspondence
with a point identified in the equilibrium curve: uT

y vs. Ds=he.
Fig. 13(g) plots the vertical tensile stress (Syy) normalized with the yield stress along the horizontal symmetry x-axis. A

sequence of plots are depicted while the maximum damage value remains below to 0:97. The plot denoted D coincides with
the instant of crack initiation. Note that the position of the crack initiation point does not coincide with the maximum tensile
stress point along the x-axis. But, it is located in the elastic/plastic interface, as shown in Fig. 13(c). Also with low damage
values (plot A), note that the point with maximum tensile stress is located in the notch tip. But, with higher loads (plots B
and C), the point with maximum tensile stress changes toward the interior of the body. Similar responses have been reported
in classical elasto plastic solutions for crack propagation (c.f. McMeecking, 1977; Ritchie et al., 1973). Those studies neces-
sarily took into account geometry changes of the root notch. Here, we assume that the finite width notch root geometry has
not changed in the analysis.

After the crack initiates, the crack expands in both directions along the horizontal axis. Also, it is noted that the crack ini-
tiates when the vertical displacement uT

y has decreased from the maximum value (ðuT
yÞmax

) obtained in previous loading
steps. Not in all cases the crack initiates in the interior of the body. In a few cases, the crack starts to propagate from the
notch root.

The stress intensity factor KI is determined from ðuT
yÞ and Eq. (90). Fig. 14 displays two curves of KI vs. the crack mouth

opening Ds. They are defined for n ¼ 0:, r̂=ry ¼ 0:5 and n ¼ 0:2; r̂=ry ¼ 3, respectively. In those plots, the stress intensity

factor KI is normalized with the fracture toughness in the absence of plasticity: K0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEgf Þ=ð1� m2Þ

q
. The horizontal axis

corresponds to the crack mouth opening displacement, Ds, normalized with he. We recall that the steady-state material
toughness KSS is defined as: KSS ¼ KIððuT

yÞmax
Þ. In other words, KSS is the maximum value of KI attained during crack

propagation.
Fig. 15 displays the set of results obtained with different values of the ratio r̂ðgf Þ=ry and taking n ¼ 0 and n ¼ 0:2, respec-

tively. The vertical axis corresponds to the steady-state toughness KSS normalized with K0. The abscissa represents the ratio
r̂ðgf Þ=ry. Comparing the responses displayed by both curves with the results presented in the paper of Tvergaard and Hutch-
inson, we conclude that the phase field model interacts with the plastic model in a similar way as the cohesive model does,
under the condition that l stay fixed.
4.2.3. Discussion of results
The results obtained with perfect plasticity (n ¼ 0) and r̂=ry > 2 do not display crack propagation even considering the

effect introduced by the phase-field model. A vertical asymptote for these responses is observed close to r̂=ry ¼ 2. In all
cases satisfying r̂=ry > 2, the maximum calculated value for damage, in the complete problem domain, remains low
(u < 0:2). The classical blunted notch response without crack surface separation is captured. In the work of Tvergaard
and Hutchinson, a similar asymptotic value is obtained for r̂=ry ¼ 3, which agrees with theoretical predictions. The differ-
ence for capturing the asymptotic value between both models lies on the fact that r̂, in the phase-field model, represents a
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crude estimation of the separation critical stress. A similar tendency to capture a blunted notch without crack formation is
observed when the strain hardening exponent is nonzero (n ¼ 0:2) and gf !1.

Alternatively, the elastic sharp crack limit response is reached when plasticity is not developed. This happens if the phase-
field model limits the stresses to be lower than ry. According with Eq. (91), the maximum stress of the phase-field model can
be estimated through r̂. Thus, if the parameter l is fixed and nonzero, the sharp-crack elastic limit solution is achieved when
gf ! 0. As observed in Fig. 15, this limit is reached when: r̂=ry ! 0. Note that the limit value KSS=K0 ¼ 1 is only approxi-
mately captured by the model. From the tests presented in Sections 4.1.2 and 4.1.3, we know that very refined finite element
meshes are needed to approximate accurately the dissipated energy in the sharp-crack elastic limit solution (and thus,
reaching the limit KSS=K0 ¼ 1).

Consider now the case l! 0 while holding fixed the remaining parameters. As it is known, by taking a purely elastic
response without plasticity, the model asymptotically tends to the sharp crack solution of the linear elastic fracture mechan-
ics theory. However, when the phase-field is coupled with a plastic model, with l! 0 and gf staying fixed, r̂!1, as shown
by Eq. (91). Thus, the criterion for crack activation is never achieved. And the blunted notch solution is unavoidably captured.
This happens even taking n > 0.
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From this observation, it is concluded that the length l has to be taken as a material non-null parameter which, together
with gf and the plastic model parameters, must be properly characterized. The fact of considering two parameters defining
the phase-field model is equivalent to what happens with cohesive approaches, where two parameters must be empirically
defined, such as the critical stress separation and fracture energy.

5. Conclusions

In the first part of this paper, we formulated a phase-field theory of fracture in elastic–plastic solids under small strains,
where a scalar damage variable is introduced and treated as an independent kinematical descriptor. The governing equations
of the theory are obtained by combining the force balances, introduced via the principle of virtual power, and a thermody-
namically consistent constitutive theory that allows for general coupling between elasticity, classical plasticity and damage.
A special version of the theory suitable to the description of rate-independent plasticity and damage is presented. The
phase-field model combined with plasticity is suitable to analyze the role played by plastic deformations during the surface
separation phenomena observed in crack propagation problems.

In the second part of this work, the finite element formulation is presented and several numerical assessments are per-
formed. From the studied tests, some conclusions can be drawn, which are listed in the following items:

(i) When phase-field models are coupled with plasticity, the length scale l has to be reinterpreted. Thus, aside from the
plastic parameters, the phase-field model has to be characterized through two parameters: the fracture energy gf and the
length scale parameter l. Alternatively, and equivalently to cohesive models, instead of taking l, the critical stress r̂ of the
crack separation phenomena can be adopted as the parameter to be characterized, while l is estimated through Eq. (91)-a.
(ii) Similar to cohesive approaches, the present phase-field model is able to capture solutions displaying strain localiza-
tion bands leading to strong discontinuity kinematics. This property has been highlighted in the numerical solutions
presented in Section 4. The reader is referred to Appendix B for additional comments related to this topic.
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(iii) Different from cohesive approaches, the phase-field model takes into account the strain triaxiality to determine the
stresses across the surface where the crack is processing. As can be seen from the phase-field Eq. (12), the evolution of the
phase field variable depends on the elastic energy, which in turn, depends on the strain triaxiality. Instead, cohesive mod-
els lack of this dependence. This conclusion is an extremely important issue when ductile fracture problems are
simulated.

Finally, from a numerical point of view, an important issue related to finite element technologies has to be remarked. The
crack path determined with a phase-field model is automatically detected, once the variable u has been evaluated. The path
can arbitrarily intersect the finite element mesh. A major deficiency is related to the computational cost, because the model
provides accurate solution only by taking very fine meshes. The finite elements have to be small enough, as small as the
order of the parameter l.

Acknowledgments

The first author gratefully acknowledges financial support provided by CAPES (PCPP 004/2011) and CNPq (312153/2013-9).
The research leading to these results has received funding from the European Research Council under the European

Unions Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement Nbr. 320815 (ERC Advanced Grant Project
Advanced tools for computational design of engineering materials COMP-DES-MAT).

The Joint Research Project Mercosur (CAPES, Brazil, SPU, Argentina) has also provided additional financial support.

Appendix A. Sketch to demonstrate the equivalence between phase-field Eqs. (56) and (69)

We have not a formal proof of the equivalence between Eqs. (56) and (69). However, under mild assumptions, we can
sketch partial proofs showing that solution of Eq. (69) satisfies some basic requirements placed by the phase-field equations.
Furthermore, numerical experiments have shown results coherent with the statements below.
� Statement 1

Consider a body B undergoing a damage process driven by h :¼ ŵþe ðEeÞ. Then, under mild assumption, the

phase-field equation satisfies:
(a) uðtÞ ¼ uðt0Þ for all t 2 ðt0; t1Þ provided that hðsÞ 6 hðt0Þ for all s 2 ðt0; tÞ.
(b) hðtÞ > hðsÞ for all s 2 ðt0; tÞ implies that _uðtÞ– 0.

� Statement 2

(valid for an infinite domain with u ¼ 0 for x!1 and assuming lH=gf 
 1) Given Eq. (69) and:
_HðxÞ > 0 ) _u P 0 in all B.
A.1. Proof of statement 1

From (56) and (TI.4), it follows that u and pr obey
pr 6 0; pr ¼ 2ð1�uÞh�
gf

l
ðu� l2

MuÞ: ðA:1Þ
We intend to discuss some features of the solutions of (A.1) for a given driving force history h. Before doing that, we make
the following remark:

� Suppose that ððprÞ1;u1;h1Þ and ððprÞ2;u2;h2Þ satisfy (A.1). Then, a single calculation shows that the condition
u1 ¼ u2 in a vicinity of an arbitrary point of B implies that
h2 6 h1 �
ðprÞ1

2ð1�u1Þ
ðA:2Þ

in that vicinity. Equivalently, if the condition

h2 > h1 �
ðprÞ1

2ð1�u1Þ
ðA:3Þ

holds in a vicinity of an arbitrary point of B, then u1 – u2 in that vicinity.
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We now return to discussion related to the evolution of u in an vicinity of an arbitrary point of B during a process starting
at t ¼ t0 and ending at t ¼ t1. Suppose that u;pr and h are known at t0, which are respectively given by uðt0Þ;prðt0Þ � 0 and
hðt0Þ, and that h is prescribed in the interval ðt0; t1Þ. All the quantities are assumed to be smooth. Under these conditions,
Statement 1 follows from remarks leading to (A.2) and (A.3). Statement 1, by its turn, suggests that (69) holds in the interval
ðt0; t1Þ.

A.2. Proof of statement 2

Consider an infinite domain in R3 which is denoted B, and define the problem:
FH ¼ 2ð1�uHÞHðx; tÞ �
gf

l
ðuH � l2

MuHÞ ¼ 0; in B

Hðx; tÞ ¼max
s

ŵþe ðx; sÞ; s 2 ½0; t�

uH ¼ 0 for x!1;

ðA:4Þ
where Hðx; tÞ satisfies: _Hðx; tÞP 0. After assuming that the parameter l is very small, and such that:
lH
gf

 1 ðA:5Þ
Eq. (A.4) can be rewritten in rates as follows:
M
_̂u� 1

l2
_̂u ¼ �vðx; tÞ;

vðx; tÞ ¼ 2
ð1� ûÞ

lgf

_HP 0

_̂u ¼ 0 for x!1;

ðA:6Þ
Eq. (A.6) is a linear differential equation (Screened Poisson Equation) which solution can be found through the integral:
_̂uðx; tÞ ¼
Z
B

Gðx� x0Þvðx0; tÞdv ðA:7Þ
where Gðx� x0Þ is the Green’s function of the problem (A.6) with the right hand side term being replaced by: vðx; tÞ ¼ dðx0Þ
(dðx0Þ is the Dirac’s delta function). In R3:
GðxÞ ¼ 1
4px

e�x=l2 ; x ¼ jxj; ðA:8Þ
Since: G P 0 and vðx0; tÞP 0 in all B and t 2 ½0; tf �, we conclude that:
_̂u P 0; in B; t 2 ½0; tf �; ðA:9Þ
Appendix B. Comparative analysis for modeling strong discontinuities with phase-field vs. a specific class of gradient
damage model

In this Appendix we elaborate a brief discussion excluding plasticity effects, comparing the present phase-field model
with the so-called implicit damage-gradient model reported by Peerlings et al. (1996). This implicit damage-gradient model
can be considered as a specific class of gradient damage models.

The point here discussed raises important implications for the numerical modeling of fracture, and is specifically
addressed to compare the intrinsic capability for modeling Traction free Strong Discontinuities within a continuum setting.
Rigorous analysis is not pursued. But, the attention is emphasized on a physical interpretation of the additional terms in
the Screened Poisson-type equation describing the damage distribution, as well as in the authors’ numerical experience
using them.

Similar to the phase-field model for fracture adopted in this contribution, the implicit damage-gradient model of
Peerlings et al. postulates that the mechanical problem can be stated in terms of two independent variables fu; ~eeqg, where
u is the displacement vector field and ~eeq is an equivalent ‘‘non-local’’ strain measure. The variable ~eeq is a function of
the ‘‘local’’ equivalent strain counterpart eeqðuÞ :¼ 1=2 k trEh i2 þ 2lE : E

� �
, defined through the following Screened

Poisson-type differential equation (which is written in rates):
l̂2

2
D _~eeq � _~eeq ¼ � _eeqðuÞ

zfflffl}|fflffl{_Fdg
driving

P0

inB; r _~eeq � n ¼ 0 in @B; ðB:1Þ
where l̂ is a length scale parameter. In this gradient-based formulation the damage variable depends on ~eeq.
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For comparison purposes, the Screened Poisson-type equation for the phase-field model is additionally re-written (in
rates) as follows:
l2 D _u� _u ¼ � 2l
gf

_ð1�uÞHðuÞ
 !

in B; r _u � n ¼ 0 in @B; ðB:2Þ
and therefore:
l2 D _u� 1þ 2lHðuÞ
gf

 !
_u ¼ � 2l

gf
ð1�uÞ _HðuÞ

zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{_Fpf
driving

P0

in B; r _u � n ¼ 0 in @B; ðB:3Þ
The right-hand sides of (B.1) and (B.3), denoted as _Fdg
driving and _Fpf

driving , represent the rate driving forces for the implicit-dam-
age-gradient and the phase-field models, respectively. Note that both approaches share similar mathematical structure
incorporating a length scale parameter, l̂ and l, respectively.

However, some important differences can be marked. Strong discontinuity kinematics is characterized by a singular strain
on the crack, here denoted S. Due to this singular kinematics, both terms, eeqðuÞ and HðuÞ in the right-hand side of (B.1) and
(B.3), tend to infinity on S. Notice however that since u grows to 1 on S, the total rate driving force of the phase-field model,
_Fpf

driving , goes to zero as a direct consequence of the quadratic form, in the term ð1�uÞ, assumed in the definition of the elastic
free energy density ŵe, see Eq. (59). On the crack, the variable u reaches the maximum value (u ¼ 1) and stop to grow, and
_Fpf

driving ¼ 0. Thus a real traction free boundary is captured using the phase-field model in total correspondence with the
strong discontinuity model.

Alternatively, the rate driving force of the gradient-based formulation, _Fdg
driving , remains almost singular, and therefore the

non-local strain ~eeq grows unbounded. The damage variable increase until reaching the maximum value, 1, however due to
the characteristic evolution of _Fdg

driving , damage can be spuriously spread from the crack to the surrounding medium. The spu-
rious transference of damage introduces numerical difficulties for capturing a strong discontinuity kinematics. A finite zone
around the crack, involving several finite elements in the discrete model, can reach total degradation. Thus, strong discon-
tinuity regimes cannot be properly modeled in the implicit continuum damage-gradient environment. Solutions to this issue
have been proposed in the literature (c.f. Comi et al., 2007).

Using the present phase-field model, the authors have not detected this kind of numerical difficulties. Particularly, see the
results in Fig. 6.
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