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a b s t r a c t

Analysis of the Tsallis q-triplet for the variability of El Niño Southern Oscillation (ENSO)
index during the Holocene epoch (last 11,000 years) is presented. Three periods are
analyzed, 0–7000, 7000–9700, 9700–11,000 years before the present. During the first and
the third periods, the q-index values have the expected usual relations between them
(qsens < 1 < qstat < qrel), and in the second one there is an inversion between qstat and qrel
(qstat > qrel).

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The study of climate change throughout the history of Earth has been possible using paleoclimatic data, with records
taken from fossil corals, ice sheets, tree rings, sediments, rocks, etc. Climate has been in constant flux for the past few billion
years with events ranging from ice ages to long periods of warmth and changes occurring either rapidly (such as ice-sheet
disintegration in the poles) or gradually over a long period of time [1]. Studies using paleoclimatic data show that the El
Niño/Southern Oscillation (ENSO) has been present in the Earth climate for at least the past 130,000 years [2].

The ENSO system can be thought as a self-sustained oscillator comprising the coupled tropical ocean atmosphere
system [3,4]. A sea surface temperature (SST) gradient between the western Pacific warm pool east of Indonesia and the
eastern Pacific cold tongue of the Peruvian coast induces the easterly winds of the Walker circulation. These winds in turn
stabilize the temperature gradient by driving surface water masses westwards and upwelling of cold deep water close to
South America. Perturbations induced by the annual cycle and noise, excite the so-called Kelvin and Rossby waves. Their
propagation produce variability on interannual time scales. The El Niño phenomenon sets on in early summer and usually
peaks during the winter. It was given the name El Niño, that means in Spanish ‘‘the boy’’, and refers to the Christ child as this
periodic warming is seen in the Pacific near South America around Christmas. El Niño events occur every two to seven years
and usually cause important socioeconomic impacts. El Niño events are usually followed by a stronger than normal Walker
circulation and temperature gradient, called La Niña, the Spanish for ‘‘the girl’’. El Niño and La Niña events are opposite states
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of the ENSO system: El Niño occurs when the equatorial Pacific is warmer than average and La Niña occurs when it is cooler
than average. Once an El Niño or La Niña event develops, it tends to continue for about a year.

Although there is an increasing number of studies evaluating the behavior of ENSO over millennial time scales, the
understanding of its complex dynamics is still limited. Usingwavelet analysis on an ENSO proxy record corresponding to the
Pallcacocha Lake sedimentary data, Moy et al. [5,6] found a millennial-scale oscillation coherent throughout the Holocene
(the present Earth geological era) but displaying less significant variance in the early Holocene. They identified a shift around
5000 before present (BP) from a 1500-yr period in themiddle/early Holocene to a 2000-yr period in the late Holocene.Wang
and Tsonis [7], Tsonis [8] analyzed this record using several non-linear dynamic techniques and concluded that the shift in
behavior around 5000 BP could be explained as a bifurcation in the dynamics given by a transition from chaotic to hyper-
chaotic dynamics.

In the present work we continue with the study of the dynamics of the Holocene proxy ENSO record corresponding to
the Pallcacocha Lake sedimentary data [5,6], now under the optic of Tsallis’ generalized statistical mechanics. In a previous
work [9], we analyzed the temporal changes in dynamics over the last 11,000 years, using an entropy Information Theory
approach. In that work, we found evidence of a shift in dynamics and cyclic behavior which is consistent with the results
of Moy et al. [5]. We also were able to localize these cycles in time and to further analyze possible connections to epochs of
rapid climate change (RCC) during the Holocene [10,11].

The present paper is organized as follows: Section 2 gives a brief description of the generalized statistical mechanics
used in the present work. The ENSO record corresponding to Pallcacocha Lake sedimentary data is described in Section 3.
The Tsallis’ q-triplet and its evaluation are described in Sections 4–6, as the corresponding results for the ENSO data are also
given. Section 7 contains some final remarks.

2. Special features of generalized statistical mechanics

Generalized statisticalmechanicswas advanced by Tsallis in 1988 [12,13], as a generalization of the conventional additive
Boltzmann–Gibbs statistical mechanics, so that some of its tools could now be used for systems unaccessible before. A
particularly important instance is that of systems that find themselves in non-equilibriumbut still stationary states, found in
a great variety of complex systems. Themain Statistical Mechanics-ingredient is the microscopic expression for the entropy
in terms of microstates’ (labeled by, say, i) probabilities pi. Instead of the Boltzmann–Gibbs (BG) logarithmic relation:

S(BG)
= −k

−
i

pi ln pi. (1)

Tsallis proposes

Sq = −k


1 −

−
i

pqi


(1 − q), (2)

with k standing for Boltzmann’s constant. q ∈ R is usually referred to as the non-extensivity index. For q → 1, Sq → S(BG).
The BG conventional statistical mechanics exhibits three main features:

• It leads to a probability distribution function (PDF) describing thermal equilibrium of exponential form in the energy.
Thus, the probability of detecting the system in a state of energy u is proportional to exp(−βu).

• Systems well-described à la BG exhibit exponential sensibility to initial conditions. Small initial differences between
neighboring states grow in exponential fashion (chaotic dynamics characterized by one or more positive Lyapunov
exponents).

• Macroscopic variables exponentially decay to their equilibrium values with a relaxation time τ .

Analogously, Tsallis (or q-)statistics exhibits the following three counterpart-features [14], namely:

(i) Tsallis (or q-)PDF’s, that describe meta-stable or stationary states, are proportional to functions called q-exponentials,
defined according to

expq(−βu) = [1 − (1 − q)βu]1/(1−q), (3)

with β and q constants. In the limit q → 1, q-exponentials become ordinary ones (exp1(x) ≡ exp(x)). If q → 1 and
u = y2, expq(−βu) becomes a q-Gaussian. Stationary states are characterized by a parameter q ≡ qstat . The inverse of
the q-exponential is the so-called q-logarithm

lnq(x) =
x1−q

− 1
1 − q

. (4)

If q = 1 then ln1(x) = ln(x) and obviously we have

lnq[expq(x)] = expq[lnq(x)] = 1. (5)
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q-Gaussians generalize normal, Gaussian distributions [15], i.e.,

Gq(β; z) =

√
β

Cq
e−βz2
q , (6)

where

Cq =

√
π Γ


3−q

2(q−1)


√
q − 1Γ


1

q−1

 (7)

and 1 < q < 3.
(ii) Stationary states exhibit q-exponential sensibility to initial conditions (‘‘weak’’ chaos). Small initial differences between

neighboring states grow in q-exponential fashion, characterized by a vanishing Lyapunov exponent and a parameter
qsens.

(iii) Macroscopic variables q-exponentially decay to their stationary values with q = qrel.

Accordingly, a stationary or meta-stable state is characterized by a triplet of q-values (the Tsallis’ ‘‘q-triplet’’), i.e.,
(qstat , qsens, qrel) ≠ (1, 1, 1), where qstat > 1, qsen < 1, and qrel > 1 [14]. As far as we know, just two empirical instances of
triplet detection have been reported, one of them with reference to the distant helio-magnetic field intensity [16,17] and
the other one with reference to the deep of the ozone stratospheric layer [18]. Values for the particular parameter qstat have
been reported for the daily variation of the ENSO-index (El Niño Southern Oscillation) [19], and for fluctuations of the cosmic
background radiation [20].

3. The El Niño Southern Oscillation data

In the current analysis we study the dynamics of the Holocene proxy ENSO record corresponding to Pallcacocha Lake
sedimentary data [5,6]. The proxy record was obtained from the analysis of clastic laminae deposition in sediment two
8-m cores retrieved from the Pallcacocha Lake in Ecuador. Moy et al. [5] explain that during warm ENSO events, convective
precipitation triggers erosion and debris-flow activity increasing the sediment load that is contributed to the lake. It was
assumed that the light-colored, inorganic clastic sediments laminae in the sediment core were deposited during the ENSO-
driven episodes. This hypothesis was based on the observation that light-colored laminae deposited in the more recent
200 years generally correlated with known moderate to severe El Niño events from instrumental and historical records. To
quantify the distribution of the light-colored laminae in the lake sediments, the surface of the core sections was digitally
scanned and the red color intensity was used to generate the record of ENSO variability. Then, an age model based on
radiocarbon chronology was used to create the time series from 11,000 calendar years BP to today of the red color intensity
(Holocene period).

As is explained by Moy et al. [5,6], the age-model for the new record is based on the same radiocarbon chronology used
by Rodbell et al. [21]. The laminae dated by AMS 14C of terrestrial microfossils in Ref. [21] record are distinctive and could
be confidently identified in the new cores. By creating a composite section from overlapping drives, Moy et al. were able to
improve on the original age model. They adopted the constant carbon accumulation model and an event model to allocate
time between dated intervals [21,22]. The constant carbon accumulation model assumes that the rate of organic carbon
deposition has remained nearly constant between radiocarbon-dated intervals through the Holocene, and this continuous
sedimentation was punctuated by nearly instantaneous clastic depositional events.

The original Pallcacocha Lake data [6] has been interpolated to a sample time of one year using a cubic Hermite
polynomial. The corresponding time series of M = 11, 000 data has been considered in the analysis and is displayed in
Fig. 1(Tsample = 1 year). Visual inspection of ENSO proxy data from the Pallcacocha Lake, Fig. 1, indicates that during the last
5000 years there is a switch to more frequent and strong El Niño events (high red color intensity).
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Fig. 2. (a) Linear regression lnq[p (xi)] vs. x2i with the q-value that yields the highest CC, corresponding to segment I (0–7000 years BP) of the time series.
(b) In circles, the stationary PDF p (xi), and in solid line, the q-Gaussian function that best fits p (xi). The best Gaussian (q = 1) function is showed by a
dashed line for comparison.
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Fig. 3. Same as Fig. 2.b for: (a) segment II (7000–9700 years BP) and (b) segment III (9700–11,000 years BP) of the time series.

In a previous work [9] using the permutation entropy (normalized Shannon entropy evaluated with PDF base on Bandt
and Pompe methodology) we were able to point out to varying aspects of the dynamics of the ENSO proxy during the
Holocene. Our results indicate that the dynamics of the ENSO proxy record during the rapid climate change (RCC) interval
9000–8000 BP is remarkably different from that of the others RCCs of theHolocene. As explained byMayewski et al. [11], this
RCC interval is the only one that coincides with a significant increase in volcanic aerosol production and it occurred when
bipolar ice sheet dynamics still had the potential for substantial effects on global climate. In addition, entropy quantifiers
(permutation entropy and also, entropy evaluated with PDF-histograms) point out to the existence of cycles (intervals of
increasing and decreasing entropy) with a period close to 2000 years during the mid-to-late Holocene [9].

This cyclic dynamic is consistent with that observed by Moy et al. [5] using wavelet analysis. Taking into account the
previous results and in order to perform our analysis based on generalized statistical mechanics of the ENSO proxy data,
we have divided the time series into three segments ranging from: (i) 0 to 7000 years BP, (ii) 7000 to 9700 years BP and
(iii) 9700 to 11,000 years BP, accordingly with the changes in the entropy described by Saco et al. [9].

4. Stationary q = qstat

The suitable q-value for the stationary is obtained from the PDF associated to yearly variations of the ENSO index
∆Sn = Sn+1 − Sn. The ∆S-range is subdivided into little ‘‘cells’’ of width δx centered at xi so that one can assess with what
frequency ∆S-values fall within each cell. We chose a cell-size δx = 5 units. The resultant histogram, properly normalized,
yields our stationary-PDF {p (xi)}Ni=1. Of course, pi is the probability for a ∆S-value to fall within the i-th cell, centered at xi,
with N the cell-number.

The graph lnq[p (xi)] vs. x2i becomes of interest here (see Fig. 2.a). For a proper assessment we varied qwithin [1, 3] with
δq = 0.001, making in each instance a linear adjustment and evaluating the associated correlation coefficient (CC).

In Fig. 2.b the stationary PDF p (xi) corresponding to the first segment of the time series, is showed with circle markers
and, with a solid line, the q-Gaussian function that best fits p (xi). For comparison, the best Gaussian fit is also drawn, as a
dashed line. The same is showed in Fig. 3(a) and (b) for the second and third segment. Our results for the qstat are summarized
in Table 1.
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Table 1
Obtained values for the qstat , standard deviation (SD) and the
associated correlation coefficient for the three segment considered.

Segment qstat ± ∆q CC

I 2.11 ± 0.21 0.9106
II 1.62 ± 0.15 0.8533
III 1.51 ± 0.10 0.9131
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Fig. 4. Linear regression ln[C(τ )] vs. τ for (a) segment I (0–7000 years BP); (b) segment II (7000–9700 years BP); (c) segment III (9700–11,000 years BP).

5. Relaxation q = qrel

The corresponding qrel-value is determined via the temporal self-correlation coefficient

C(τ ) =

∑
n
Sn+τ · Sn∑
n
S2n

. (8)

For a classical BG-process such a correlation should decay in exponential fashion. However we do not find such a
behavior. Instead, the self-correlation of our series Sn clearly decays from unity in a q-exponential manner (see Fig. 4. The
corresponding values for qrel are given in Table 2.

6. Sensibility to initial conditions q = qsens

The qsens can be derived from the multifractal spectrum f (α) of the attractor associated to our nonlinear dynamical
system, reflected by Sn. f (α) is the fractal dimension of a spatial cell-subset that contains the attractor, with local-scale
exponent α [23]. The spectrum’s extremes αmin and αmax, for which f (α) = 0, are related to qsens [14,24] according to

1
(1 − qsens)

=
1

αmin
−

1
αmax

. (9)
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Table 2
Obtained values for the qrel , standard deviation (SD) and the
associated correlation coefficient for the three segments considered.

Segment qrel ± ∆q CC

I 3.72 ± 0.15 0.9949
II 1.37 ± 0.09 0.9967
III 2.94 ± 0.11 0.9916

We have evaluated the multifractal spectrum using the Multifractal Detrended Fluctuation Analysis (MFDFA) method, which
was presented as a generalization of the Detrended Fluctuation Analysis (DFA)method and it proves its advantage compared
with other methods, especially as we deal with non-stationary series, [25–27].

TheMFDFAmultifractal spectrumestimation of a one-dimensional series {x(i), i = 1, . . . ,N} is based on the construction
and analysis of the fluctuation function, that is defined as:

F 2
s (ν) =

1
s

s−
i=1

{Ys[(ν − 1)s + i]}2. (10)

To obtain (10) first we calculate the profile of the series by the integration: Y (k) =
∑k

i=1[x(i) − ⟨x⟩], where ⟨x⟩ is the mean
value of the series {x(i)}. The profile is cut into Ns = N/s non-overlapping segments of equal length s. The detrended time
series for segment s, denoted by Ys(i), is calculated as the difference between the original time series and its fit:

Ys(i) = Y (i) − pν(i), (11)

where pν(i) is the fitting polynomial in the ν-th segment. Since we use a polynomial fit of order 1, we denote the algorithm
as 1-MFDFA, or for simplicity MFDFA. Because the detrending of the time series is done by subtraction of the fits from the
profile, these methods differ in their capability of eliminating trends in the data. For each of the Ns segments, the variance
of the detrended time series Ys(i) is evaluated by averaging over all data points i in the ν-th segment. Then, averaging over
all segments, it is possible to obtain the g-th fluctuation function:

Fg(s) =


1

2Ns

2Ns−
ν=1


F 2
s (ν)

g/21/g

, (12)

where, in general, the index g can take any real value. For g = 2, the standard DFA procedure is retrieved. The scaling
behavior of the fluctuation function is determined by analyzing log–log plots Fg(s) versus s for each value of g . If the series
x(i) is long-range power-low correlated Fg(s) increases, for large values of s, as a power-law:

Fg(s) ∼ sh(g). (13)

For more details see Ref. [25].
For monofractal time series with compact support, h(g) is independent of g , since the scaling behavior of the variance

F 2
s (ν) is identical for all segments ν and the averaging procedure in Eq. (12) will give just this identical scaling behavior
for all values of g . Only if small and large fluctuations scale differently, will there be a significant dependence of h(g) on
g . If we consider positive values of g , the segments ν with large variance F 2

s (ν) will dominate the average Fg(s). Thus, for
positive values of g , h(g) describes the scaling behavior of the segmentswith large fluctuations. On the contrary, for negative
values of g , the segments ν with small variance F 2

s (ν) will dominate the average Fg(s). Hence, for negative values of g , h(g)
describes the scaling behavior of the segments with small fluctuations and it is known as the generalized Hurst exponent.
When g = 2, the h(2) is the Hurst exponent.

Following from Eqs. (12) to (13) and assuming that the length N of the series is an integer multiple of the scale s,

N/s−
ν=1

|Y (νs) − Y ((ν − 1)s)|g ∼ sgh(g)−1. (14)

Kantelhardt and co-workers show that this multifractal formalism corresponds with the standard box counting theory and
they related both formalisms. It is obvious that the term |Y (νs) − Y ((ν − 1)s)| is identical to the sum of the numbers
x(i) within each segment ν of size s. This sum is the box probability ps(ν) in the standard formalism for normalized series
x(i) [25].

The scaling function η(g) is usually defined from last equation:

η(g) = g h(g) − 1 (15)

where g is a real parameter. The Hölder exponents α and themultifractal spectrum f (α) are relatedwith η(g) via a Legendre
transform, in the case that η(g) is concave, Ref. [28]:

α = η′(g) (16)
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Table 3
Obtained values for the qsens , standard deviation (SD) and the associated correlation coefficient for the three segment considered.

Segment αmax ± ∆αmax αmin ± ∆αmin qsens ± ∆q

I 0.996 ± 0.0122 0.289 ± 0.0083 0.592 ± 0.049
II 1.538 ± 0.0234 0.502 ± 0.0128 0.256 ± 0.083
III 1.612 ± 0.0237 0.498 ± 0.0159 0.279 ± 0.095
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Fig. 5. Generalized Hurst exponent for the three segments. Circles correspond to segment I (0–7000 years BP), diamonds to segment II (7000–9700 years
BP) and asterisks to segment III (9700–11,000 years BP).
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and

f (α) = g h − η(g). (17)

Then, MFDFA can be framed into the multifractal formalism. In multifractal systems, the strength of multifractality can be
described by the width of the spectrum ∆α. It is easy to show that: αmax = h(−∞) and αmin = h(+∞). So, to estimate
αmax and αmin can use the function h(g) with |g| ≫ 1.

TheMFDFAmethod for calculating qsens is the easy implementation, avoids numerical errors introduced by the numerical
calculation of derivatives and is optimal in the case of highly non-stationary series as the one presented. In Fig. 5 we present
the Generalized Hurst exponent h(g) for the three periods and in Fig. 6 the corresponding Multifractal Spectrum obtained
from Eqs. (16) to (17). Fig. 7 shows the results for the Fluctuation function (Fg(s)) and its fitting for the three segments and
the two cases (αmax = h(−∞) and αmin = h(+∞)), as explained by Mayewski et al. [11]. The obtained values for qrel are
given in Table 3.

7. Final remarks

In this paper we report the values of the Tsallis-nonextensivity triplet for ENSO during the Holocene epoch based on
the record corresponding to the Pallcacocha Lake sedimentary data. We divided the record in three periods as reported in a
previouswork [9] corresponding to different dynamics. In Fig. 8we summarize our results for q-triplets corresponding to the
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three periods considered. For these periods we conclude that: Segments I and III meet the inequality qsens < 1 < qstat < qrel
and segment II reverses the relationship between qstat and qrel, and it results in qstat > qrel. It is interesting to remark that this
is the first time that this inversion is observed.We understand that this is a clear manifestation of the change in the dynamic
of ENSO recording during the Rapid Climatic Change (RCC) in the interval 8000–9000 years BP, consistent with previous
works based on wavelet analysis [5,6] and entropy analysis [9]. As explained by Mayewski et al. [11], this RCC interval in
the only one that coincides with a significant increased in volcanic aerosol production, and it occurred when bipolar ice
sheet dynamics still had the potential for substantial effects on global climate. Also, from the multifractal formalism we can
observe the difference of the Generalized Hurst exponent (Fig. 5) and the Multifractal Spectrum (Fig. 6) between the data
from period II and the data corresponding to periods I and III.
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